ref: b1d704f12af9b96b39ce1e1493c36bb4b3a3fb2a
dir: /vp9/decoder/vp9_detokenize.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #if CONFIG_COEFFICIENT_RANGE_CHECKING #include "vp9/common/vp9_idct.h" #endif #include "vp9/decoder/vp9_detokenize.h" #define EOB_CONTEXT_NODE 0 #define ZERO_CONTEXT_NODE 1 #define ONE_CONTEXT_NODE 2 #define INCREMENT_COUNT(token) \ do { \ if (counts) ++coef_counts[band][ctx][token]; \ } while (0) static INLINE int read_bool(vpx_reader *r, int prob, BD_VALUE *value, int *count, unsigned int *range) { const unsigned int split = (*range * prob + (256 - prob)) >> CHAR_BIT; const BD_VALUE bigsplit = (BD_VALUE)split << (BD_VALUE_SIZE - CHAR_BIT); #if CONFIG_BITSTREAM_DEBUG const int queue_r = bitstream_queue_get_read(); const int frame_idx = bitstream_queue_get_frame_read(); int ref_result, ref_prob; bitstream_queue_pop(&ref_result, &ref_prob); if (prob != ref_prob) { fprintf(stderr, "\n *** [bit] prob error, frame_idx_r %d prob %d ref_prob %d " "queue_r %d\n", frame_idx, prob, ref_prob, queue_r); assert(0); } #endif if (*count < 0) { r->value = *value; r->count = *count; vpx_reader_fill(r); *value = r->value; *count = r->count; } if (*value >= bigsplit) { *range = *range - split; *value = *value - bigsplit; { const int shift = vpx_norm[*range]; *range <<= shift; *value <<= shift; *count -= shift; } #if CONFIG_BITSTREAM_DEBUG { const int bit = 1; if (bit != ref_result) { fprintf( stderr, "\n *** [bit] result error, frame_idx_r %d bit %d ref_result %d " "queue_r %d\n", frame_idx, bit, ref_result, queue_r); assert(0); } } #endif return 1; } *range = split; { const int shift = vpx_norm[*range]; *range <<= shift; *value <<= shift; *count -= shift; } #if CONFIG_BITSTREAM_DEBUG { const int bit = 0; if (bit != ref_result) { fprintf(stderr, "\n *** [bit] result error, frame_idx_r %d bit %d ref_result %d " "queue_r %d\n", frame_idx, bit, ref_result, queue_r); assert(0); } } #endif return 0; } static INLINE int read_coeff(vpx_reader *r, const vpx_prob *probs, int n, BD_VALUE *value, int *count, unsigned int *range) { int i, val = 0; for (i = 0; i < n; ++i) val = (val << 1) | read_bool(r, probs[i], value, count, range); return val; } static int decode_coefs(const MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff, TX_SIZE tx_size, const int16_t *dq, int ctx, const int16_t *scan, const int16_t *nb, vpx_reader *r) { FRAME_COUNTS *counts = xd->counts; const int max_eob = 16 << (tx_size << 1); const FRAME_CONTEXT *const fc = xd->fc; const int ref = is_inter_block(xd->mi[0]); int band, c = 0; const vpx_prob(*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] = fc->coef_probs[tx_size][type][ref]; const vpx_prob *prob; unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1]; unsigned int(*eob_branch_count)[COEFF_CONTEXTS]; uint8_t token_cache[32 * 32]; const uint8_t *band_translate = get_band_translate(tx_size); const int dq_shift = (tx_size == TX_32X32); int v; int16_t dqv = dq[0]; const uint8_t *const cat6_prob = #if CONFIG_VP9_HIGHBITDEPTH (xd->bd == VPX_BITS_12) ? vp9_cat6_prob_high12 : (xd->bd == VPX_BITS_10) ? vp9_cat6_prob_high12 + 2 : #endif // CONFIG_VP9_HIGHBITDEPTH vp9_cat6_prob; const int cat6_bits = #if CONFIG_VP9_HIGHBITDEPTH (xd->bd == VPX_BITS_12) ? 18 : (xd->bd == VPX_BITS_10) ? 16 : #endif // CONFIG_VP9_HIGHBITDEPTH 14; // Keep value, range, and count as locals. The compiler produces better // results with the locals than using r directly. BD_VALUE value = r->value; unsigned int range = r->range; int count = r->count; if (counts) { coef_counts = counts->coef[tx_size][type][ref]; eob_branch_count = counts->eob_branch[tx_size][type][ref]; } while (c < max_eob) { int val = -1; band = *band_translate++; prob = coef_probs[band][ctx]; if (counts) ++eob_branch_count[band][ctx]; if (!read_bool(r, prob[EOB_CONTEXT_NODE], &value, &count, &range)) { INCREMENT_COUNT(EOB_MODEL_TOKEN); break; } while (!read_bool(r, prob[ZERO_CONTEXT_NODE], &value, &count, &range)) { INCREMENT_COUNT(ZERO_TOKEN); dqv = dq[1]; token_cache[scan[c]] = 0; ++c; if (c >= max_eob) { r->value = value; r->range = range; r->count = count; return c; // zero tokens at the end (no eob token) } ctx = get_coef_context(nb, token_cache, c); band = *band_translate++; prob = coef_probs[band][ctx]; } if (read_bool(r, prob[ONE_CONTEXT_NODE], &value, &count, &range)) { const vpx_prob *p = vp9_pareto8_full[prob[PIVOT_NODE] - 1]; INCREMENT_COUNT(TWO_TOKEN); if (read_bool(r, p[0], &value, &count, &range)) { if (read_bool(r, p[3], &value, &count, &range)) { token_cache[scan[c]] = 5; if (read_bool(r, p[5], &value, &count, &range)) { if (read_bool(r, p[7], &value, &count, &range)) { val = CAT6_MIN_VAL + read_coeff(r, cat6_prob, cat6_bits, &value, &count, &range); } else { val = CAT5_MIN_VAL + read_coeff(r, vp9_cat5_prob, 5, &value, &count, &range); } } else if (read_bool(r, p[6], &value, &count, &range)) { val = CAT4_MIN_VAL + read_coeff(r, vp9_cat4_prob, 4, &value, &count, &range); } else { val = CAT3_MIN_VAL + read_coeff(r, vp9_cat3_prob, 3, &value, &count, &range); } } else { token_cache[scan[c]] = 4; if (read_bool(r, p[4], &value, &count, &range)) { val = CAT2_MIN_VAL + read_coeff(r, vp9_cat2_prob, 2, &value, &count, &range); } else { val = CAT1_MIN_VAL + read_coeff(r, vp9_cat1_prob, 1, &value, &count, &range); } } #if CONFIG_VP9_HIGHBITDEPTH // val may use 18-bits v = (int)(((int64_t)val * dqv) >> dq_shift); #else v = (val * dqv) >> dq_shift; #endif } else { if (read_bool(r, p[1], &value, &count, &range)) { token_cache[scan[c]] = 3; v = ((3 + read_bool(r, p[2], &value, &count, &range)) * dqv) >> dq_shift; } else { token_cache[scan[c]] = 2; v = (2 * dqv) >> dq_shift; } } } else { INCREMENT_COUNT(ONE_TOKEN); token_cache[scan[c]] = 1; v = dqv >> dq_shift; } #if CONFIG_COEFFICIENT_RANGE_CHECKING #if CONFIG_VP9_HIGHBITDEPTH dqcoeff[scan[c]] = highbd_check_range( read_bool(r, 128, &value, &count, &range) ? -v : v, xd->bd); #else dqcoeff[scan[c]] = check_range(read_bool(r, 128, &value, &count, &range) ? -v : v); #endif // CONFIG_VP9_HIGHBITDEPTH #else if (read_bool(r, 128, &value, &count, &range)) { dqcoeff[scan[c]] = (tran_low_t)-v; } else { dqcoeff[scan[c]] = (tran_low_t)v; } #endif // CONFIG_COEFFICIENT_RANGE_CHECKING ++c; ctx = get_coef_context(nb, token_cache, c); dqv = dq[1]; } r->value = value; r->range = range; r->count = count; return c; } static void get_ctx_shift(MACROBLOCKD *xd, int *ctx_shift_a, int *ctx_shift_l, int x, int y, unsigned int tx_size_in_blocks) { if (xd->max_blocks_wide) { if (tx_size_in_blocks + x > xd->max_blocks_wide) *ctx_shift_a = (tx_size_in_blocks - (xd->max_blocks_wide - x)) * 8; } if (xd->max_blocks_high) { if (tx_size_in_blocks + y > xd->max_blocks_high) *ctx_shift_l = (tx_size_in_blocks - (xd->max_blocks_high - y)) * 8; } } int vp9_decode_block_tokens(TileWorkerData *twd, int plane, const scan_order *sc, int x, int y, TX_SIZE tx_size, int seg_id) { vpx_reader *r = &twd->bit_reader; MACROBLOCKD *xd = &twd->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; const int16_t *const dequant = pd->seg_dequant[seg_id]; int eob; ENTROPY_CONTEXT *a = pd->above_context + x; ENTROPY_CONTEXT *l = pd->left_context + y; int ctx; int ctx_shift_a = 0; int ctx_shift_l = 0; switch (tx_size) { case TX_4X4: ctx = a[0] != 0; ctx += l[0] != 0; eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, dequant, ctx, sc->scan, sc->neighbors, r); a[0] = l[0] = (eob > 0); break; case TX_8X8: get_ctx_shift(xd, &ctx_shift_a, &ctx_shift_l, x, y, 1 << TX_8X8); ctx = !!*(const uint16_t *)a; ctx += !!*(const uint16_t *)l; eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, dequant, ctx, sc->scan, sc->neighbors, r); *(uint16_t *)a = ((eob > 0) * 0x0101) >> ctx_shift_a; *(uint16_t *)l = ((eob > 0) * 0x0101) >> ctx_shift_l; break; case TX_16X16: get_ctx_shift(xd, &ctx_shift_a, &ctx_shift_l, x, y, 1 << TX_16X16); ctx = !!*(const uint32_t *)a; ctx += !!*(const uint32_t *)l; eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, dequant, ctx, sc->scan, sc->neighbors, r); *(uint32_t *)a = ((eob > 0) * 0x01010101) >> ctx_shift_a; *(uint32_t *)l = ((eob > 0) * 0x01010101) >> ctx_shift_l; break; case TX_32X32: get_ctx_shift(xd, &ctx_shift_a, &ctx_shift_l, x, y, 1 << TX_32X32); // NOTE: casting to uint64_t here is safe because the default memory // alignment is at least 8 bytes and the TX_32X32 is aligned on 8 byte // boundaries. ctx = !!*(const uint64_t *)a; ctx += !!*(const uint64_t *)l; eob = decode_coefs(xd, get_plane_type(plane), pd->dqcoeff, tx_size, dequant, ctx, sc->scan, sc->neighbors, r); *(uint64_t *)a = ((eob > 0) * 0x0101010101010101ULL) >> ctx_shift_a; *(uint64_t *)l = ((eob > 0) * 0x0101010101010101ULL) >> ctx_shift_l; break; default: assert(0 && "Invalid transform size."); eob = 0; break; } return eob; }