ref: ad479d9641caf083feee75240b1363f91d1262a5
dir: /test/vp9_quantize_test.cc/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include <tuple> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vp9_rtcd.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "test/acm_random.h" #include "test/bench.h" #include "test/buffer.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_scan.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" #include "vpx_ports/msvc.h" #include "vpx_ports/vpx_timer.h" using libvpx_test::ACMRandom; using libvpx_test::Buffer; namespace { const int number_of_iterations = 100; typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *zbin, const int16_t *round, const int16_t *quant, const int16_t *quant_shift, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan); typedef std::tuple<QuantizeFunc, QuantizeFunc, vpx_bit_depth_t, int /*max_size*/, bool /*is_fp*/> QuantizeParam; // Wrapper for FP version which does not use zbin or quant_shift. typedef void (*QuantizeFPFunc)(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *round, const int16_t *quant, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan); template <QuantizeFPFunc fn> void QuantFPWrapper(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *zbin, const int16_t *round, const int16_t *quant, const int16_t *quant_shift, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan) { (void)zbin; (void)quant_shift; fn(coeff, count, skip_block, round, quant, qcoeff, dqcoeff, dequant, eob, scan, iscan); } class VP9QuantizeBase : public AbstractBench { public: VP9QuantizeBase(vpx_bit_depth_t bit_depth, int max_size, bool is_fp) : bit_depth_(bit_depth), max_size_(max_size), is_fp_(is_fp), coeff_(Buffer<tran_low_t>(max_size_, max_size_, 0, 16)), qcoeff_(Buffer<tran_low_t>(max_size_, max_size_, 0, 32)), dqcoeff_(Buffer<tran_low_t>(max_size_, max_size_, 0, 32)) { max_value_ = (1 << bit_depth_) - 1; zbin_ptr_ = reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*zbin_ptr_))); round_fp_ptr_ = reinterpret_cast<int16_t *>( vpx_memalign(16, 8 * sizeof(*round_fp_ptr_))); quant_fp_ptr_ = reinterpret_cast<int16_t *>( vpx_memalign(16, 8 * sizeof(*quant_fp_ptr_))); round_ptr_ = reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*round_ptr_))); quant_ptr_ = reinterpret_cast<int16_t *>(vpx_memalign(16, 8 * sizeof(*quant_ptr_))); quant_shift_ptr_ = reinterpret_cast<int16_t *>( vpx_memalign(16, 8 * sizeof(*quant_shift_ptr_))); dequant_ptr_ = reinterpret_cast<int16_t *>( vpx_memalign(16, 8 * sizeof(*dequant_ptr_))); r_ptr_ = (is_fp_) ? round_fp_ptr_ : round_ptr_; q_ptr_ = (is_fp_) ? quant_fp_ptr_ : quant_ptr_; } ~VP9QuantizeBase() { vpx_free(zbin_ptr_); vpx_free(round_fp_ptr_); vpx_free(quant_fp_ptr_); vpx_free(round_ptr_); vpx_free(quant_ptr_); vpx_free(quant_shift_ptr_); vpx_free(dequant_ptr_); zbin_ptr_ = NULL; round_fp_ptr_ = NULL; quant_fp_ptr_ = NULL; round_ptr_ = NULL; quant_ptr_ = NULL; quant_shift_ptr_ = NULL; dequant_ptr_ = NULL; libvpx_test::ClearSystemState(); } protected: int16_t *zbin_ptr_; int16_t *round_fp_ptr_; int16_t *quant_fp_ptr_; int16_t *round_ptr_; int16_t *quant_ptr_; int16_t *quant_shift_ptr_; int16_t *dequant_ptr_; const vpx_bit_depth_t bit_depth_; int max_value_; const int max_size_; const bool is_fp_; Buffer<tran_low_t> coeff_; Buffer<tran_low_t> qcoeff_; Buffer<tran_low_t> dqcoeff_; int16_t *r_ptr_; int16_t *q_ptr_; int count_; int skip_block_; const scan_order *scan_; uint16_t eob_; }; class VP9QuantizeTest : public VP9QuantizeBase, public ::testing::TestWithParam<QuantizeParam> { public: VP9QuantizeTest() : VP9QuantizeBase(GET_PARAM(2), GET_PARAM(3), GET_PARAM(4)), quantize_op_(GET_PARAM(0)), ref_quantize_op_(GET_PARAM(1)) {} protected: virtual void Run(); const QuantizeFunc quantize_op_; const QuantizeFunc ref_quantize_op_; }; void VP9QuantizeTest::Run() { quantize_op_(coeff_.TopLeftPixel(), count_, skip_block_, zbin_ptr_, r_ptr_, q_ptr_, quant_shift_ptr_, qcoeff_.TopLeftPixel(), dqcoeff_.TopLeftPixel(), dequant_ptr_, &eob_, scan_->scan, scan_->iscan); } // This quantizer compares the AC coefficients to the quantization step size to // determine if further multiplication operations are needed. // Based on vp9_quantize_fp_sse2(). inline void quant_fp_nz(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *round_ptr, const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan, int is_32x32) { int i, eob = -1; const int thr = dequant_ptr[1] >> (1 + is_32x32); (void)iscan; (void)skip_block; assert(!skip_block); // Quantization pass: All coefficients with index >= zero_flag are // skippable. Note: zero_flag can be zero. for (i = 0; i < n_coeffs; i += 16) { int y; int nzflag_cnt = 0; int abs_coeff[16]; int coeff_sign[16]; // count nzflag for each row (16 tran_low_t) for (y = 0; y < 16; ++y) { const int rc = i + y; const int coeff = coeff_ptr[rc]; coeff_sign[y] = (coeff >> 31); abs_coeff[y] = (coeff ^ coeff_sign[y]) - coeff_sign[y]; // The first 16 are skipped in the sse2 code. Do the same here to match. if (i >= 16 && (abs_coeff[y] <= thr)) { nzflag_cnt++; } } for (y = 0; y < 16; ++y) { const int rc = i + y; // If all of the AC coeffs in a row has magnitude less than the // quantization step_size/2, quantize to zero. if (nzflag_cnt < 16) { int tmp; int _round; if (is_32x32) { _round = ROUND_POWER_OF_TWO(round_ptr[rc != 0], 1); } else { _round = round_ptr[rc != 0]; } tmp = clamp(abs_coeff[y] + _round, INT16_MIN, INT16_MAX); tmp = (tmp * quant_ptr[rc != 0]) >> (16 - is_32x32); qcoeff_ptr[rc] = (tmp ^ coeff_sign[y]) - coeff_sign[y]; dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; if (is_32x32) { dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0] / 2; } else { dqcoeff_ptr[rc] = qcoeff_ptr[rc] * dequant_ptr[rc != 0]; } } else { qcoeff_ptr[rc] = 0; dqcoeff_ptr[rc] = 0; } } } // Scan for eob. for (i = 0; i < n_coeffs; i++) { // Use the scan order to find the correct eob. const int rc = scan[i]; if (qcoeff_ptr[rc]) { eob = i; } } *eob_ptr = eob + 1; } void quantize_fp_nz_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *round_ptr, const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { quant_fp_nz(coeff_ptr, n_coeffs, skip_block, round_ptr, quant_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 0); } void quantize_fp_32x32_nz_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block, const int16_t *round_ptr, const int16_t *quant_ptr, tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, const int16_t *scan, const int16_t *iscan) { quant_fp_nz(coeff_ptr, n_coeffs, skip_block, round_ptr, quant_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan, 1); } void GenerateHelperArrays(ACMRandom *rnd, int16_t *zbin, int16_t *round, int16_t *quant, int16_t *quant_shift, int16_t *dequant, int16_t *round_fp, int16_t *quant_fp) { // Max when q == 0. Otherwise, it is 48 for Y and 42 for U/V. const int max_qrounding_factor_fp = 64; for (int j = 0; j < 2; j++) { // The range is 4 to 1828 in the VP9 tables. const int qlookup = rnd->RandRange(1825) + 4; round_fp[j] = (max_qrounding_factor_fp * qlookup) >> 7; quant_fp[j] = (1 << 16) / qlookup; // Values determined by deconstructing vp9_init_quantizer(). // zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y // values or U/V values of any bit depth. This is because y_delta is not // factored into the vp9_ac_quant() call. zbin[j] = rnd->RandRange(1200); // round may be up to 685 for Y values or 914 for U/V. round[j] = rnd->RandRange(914); // quant ranges from 1 to -32703 quant[j] = static_cast<int>(rnd->RandRange(32704)) - 32703; // quant_shift goes up to 1 << 16. quant_shift[j] = rnd->RandRange(16384); // dequant maxes out at 1828 for all cases. dequant[j] = rnd->RandRange(1828); } for (int j = 2; j < 8; j++) { zbin[j] = zbin[1]; round_fp[j] = round_fp[1]; quant_fp[j] = quant_fp[1]; round[j] = round[1]; quant[j] = quant[1]; quant_shift[j] = quant_shift[1]; dequant[j] = dequant[1]; } } TEST_P(VP9QuantizeTest, OperationCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); ASSERT_TRUE(coeff_.Init()); ASSERT_TRUE(qcoeff_.Init()); ASSERT_TRUE(dqcoeff_.Init()); Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_qcoeff.Init()); Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_dqcoeff.Init()); uint16_t ref_eob = 0; eob_ = 0; for (int i = 0; i < number_of_iterations; ++i) { // Test skip block for the first three iterations to catch all the different // sizes. const int skip_block = 0; TX_SIZE sz; if (max_size_ == 16) { sz = static_cast<TX_SIZE>(i % 3); // TX_4X4, TX_8X8 TX_16X16 } else { sz = TX_32X32; } const TX_TYPE tx_type = static_cast<TX_TYPE>((i >> 2) % 3); scan_ = &vp9_scan_orders[sz][tx_type]; count_ = (4 << sz) * (4 << sz); coeff_.Set(&rnd, -max_value_, max_value_); GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_, round_fp_ptr_, quant_fp_ptr_); ref_quantize_op_(coeff_.TopLeftPixel(), count_, skip_block, zbin_ptr_, r_ptr_, q_ptr_, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, scan_->scan, scan_->iscan); ASM_REGISTER_STATE_CHECK(quantize_op_( coeff_.TopLeftPixel(), count_, skip_block, zbin_ptr_, r_ptr_, q_ptr_, quant_shift_ptr_, qcoeff_.TopLeftPixel(), dqcoeff_.TopLeftPixel(), dequant_ptr_, &eob_, scan_->scan, scan_->iscan)); EXPECT_TRUE(qcoeff_.CheckValues(ref_qcoeff)); EXPECT_TRUE(dqcoeff_.CheckValues(ref_dqcoeff)); EXPECT_EQ(eob_, ref_eob); if (HasFailure()) { printf("Failure on iteration %d.\n", i); qcoeff_.PrintDifference(ref_qcoeff); dqcoeff_.PrintDifference(ref_dqcoeff); return; } } } TEST_P(VP9QuantizeTest, EOBCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); ASSERT_TRUE(coeff_.Init()); ASSERT_TRUE(qcoeff_.Init()); ASSERT_TRUE(dqcoeff_.Init()); Buffer<tran_low_t> ref_qcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_qcoeff.Init()); Buffer<tran_low_t> ref_dqcoeff = Buffer<tran_low_t>(max_size_, max_size_, 0, 32); ASSERT_TRUE(ref_dqcoeff.Init()); uint16_t ref_eob = 0; eob_ = 0; const uint32_t max_index = max_size_ * max_size_ - 1; for (int i = 0; i < number_of_iterations; ++i) { skip_block_ = 0; TX_SIZE sz; if (max_size_ == 16) { sz = static_cast<TX_SIZE>(i % 3); // TX_4X4, TX_8X8 TX_16X16 } else { sz = TX_32X32; } const TX_TYPE tx_type = static_cast<TX_TYPE>((i >> 2) % 3); scan_ = &vp9_scan_orders[sz][tx_type]; count_ = (4 << sz) * (4 << sz); // Two random entries coeff_.Set(0); coeff_.TopLeftPixel()[rnd.RandRange(count_) & max_index] = static_cast<int>(rnd.RandRange(max_value_ * 2)) - max_value_; coeff_.TopLeftPixel()[rnd.RandRange(count_) & max_index] = static_cast<int>(rnd.RandRange(max_value_ * 2)) - max_value_; GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_, round_fp_ptr_, quant_fp_ptr_); ref_quantize_op_(coeff_.TopLeftPixel(), count_, skip_block_, zbin_ptr_, r_ptr_, q_ptr_, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, scan_->scan, scan_->iscan); ASM_REGISTER_STATE_CHECK(quantize_op_( coeff_.TopLeftPixel(), count_, skip_block_, zbin_ptr_, r_ptr_, q_ptr_, quant_shift_ptr_, qcoeff_.TopLeftPixel(), dqcoeff_.TopLeftPixel(), dequant_ptr_, &eob_, scan_->scan, scan_->iscan)); EXPECT_TRUE(qcoeff_.CheckValues(ref_qcoeff)); EXPECT_TRUE(dqcoeff_.CheckValues(ref_dqcoeff)); EXPECT_EQ(eob_, ref_eob); if (HasFailure()) { printf("Failure on iteration %d.\n", i); qcoeff_.PrintDifference(ref_qcoeff); dqcoeff_.PrintDifference(ref_dqcoeff); return; } } } TEST_P(VP9QuantizeTest, DISABLED_Speed) { ACMRandom rnd(ACMRandom::DeterministicSeed()); ASSERT_TRUE(coeff_.Init()); ASSERT_TRUE(qcoeff_.Init()); ASSERT_TRUE(dqcoeff_.Init()); TX_SIZE starting_sz, ending_sz; if (max_size_ == 16) { starting_sz = TX_4X4; ending_sz = TX_16X16; } else { starting_sz = TX_32X32; ending_sz = TX_32X32; } for (TX_SIZE sz = starting_sz; sz <= ending_sz; ++sz) { // zbin > coeff, zbin < coeff. for (int i = 0; i < 2; ++i) { skip_block_ = 0; // TX_TYPE defines the scan order. That is not relevant to the speed test. // Pick the first one. const TX_TYPE tx_type = DCT_DCT; count_ = (4 << sz) * (4 << sz); scan_ = &vp9_scan_orders[sz][tx_type]; GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_, round_fp_ptr_, quant_fp_ptr_); if (i == 0) { // When |coeff values| are less than zbin the results are 0. int threshold = 100; if (max_size_ == 32) { // For 32x32, the threshold is halved. Double it to keep the values // from clearing it. threshold = 200; } for (int j = 0; j < 8; ++j) zbin_ptr_[j] = threshold; coeff_.Set(&rnd, -99, 99); } else if (i == 1) { for (int j = 0; j < 8; ++j) zbin_ptr_[j] = 50; coeff_.Set(&rnd, -500, 500); } RunNTimes(10000000 / count_); const char *type = (i == 0) ? "Bypass calculations " : "Full calculations "; char block_size[16]; snprintf(block_size, sizeof(block_size), "%dx%d", 4 << sz, 4 << sz); char title[100]; snprintf(title, sizeof(title), "%25s %8s ", type, block_size); PrintMedian(title); } } } using std::make_tuple; #if HAVE_SSE2 #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( SSE2, VP9QuantizeTest, ::testing::Values( make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_10, 16, false), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_12, 16, false), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_8, 32, false), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_10, 32, false), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_12, 32, false))); #else INSTANTIATE_TEST_CASE_P( SSE2, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&QuantFPWrapper<vp9_quantize_fp_sse2>, &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8, 16, true))); #endif // CONFIG_VP9_HIGHBITDEPTH #endif // HAVE_SSE2 #if HAVE_SSSE3 #if ARCH_X86_64 INSTANTIATE_TEST_CASE_P( SSSE3, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_quantize_b_32x32_ssse3, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, false), make_tuple(&QuantFPWrapper<vp9_quantize_fp_ssse3>, &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8, 16, true), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_ssse3>, &QuantFPWrapper<quantize_fp_32x32_nz_c>, VPX_BITS_8, 32, true))); #else INSTANTIATE_TEST_CASE_P( SSSE3, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_quantize_b_32x32_ssse3, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, false))); #endif // ARCH_X86_64 #endif // HAVE_SSSE3 #if HAVE_AVX INSTANTIATE_TEST_CASE_P(AVX, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_avx, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_quantize_b_32x32_avx, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, false))); #endif // HAVE_AVX #if ARCH_X86_64 && HAVE_AVX2 INSTANTIATE_TEST_CASE_P( AVX2, VP9QuantizeTest, ::testing::Values(make_tuple(&QuantFPWrapper<vp9_quantize_fp_avx2>, &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8, 16, true))); #endif // HAVE_AVX2 #if HAVE_NEON INSTANTIATE_TEST_CASE_P( NEON, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_neon, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_quantize_b_32x32_neon, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, false), make_tuple(&QuantFPWrapper<vp9_quantize_fp_neon>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16, true), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_neon>, &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32, true))); #endif // HAVE_NEON #if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( VSX, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_vsx, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_quantize_b_32x32_vsx, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, false), make_tuple(&QuantFPWrapper<vp9_quantize_fp_vsx>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16, true), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_vsx>, &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32, true))); #endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH // Only useful to compare "Speed" test results. INSTANTIATE_TEST_CASE_P( DISABLED_C, VP9QuantizeTest, ::testing::Values( make_tuple(&vpx_quantize_b_c, &vpx_quantize_b_c, VPX_BITS_8, 16, false), make_tuple(&vpx_quantize_b_32x32_c, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32, false), make_tuple(&QuantFPWrapper<vp9_quantize_fp_c>, &QuantFPWrapper<vp9_quantize_fp_c>, VPX_BITS_8, 16, true), make_tuple(&QuantFPWrapper<quantize_fp_nz_c>, &QuantFPWrapper<quantize_fp_nz_c>, VPX_BITS_8, 16, true), make_tuple(&QuantFPWrapper<quantize_fp_32x32_nz_c>, &QuantFPWrapper<quantize_fp_32x32_nz_c>, VPX_BITS_8, 32, true), make_tuple(&QuantFPWrapper<vp9_quantize_fp_32x32_c>, &QuantFPWrapper<vp9_quantize_fp_32x32_c>, VPX_BITS_8, 32, true))); } // namespace