ref: b120ba5781a520c015b356a7c77c89545ccdee32
dir: /vpx_dsp/fastssim.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. * * This code was originally written by: Nathan E. Egge, at the Daala * project. */ #include <assert.h> #include <math.h> #include <stdlib.h> #include <string.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/ssim.h" #include "vpx_ports/system_state.h" typedef struct fs_level fs_level; typedef struct fs_ctx fs_ctx; #define SSIM_C1 (255 * 255 * 0.01 * 0.01) #define SSIM_C2 (255 * 255 * 0.03 * 0.03) #if CONFIG_VP9_HIGHBITDEPTH #define SSIM_C1_10 (1023 * 1023 * 0.01 * 0.01) #define SSIM_C1_12 (4095 * 4095 * 0.01 * 0.01) #define SSIM_C2_10 (1023 * 1023 * 0.03 * 0.03) #define SSIM_C2_12 (4095 * 4095 * 0.03 * 0.03) #endif #define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b)) #define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b)) struct fs_level { uint32_t *im1; uint32_t *im2; double *ssim; int w; int h; }; struct fs_ctx { fs_level *level; int nlevels; unsigned *col_buf; }; static void fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) { unsigned char *data; size_t data_size; int lw; int lh; int l; lw = (_w + 1) >> 1; lh = (_h + 1) >> 1; data_size = _nlevels * sizeof(fs_level) + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf); for (l = 0; l < _nlevels; l++) { size_t im_size; size_t level_size; im_size = lw * (size_t)lh; level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); level_size += sizeof(*_ctx->level[l].ssim) - 1; level_size /= sizeof(*_ctx->level[l].ssim); level_size += im_size; level_size *= sizeof(*_ctx->level[l].ssim); data_size += level_size; lw = (lw + 1) >> 1; lh = (lh + 1) >> 1; } data = (unsigned char *)malloc(data_size); _ctx->level = (fs_level *)data; _ctx->nlevels = _nlevels; data += _nlevels * sizeof(*_ctx->level); lw = (_w + 1) >> 1; lh = (_h + 1) >> 1; for (l = 0; l < _nlevels; l++) { size_t im_size; size_t level_size; _ctx->level[l].w = lw; _ctx->level[l].h = lh; im_size = lw * (size_t)lh; level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); level_size += sizeof(*_ctx->level[l].ssim) - 1; level_size /= sizeof(*_ctx->level[l].ssim); level_size *= sizeof(*_ctx->level[l].ssim); _ctx->level[l].im1 = (uint32_t *)data; _ctx->level[l].im2 = _ctx->level[l].im1 + im_size; data += level_size; _ctx->level[l].ssim = (double *)data; data += im_size * sizeof(*_ctx->level[l].ssim); lw = (lw + 1) >> 1; lh = (lh + 1) >> 1; } _ctx->col_buf = (unsigned *)data; } static void fs_ctx_clear(fs_ctx *_ctx) { free(_ctx->level); } static void fs_downsample_level(fs_ctx *_ctx, int _l) { const uint32_t *src1; const uint32_t *src2; uint32_t *dst1; uint32_t *dst2; int w2; int h2; int w; int h; int i; int j; w = _ctx->level[_l].w; h = _ctx->level[_l].h; dst1 = _ctx->level[_l].im1; dst2 = _ctx->level[_l].im2; w2 = _ctx->level[_l - 1].w; h2 = _ctx->level[_l - 1].h; src1 = _ctx->level[_l - 1].im1; src2 = _ctx->level[_l - 1].im2; for (j = 0; j < h; j++) { int j0offs; int j1offs; j0offs = 2 * j * w2; j1offs = FS_MINI(2 * j + 1, h2) * w2; for (i = 0; i < w; i++) { int i0; int i1; i0 = 2 * i; i1 = FS_MINI(i0 + 1, w2); dst1[j * w + i] = (uint32_t)((int64_t)src1[j0offs + i0] + src1[j0offs + i1] + src1[j1offs + i0] + src1[j1offs + i1]); dst2[j * w + i] = (uint32_t)((int64_t)src2[j0offs + i0] + src2[j0offs + i1] + src2[j1offs + i0] + src2[j1offs + i1]); } } } static void fs_downsample_level0(fs_ctx *_ctx, const uint8_t *_src1, int _s1ystride, const uint8_t *_src2, int _s2ystride, int _w, int _h, uint32_t bd, uint32_t shift) { uint32_t *dst1; uint32_t *dst2; int w; int h; int i; int j; w = _ctx->level[0].w; h = _ctx->level[0].h; dst1 = _ctx->level[0].im1; dst2 = _ctx->level[0].im2; for (j = 0; j < h; j++) { int j0; int j1; j0 = 2 * j; j1 = FS_MINI(j0 + 1, _h); for (i = 0; i < w; i++) { int i0; int i1; i0 = 2 * i; i1 = FS_MINI(i0 + 1, _w); if (bd == 8 && shift == 0) { dst1[j * w + i] = _src1[j0 * _s1ystride + i0] + _src1[j0 * _s1ystride + i1] + _src1[j1 * _s1ystride + i0] + _src1[j1 * _s1ystride + i1]; dst2[j * w + i] = _src2[j0 * _s2ystride + i0] + _src2[j0 * _s2ystride + i1] + _src2[j1 * _s2ystride + i0] + _src2[j1 * _s2ystride + i1]; } else { uint16_t *src1s = CONVERT_TO_SHORTPTR(_src1); uint16_t *src2s = CONVERT_TO_SHORTPTR(_src2); dst1[j * w + i] = (src1s[j0 * _s1ystride + i0] >> shift) + (src1s[j0 * _s1ystride + i1] >> shift) + (src1s[j1 * _s1ystride + i0] >> shift) + (src1s[j1 * _s1ystride + i1] >> shift); dst2[j * w + i] = (src2s[j0 * _s2ystride + i0] >> shift) + (src2s[j0 * _s2ystride + i1] >> shift) + (src2s[j1 * _s2ystride + i0] >> shift) + (src2s[j1 * _s2ystride + i1] >> shift); } } } } static void fs_apply_luminance(fs_ctx *_ctx, int _l, int bit_depth) { unsigned *col_sums_x; unsigned *col_sums_y; uint32_t *im1; uint32_t *im2; double *ssim; double c1; int w; int h; int j0offs; int j1offs; int i; int j; double ssim_c1 = SSIM_C1; #if CONFIG_VP9_HIGHBITDEPTH if (bit_depth == 10) ssim_c1 = SSIM_C1_10; if (bit_depth == 12) ssim_c1 = SSIM_C1_12; #else assert(bit_depth == 8); (void)bit_depth; #endif w = _ctx->level[_l].w; h = _ctx->level[_l].h; col_sums_x = _ctx->col_buf; col_sums_y = col_sums_x + w; im1 = _ctx->level[_l].im1; im2 = _ctx->level[_l].im2; for (i = 0; i < w; i++) col_sums_x[i] = 5 * im1[i]; for (i = 0; i < w; i++) col_sums_y[i] = 5 * im2[i]; for (j = 1; j < 4; j++) { j1offs = FS_MINI(j, h - 1) * w; for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; } ssim = _ctx->level[_l].ssim; c1 = (double)(ssim_c1 * 4096 * (1 << 4 * _l)); for (j = 0; j < h; j++) { int64_t mux; int64_t muy; int i0; int i1; mux = (int64_t)5 * col_sums_x[0]; muy = (int64_t)5 * col_sums_y[0]; for (i = 1; i < 4; i++) { i1 = FS_MINI(i, w - 1); mux += col_sums_x[i1]; muy += col_sums_y[i1]; } for (i = 0; i < w; i++) { ssim[j * w + i] *= (2 * mux * (double)muy + c1) / (mux * (double)mux + muy * (double)muy + c1); if (i + 1 < w) { i0 = FS_MAXI(0, i - 4); i1 = FS_MINI(i + 4, w - 1); mux += (int)col_sums_x[i1] - (int)col_sums_x[i0]; muy += (int)col_sums_x[i1] - (int)col_sums_x[i0]; } } if (j + 1 < h) { j0offs = FS_MAXI(0, j - 4) * w; for (i = 0; i < w; i++) col_sums_x[i] -= im1[j0offs + i]; for (i = 0; i < w; i++) col_sums_y[i] -= im2[j0offs + i]; j1offs = FS_MINI(j + 4, h - 1) * w; for (i = 0; i < w; i++) col_sums_x[i] = (uint32_t)((int64_t)col_sums_x[i] + im1[j1offs + i]); for (i = 0; i < w; i++) col_sums_y[i] = (uint32_t)((int64_t)col_sums_y[i] + im2[j1offs + i]); } } } #define FS_COL_SET(_col, _joffs, _ioffs) \ do { \ unsigned gx; \ unsigned gy; \ gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ col_sums_gx2[(_col)] = gx * (double)gx; \ col_sums_gy2[(_col)] = gy * (double)gy; \ col_sums_gxgy[(_col)] = gx * (double)gy; \ } while (0) #define FS_COL_ADD(_col, _joffs, _ioffs) \ do { \ unsigned gx; \ unsigned gy; \ gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ col_sums_gx2[(_col)] += gx * (double)gx; \ col_sums_gy2[(_col)] += gy * (double)gy; \ col_sums_gxgy[(_col)] += gx * (double)gy; \ } while (0) #define FS_COL_SUB(_col, _joffs, _ioffs) \ do { \ unsigned gx; \ unsigned gy; \ gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ col_sums_gx2[(_col)] -= gx * (double)gx; \ col_sums_gy2[(_col)] -= gy * (double)gy; \ col_sums_gxgy[(_col)] -= gx * (double)gy; \ } while (0) #define FS_COL_COPY(_col1, _col2) \ do { \ col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)]; \ col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)]; \ col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \ } while (0) #define FS_COL_HALVE(_col1, _col2) \ do { \ col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5; \ col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5; \ col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \ } while (0) #define FS_COL_DOUBLE(_col1, _col2) \ do { \ col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2; \ col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2; \ col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \ } while (0) static void fs_calc_structure(fs_ctx *_ctx, int _l, int bit_depth) { uint32_t *im1; uint32_t *im2; unsigned *gx_buf; unsigned *gy_buf; double *ssim; double col_sums_gx2[8]; double col_sums_gy2[8]; double col_sums_gxgy[8]; double c2; int stride; int w; int h; int i; int j; double ssim_c2 = SSIM_C2; #if CONFIG_VP9_HIGHBITDEPTH if (bit_depth == 10) ssim_c2 = SSIM_C2_10; if (bit_depth == 12) ssim_c2 = SSIM_C2_12; #else assert(bit_depth == 8); (void)bit_depth; #endif w = _ctx->level[_l].w; h = _ctx->level[_l].h; im1 = _ctx->level[_l].im1; im2 = _ctx->level[_l].im2; ssim = _ctx->level[_l].ssim; gx_buf = _ctx->col_buf; stride = w + 8; gy_buf = gx_buf + 8 * stride; memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf)); c2 = ssim_c2 * (1 << 4 * _l) * 16 * 104; for (j = 0; j < h + 4; j++) { if (j < h - 1) { for (i = 0; i < w - 1; i++) { int64_t g1; int64_t g2; int64_t gx; int64_t gy; g1 = labs((int64_t)im1[(j + 1) * w + i + 1] - (int64_t)im1[j * w + i]); g2 = labs((int64_t)im1[(j + 1) * w + i] - (int64_t)im1[j * w + i + 1]); gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); g1 = labs((int64_t)im2[(j + 1) * w + i + 1] - (int64_t)im2[j * w + i]); g2 = labs((int64_t)im2[(j + 1) * w + i] - (int64_t)im2[j * w + i + 1]); gy = ((int64_t)4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2)); gx_buf[(j & 7) * stride + i + 4] = (uint32_t)gx; gy_buf[(j & 7) * stride + i + 4] = (uint32_t)gy; } } else { memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf)); memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf)); } if (j >= 4) { int k; col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0; col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0; col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] = col_sums_gxgy[0] = 0; for (i = 4; i < 8; i++) { FS_COL_SET(i, -1, 0); FS_COL_ADD(i, 0, 0); for (k = 1; k < 8 - i; k++) { FS_COL_DOUBLE(i, i); FS_COL_ADD(i, -k - 1, 0); FS_COL_ADD(i, k, 0); } } for (i = 0; i < w; i++) { double mugx2; double mugy2; double mugxgy; mugx2 = col_sums_gx2[0]; for (k = 1; k < 8; k++) mugx2 += col_sums_gx2[k]; mugy2 = col_sums_gy2[0]; for (k = 1; k < 8; k++) mugy2 += col_sums_gy2[k]; mugxgy = col_sums_gxgy[0]; for (k = 1; k < 8; k++) mugxgy += col_sums_gxgy[k]; ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2); if (i + 1 < w) { FS_COL_SET(0, -1, 1); FS_COL_ADD(0, 0, 1); FS_COL_SUB(2, -3, 2); FS_COL_SUB(2, 2, 2); FS_COL_HALVE(1, 2); FS_COL_SUB(3, -4, 3); FS_COL_SUB(3, 3, 3); FS_COL_HALVE(2, 3); FS_COL_COPY(3, 4); FS_COL_DOUBLE(4, 5); FS_COL_ADD(4, -4, 5); FS_COL_ADD(4, 3, 5); FS_COL_DOUBLE(5, 6); FS_COL_ADD(5, -3, 6); FS_COL_ADD(5, 2, 6); FS_COL_DOUBLE(6, 7); FS_COL_ADD(6, -2, 7); FS_COL_ADD(6, 1, 7); FS_COL_SET(7, -1, 8); FS_COL_ADD(7, 0, 8); } } } } } #define FS_NLEVELS (4) /*These weights were derived from the default weights found in Wang's original Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}. We drop the finest scale and renormalize the rest to sum to 1.*/ static const double FS_WEIGHTS[FS_NLEVELS] = { 0.2989654541015625, 0.3141326904296875, 0.2473602294921875, 0.1395416259765625 }; static double fs_average(fs_ctx *_ctx, int _l) { double *ssim; double ret; int w; int h; int i; int j; w = _ctx->level[_l].w; h = _ctx->level[_l].h; ssim = _ctx->level[_l].ssim; ret = 0; for (j = 0; j < h; j++) for (i = 0; i < w; i++) ret += ssim[j * w + i]; return pow(ret / (w * h), FS_WEIGHTS[_l]); } static double convert_ssim_db(double _ssim, double _weight) { assert(_weight >= _ssim); if ((_weight - _ssim) < 1e-10) return MAX_SSIM_DB; return 10 * (log10(_weight) - log10(_weight - _ssim)); } static double calc_ssim(const uint8_t *_src, int _systride, const uint8_t *_dst, int _dystride, int _w, int _h, uint32_t _bd, uint32_t _shift) { fs_ctx ctx; double ret; int l; ret = 1; fs_ctx_init(&ctx, _w, _h, FS_NLEVELS); fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride, _w, _h, _bd, _shift); for (l = 0; l < FS_NLEVELS - 1; l++) { fs_calc_structure(&ctx, l, _bd); ret *= fs_average(&ctx, l); fs_downsample_level(&ctx, l + 1); } fs_calc_structure(&ctx, l, _bd); fs_apply_luminance(&ctx, l, _bd); ret *= fs_average(&ctx, l); fs_ctx_clear(&ctx); return ret; } double vpx_calc_fastssim(const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *dest, double *ssim_y, double *ssim_u, double *ssim_v, uint32_t bd, uint32_t in_bd) { double ssimv; uint32_t bd_shift = 0; vpx_clear_system_state(); assert(bd >= in_bd); bd_shift = bd - in_bd; *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer, dest->y_stride, source->y_crop_width, source->y_crop_height, in_bd, bd_shift); *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer, dest->uv_stride, source->uv_crop_width, source->uv_crop_height, in_bd, bd_shift); *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer, dest->uv_stride, source->uv_crop_width, source->uv_crop_height, in_bd, bd_shift); ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v)); return convert_ssim_db(ssimv, 1.0); }