ref: b3c87f7346d0b413f25b3f1ea5ff221405f27880
dir: /vp9/encoder/x86/vp9_frame_scale_ssse3.c/
/* * Copyright (c) 2016 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <tmmintrin.h> // SSSE3 #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "./vpx_scale_rtcd.h" #include "vpx_dsp/x86/convolve_ssse3.h" #include "vpx_dsp/x86/mem_sse2.h" #include "vpx_dsp/x86/transpose_sse2.h" #include "vpx_scale/yv12config.h" static INLINE __m128i scale_plane_2_to_1_phase_0_kernel( const uint8_t *const src, const __m128i *const mask) { const __m128i a = _mm_loadu_si128((const __m128i *)(&src[0])); const __m128i b = _mm_loadu_si128((const __m128i *)(&src[16])); const __m128i a_and = _mm_and_si128(a, *mask); const __m128i b_and = _mm_and_si128(b, *mask); return _mm_packus_epi16(a_and, b_and); } static void scale_plane_2_to_1_phase_0(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const int dst_w, const int dst_h) { const int max_width = (dst_w + 15) & ~15; const __m128i mask = _mm_set1_epi16(0x00FF); int y = dst_h; do { int x = max_width; do { const __m128i d = scale_plane_2_to_1_phase_0_kernel(src, &mask); _mm_storeu_si128((__m128i *)dst, d); src += 32; dst += 16; x -= 16; } while (x); src += 2 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static void scale_plane_4_to_1_phase_0(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const int dst_w, const int dst_h) { const int max_width = (dst_w + 15) & ~15; const __m128i mask = _mm_set1_epi32(0x000000FF); int y = dst_h; do { int x = max_width; do { const __m128i d0 = scale_plane_2_to_1_phase_0_kernel(&src[0], &mask); const __m128i d1 = scale_plane_2_to_1_phase_0_kernel(&src[32], &mask); const __m128i d2 = _mm_packus_epi16(d0, d1); _mm_storeu_si128((__m128i *)dst, d2); src += 64; dst += 16; x -= 16; } while (x); src += 4 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static INLINE __m128i scale_plane_bilinear_kernel(const __m128i *const s, const __m128i c0c1) { const __m128i k_64 = _mm_set1_epi16(1 << 6); const __m128i t0 = _mm_maddubs_epi16(s[0], c0c1); const __m128i t1 = _mm_maddubs_epi16(s[1], c0c1); // round and shift by 7 bit each 16 bit const __m128i t2 = _mm_adds_epi16(t0, k_64); const __m128i t3 = _mm_adds_epi16(t1, k_64); const __m128i t4 = _mm_srai_epi16(t2, 7); const __m128i t5 = _mm_srai_epi16(t3, 7); return _mm_packus_epi16(t4, t5); } static void scale_plane_2_to_1_bilinear(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const int dst_w, const int dst_h, const __m128i c0c1) { const int max_width = (dst_w + 15) & ~15; int y = dst_h; do { int x = max_width; do { __m128i s[2], d[2]; // Horizontal // Even rows s[0] = _mm_loadu_si128((const __m128i *)(src + 0)); s[1] = _mm_loadu_si128((const __m128i *)(src + 16)); d[0] = scale_plane_bilinear_kernel(s, c0c1); // odd rows s[0] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0)); s[1] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16)); d[1] = scale_plane_bilinear_kernel(s, c0c1); // Vertical s[0] = _mm_unpacklo_epi8(d[0], d[1]); s[1] = _mm_unpackhi_epi8(d[0], d[1]); d[0] = scale_plane_bilinear_kernel(s, c0c1); _mm_storeu_si128((__m128i *)dst, d[0]); src += 32; dst += 16; x -= 16; } while (x); src += 2 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static void scale_plane_4_to_1_bilinear(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const int dst_w, const int dst_h, const __m128i c0c1) { const int max_width = (dst_w + 15) & ~15; int y = dst_h; do { int x = max_width; do { __m128i s[8], d[8]; // Note: Using _mm_packus_epi32() in SSE4.1 could be faster. // Here we tried to not use shuffle instructions which would be slow // on some x86 CPUs. // Horizontal // 000 001 xx xx 004 005 xx xx 008 009 xx xx 00C 00D xx xx // 010 011 xx xx 014 015 xx xx 018 019 xx xx 01C 01D xx xx // 020 021 xx xx 024 025 xx xx 028 029 xx xx 02C 02D xx xx // 030 031 xx xx 034 035 xx xx 038 039 xx xx 03C 03D xx xx // 100 101 xx xx 104 105 xx xx 108 109 xx xx 10C 10D xx xx // 110 111 xx xx 114 115 xx xx 118 119 xx xx 11C 11D xx xx // 120 121 xx xx 124 125 xx xx 128 129 xx xx 12C 12D xx xx // 130 131 xx xx 134 135 xx xx 138 139 xx xx 13C 13D xx xx s[0] = _mm_loadu_si128((const __m128i *)(&src[0])); s[1] = _mm_loadu_si128((const __m128i *)(&src[16])); s[2] = _mm_loadu_si128((const __m128i *)(&src[32])); s[3] = _mm_loadu_si128((const __m128i *)(&src[48])); s[4] = _mm_loadu_si128((const __m128i *)(src + src_stride + 0)); s[5] = _mm_loadu_si128((const __m128i *)(src + src_stride + 16)); s[6] = _mm_loadu_si128((const __m128i *)(src + src_stride + 32)); s[7] = _mm_loadu_si128((const __m128i *)(src + src_stride + 48)); // 000 001 100 101 xx xx xx xx 004 005 104 105 xx xx xx xx // 008 009 108 109 xx xx xx xx 00C 00D 10C 10D xx xx xx xx // 010 011 110 111 xx xx xx xx 014 015 114 115 xx xx xx xx // 018 019 118 119 xx xx xx xx 01C 01D 11C 11D xx xx xx xx // 020 021 120 121 xx xx xx xx 024 025 124 125 xx xx xx xx // 028 029 128 129 xx xx xx xx 02C 02D 12C 12D xx xx xx xx // 030 031 130 131 xx xx xx xx 034 035 134 135 xx xx xx xx // 038 039 138 139 xx xx xx xx 03C 03D 13C 13D xx xx xx xx d[0] = _mm_unpacklo_epi16(s[0], s[4]); d[1] = _mm_unpackhi_epi16(s[0], s[4]); d[2] = _mm_unpacklo_epi16(s[1], s[5]); d[3] = _mm_unpackhi_epi16(s[1], s[5]); d[4] = _mm_unpacklo_epi16(s[2], s[6]); d[5] = _mm_unpackhi_epi16(s[2], s[6]); d[6] = _mm_unpacklo_epi16(s[3], s[7]); d[7] = _mm_unpackhi_epi16(s[3], s[7]); // 000 001 100 101 008 009 108 109 xx xx xx xx xx xx xx xx // 004 005 104 105 00C 00D 10C 10D xx xx xx xx xx xx xx xx // 010 011 110 111 018 019 118 119 xx xx xx xx xx xx xx xx // 014 015 114 115 01C 01D 11C 11D xx xx xx xx xx xx xx xx // 020 021 120 121 028 029 128 129 xx xx xx xx xx xx xx xx // 024 025 124 125 02C 02D 12C 12D xx xx xx xx xx xx xx xx // 030 031 130 131 038 039 138 139 xx xx xx xx xx xx xx xx // 034 035 134 135 03C 03D 13C 13D xx xx xx xx xx xx xx xx s[0] = _mm_unpacklo_epi32(d[0], d[1]); s[1] = _mm_unpackhi_epi32(d[0], d[1]); s[2] = _mm_unpacklo_epi32(d[2], d[3]); s[3] = _mm_unpackhi_epi32(d[2], d[3]); s[4] = _mm_unpacklo_epi32(d[4], d[5]); s[5] = _mm_unpackhi_epi32(d[4], d[5]); s[6] = _mm_unpacklo_epi32(d[6], d[7]); s[7] = _mm_unpackhi_epi32(d[6], d[7]); // 000 001 100 101 004 005 104 105 008 009 108 109 00C 00D 10C 10D // 010 011 110 111 014 015 114 115 018 019 118 119 01C 01D 11C 11D // 020 021 120 121 024 025 124 125 028 029 128 129 02C 02D 12C 12D // 030 031 130 131 034 035 134 135 038 039 138 139 03C 03D 13C 13D d[0] = _mm_unpacklo_epi32(s[0], s[1]); d[1] = _mm_unpacklo_epi32(s[2], s[3]); d[2] = _mm_unpacklo_epi32(s[4], s[5]); d[3] = _mm_unpacklo_epi32(s[6], s[7]); d[0] = scale_plane_bilinear_kernel(&d[0], c0c1); d[1] = scale_plane_bilinear_kernel(&d[2], c0c1); // Vertical d[0] = scale_plane_bilinear_kernel(d, c0c1); _mm_storeu_si128((__m128i *)dst, d[0]); src += 64; dst += 16; x -= 16; } while (x); src += 4 * (src_stride - max_width); dst += dst_stride - max_width; } while (--y); } static void scale_plane_2_to_1_general(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const coef, uint8_t *const temp_buffer) { const int width_hor = (w + 3) & ~3; const int width_ver = (w + 7) & ~7; const int height_hor = (2 * h + SUBPEL_TAPS - 2 + 7) & ~7; const int height_ver = (h + 3) & ~3; int x, y = height_hor; uint8_t *t = temp_buffer; __m128i s[11], d[4]; __m128i f[4]; assert(w && h); shuffle_filter_ssse3(coef, f); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 1; // horizontal 4x8 do { load_8bit_8x8(src + 2, src_stride, s); // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped) transpose_16bit_4x8(s, s); x = width_hor; do { src += 8; load_8bit_8x8(src, src_stride, &s[3]); // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B // 0C 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D transpose_16bit_4x8(&s[3], &s[3]); d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70 d[1] = convolve8_8_ssse3(&s[1], f); // 01 11 21 31 41 51 61 71 d[2] = convolve8_8_ssse3(&s[2], f); // 02 12 22 32 42 52 62 72 d[3] = convolve8_8_ssse3(&s[3], f); // 03 13 23 33 43 53 63 73 // 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72 // 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73 d[0] = _mm_packus_epi16(d[0], d[2]); d[1] = _mm_packus_epi16(d[1], d[3]); // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 // 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73 d[2] = _mm_unpacklo_epi16(d[0], d[1]); d[3] = _mm_unpackhi_epi16(d[0], d[1]); // 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33 // 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73 d[0] = _mm_unpacklo_epi32(d[2], d[3]); d[1] = _mm_unpackhi_epi32(d[2], d[3]); store_8bit_8x4_from_16x2(d, t, 2 * width_hor); s[0] = s[4]; s[1] = s[5]; s[2] = s[6]; t += 8; x -= 4; } while (x); src += 8 * src_stride - 2 * width_hor; t += 6 * width_hor; y -= 8; } while (y); // vertical 8x4 x = width_ver; t = temp_buffer; do { // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor)); s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor)); s[2] = _mm_loadu_si128((const __m128i *)(t + 4 * width_hor)); t += 6 * width_hor; y = height_ver; do { // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77 // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77 // C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 77 loadu_8bit_16x4(t, 2 * width_hor, &s[3]); t += 8 * width_hor; d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07 d[1] = convolve8_8_ssse3(&s[1], f); // 10 11 12 13 14 15 16 17 d[2] = convolve8_8_ssse3(&s[2], f); // 20 21 22 23 24 25 26 27 d[3] = convolve8_8_ssse3(&s[3], f); // 30 31 32 33 34 35 36 37 // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 d[0] = _mm_packus_epi16(d[0], d[1]); d[1] = _mm_packus_epi16(d[2], d[3]); store_8bit_8x4_from_16x2(d, dst, dst_stride); s[0] = s[4]; s[1] = s[5]; s[2] = s[6]; dst += 4 * dst_stride; y -= 4; } while (y); t -= width_hor * (2 * height_ver + 6); t += 16; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } static void scale_plane_4_to_1_general(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const coef, uint8_t *const temp_buffer) { const int width_hor = (w + 1) & ~1; const int width_ver = (w + 7) & ~7; const int height_hor = (4 * h + SUBPEL_TAPS - 2 + 7) & ~7; const int height_ver = (h + 1) & ~1; int x, y = height_hor; uint8_t *t = temp_buffer; __m128i s[11], d[4]; __m128i f[4]; assert(w && h); shuffle_filter_ssse3(coef, f); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 + 3; // horizontal 2x8 do { load_8bit_8x8(src + 4, src_stride, s); // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 (overlapped) // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 (overlapped) transpose_16bit_4x8(s, s); x = width_hor; do { src += 8; load_8bit_8x8(src, src_stride, &s[2]); // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B transpose_16bit_4x8(&s[2], &s[2]); d[0] = convolve8_8_ssse3(&s[0], f); // 00 10 20 30 40 50 60 70 d[1] = convolve8_8_ssse3(&s[2], f); // 01 11 21 31 41 51 61 71 // 00 10 20 30 40 50 60 70 xx xx xx xx xx xx xx xx // 01 11 21 31 41 51 61 71 xx xx xx xx xx xx xx xx d[0] = _mm_packus_epi16(d[0], d[0]); d[1] = _mm_packus_epi16(d[1], d[1]); // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 d[0] = _mm_unpacklo_epi16(d[0], d[1]); store_8bit_4x4_sse2(d[0], t, 2 * width_hor); s[0] = s[4]; s[1] = s[5]; t += 4; x -= 2; } while (x); src += 8 * src_stride - 4 * width_hor; t += 6 * width_hor; y -= 8; } while (y); // vertical 8x2 x = width_ver; t = temp_buffer; do { // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 s[0] = _mm_loadu_si128((const __m128i *)(t + 0 * width_hor)); s[1] = _mm_loadu_si128((const __m128i *)(t + 2 * width_hor)); t += 4 * width_hor; y = height_ver; do { // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 77 // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 77 loadu_8bit_16x4(t, 2 * width_hor, &s[2]); t += 8 * width_hor; d[0] = convolve8_8_ssse3(&s[0], f); // 00 01 02 03 04 05 06 07 d[1] = convolve8_8_ssse3(&s[2], f); // 10 11 12 13 14 15 16 17 // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 d[0] = _mm_packus_epi16(d[0], d[1]); _mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]); _mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]); s[0] = s[4]; s[1] = s[5]; dst += 2 * dst_stride; y -= 2; } while (y); t -= width_hor * (4 * height_ver + 4); t += 16; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } typedef void (*shuffle_filter_funcs)(const int16_t *const filter, __m128i *const f); typedef __m128i (*convolve8_funcs)(const __m128i *const s, const __m128i *const f); static void scale_plane_4_to_3_general(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const InterpKernel *const coef, const int phase_scaler, uint8_t *const temp_buffer) { static const int step_q4 = 16 * 4 / 3; const int width_hor = (w + 5) - ((w + 5) % 6); const int stride_hor = 2 * width_hor + 4; // store 4 extra pixels const int width_ver = (w + 7) & ~7; // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows // above and (SUBPEL_TAPS / 2) extra rows below. const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; const int height_ver = (h + 5) - ((h + 5) % 6); int x, y = height_hor; uint8_t *t = temp_buffer; __m128i s[12], d[6], dd[4]; __m128i f0[4], f1[5], f2[5]; // The offset of the first row is always less than 1 pixel. const int offset1_q4 = phase_scaler + 1 * step_q4; const int offset2_q4 = phase_scaler + 2 * step_q4; // offset_idxx indicates the pixel offset is even (0) or odd (1). // It's used to choose the src offset and filter coefficient offset. const int offset_idx1 = (offset1_q4 >> 4) & 1; const int offset_idx2 = (offset2_q4 >> 4) & 1; static const shuffle_filter_funcs shuffle_filter_funcs[2] = { shuffle_filter_ssse3, shuffle_filter_odd_ssse3 }; static const convolve8_funcs convolve8_funcs[2] = { convolve8_8_even_offset_ssse3, convolve8_8_odd_offset_ssse3 }; assert(w && h); shuffle_filter_ssse3(coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK], f0); shuffle_filter_funcs[offset_idx1](coef[offset1_q4 & SUBPEL_MASK], f1); shuffle_filter_funcs[offset_idx2](coef[offset2_q4 & SUBPEL_MASK], f2); // Sub 64 to avoid overflow. // Coef 128 would be treated as -128 in PMADDUBSW. Sub 64 here. // Coef 128 is in either fx[1] or fx[2] depending on the phase idx. // When filter phase idx is 1, the two biggest coefficients are shuffled // together, and the sum of them are always no less than 128. Sub 64 here. // After the subtraction, when the sum of all positive coefficients are no // larger than 128, and the sum of all negative coefficients are no // less than -128, there will be no overflow in the convolve8 functions. f0[1] = _mm_sub_epi8(f0[1], _mm_set1_epi8(64)); f1[1 + offset_idx1] = _mm_sub_epi8(f1[1 + offset_idx1], _mm_set1_epi8(64)); f2[1 + offset_idx2] = _mm_sub_epi8(f2[1 + offset_idx2], _mm_set1_epi8(64)); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2 - 1; // horizontal 6x8 do { load_8bit_8x8(src, src_stride, s); // 00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71 // 02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73 // 04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75 // 06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77 transpose_16bit_4x8(s, s); x = width_hor; do { src += 8; load_8bit_8x8(src, src_stride, &s[4]); // 08 09 18 19 28 29 38 39 48 49 58 59 68 69 78 79 // 0A 0B 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B // OC 0D 1C 1D 2C 2D 3C 3D 4C 4D 5C 5D 6C 6D 7C 7D // 0E 0F 1E 1F 2E 2F 3E 3F 4E 4F 5E 5F 6E 6F 7E 7F transpose_16bit_4x8(&s[4], &s[4]); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 d[0] = convolve8_8_even_offset_ssse3(&s[0], f0); d[1] = convolve8_funcs[offset_idx1](&s[offset1_q4 >> 5], f1); d[2] = convolve8_funcs[offset_idx2](&s[offset2_q4 >> 5], f2); d[3] = convolve8_8_even_offset_ssse3(&s[2], f0); d[4] = convolve8_funcs[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1); d[5] = convolve8_funcs[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2); // 00 10 20 30 40 50 60 70 02 12 22 32 42 52 62 72 // 01 11 21 31 41 51 61 71 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 xx xx xx xx xx xx xx xx // 05 15 25 35 45 55 65 75 xx xx xx xx xx xx xx xx dd[0] = _mm_packus_epi16(d[0], d[2]); dd[1] = _mm_packus_epi16(d[1], d[3]); dd[2] = _mm_packus_epi16(d[4], d[4]); dd[3] = _mm_packus_epi16(d[5], d[5]); // 00 10 01 11 20 30 21 31 40 50 41 51 60 70 61 71 // 02 12 03 13 22 32 23 33 42 52 43 53 62 72 63 73 // 04 14 05 15 24 34 25 35 44 54 45 55 64 74 65 75 d[0] = _mm_unpacklo_epi16(dd[0], dd[1]); d[1] = _mm_unpackhi_epi16(dd[0], dd[1]); d[2] = _mm_unpacklo_epi16(dd[2], dd[3]); // 00 10 01 11 02 12 03 13 20 30 21 31 22 32 23 33 // 40 50 41 51 42 52 43 53 60 70 61 71 62 72 63 73 // 04 14 05 15 xx xx xx xx 24 34 25 35 xx xx xx xx // 44 54 45 55 xx xx xx xx 64 74 65 75 xx xx xx xx dd[0] = _mm_unpacklo_epi32(d[0], d[1]); dd[1] = _mm_unpackhi_epi32(d[0], d[1]); dd[2] = _mm_unpacklo_epi32(d[2], d[2]); dd[3] = _mm_unpackhi_epi32(d[2], d[2]); // 00 10 01 11 02 12 03 13 04 14 05 15 xx xx xx xx // 20 30 21 31 22 32 23 33 24 34 25 35 xx xx xx xx // 40 50 41 51 42 52 43 53 44 54 45 55 xx xx xx xx // 60 70 61 71 62 72 63 73 64 74 65 75 xx xx xx xx d[0] = _mm_unpacklo_epi64(dd[0], dd[2]); d[1] = _mm_unpackhi_epi64(dd[0], dd[2]); d[2] = _mm_unpacklo_epi64(dd[1], dd[3]); d[3] = _mm_unpackhi_epi64(dd[1], dd[3]); // store 4 extra pixels storeu_8bit_16x4(d, t, stride_hor); s[0] = s[4]; s[1] = s[5]; s[2] = s[6]; s[3] = s[7]; t += 12; x -= 6; } while (x); src += 8 * src_stride - 4 * width_hor / 3; t += 3 * stride_hor + 4; y -= 8; } while (y); // vertical 8x6 x = width_ver; t = temp_buffer; do { // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 // 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37 // 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57 // 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77 loadu_8bit_16x4(t, stride_hor, s); y = height_ver; do { // 80 90 81 91 82 92 83 93 84 94 85 95 86 96 87 97 // A0 B0 A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6 B6 A7 B7 // C0 D0 C1 D1 C2 D2 C3 D3 C4 D4 C5 D5 C6 D6 C7 D7 // E0 F0 E1 F1 E2 F2 E3 F3 E4 F4 E5 F5 E6 F6 E7 F7 t += 4 * stride_hor; loadu_8bit_16x4(t, stride_hor, &s[4]); d[0] = convolve8_8_even_offset_ssse3(&s[0], f0); d[1] = convolve8_funcs[offset_idx1](&s[offset1_q4 >> 5], f1); d[2] = convolve8_funcs[offset_idx2](&s[offset2_q4 >> 5], f2); d[3] = convolve8_8_even_offset_ssse3(&s[2], f0); d[4] = convolve8_funcs[offset_idx1](&s[2 + (offset1_q4 >> 5)], f1); d[5] = convolve8_funcs[offset_idx2](&s[2 + (offset2_q4 >> 5)], f2); // 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 // 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 // 40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57 d[0] = _mm_packus_epi16(d[0], d[1]); d[2] = _mm_packus_epi16(d[2], d[3]); d[4] = _mm_packus_epi16(d[4], d[5]); _mm_storel_epi64((__m128i *)(dst + 0 * dst_stride), d[0]); _mm_storeh_epi64((__m128i *)(dst + 1 * dst_stride), d[0]); _mm_storel_epi64((__m128i *)(dst + 2 * dst_stride), d[2]); _mm_storeh_epi64((__m128i *)(dst + 3 * dst_stride), d[2]); _mm_storel_epi64((__m128i *)(dst + 4 * dst_stride), d[4]); _mm_storeh_epi64((__m128i *)(dst + 5 * dst_stride), d[4]); s[0] = s[4]; s[1] = s[5]; s[2] = s[6]; s[3] = s[7]; dst += 6 * dst_stride; y -= 6; } while (y); t -= stride_hor * 2 * height_ver / 3; t += 16; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } static INLINE __m128i scale_1_to_2_phase_0_kernel(const __m128i *const s, const __m128i *const f) { __m128i ss[4], temp; ss[0] = _mm_unpacklo_epi8(s[0], s[1]); ss[1] = _mm_unpacklo_epi8(s[2], s[3]); ss[2] = _mm_unpacklo_epi8(s[4], s[5]); ss[3] = _mm_unpacklo_epi8(s[6], s[7]); temp = convolve8_8_ssse3(ss, f); return _mm_packus_epi16(temp, temp); } // Only calculate odd columns since even columns are just src pixels' copies. static void scale_1_to_2_phase_0_row(const uint8_t *src, uint8_t *dst, const int w, const __m128i *const f) { int x = w; do { __m128i s[8], temp; s[0] = _mm_loadl_epi64((const __m128i *)(src + 0)); s[1] = _mm_loadl_epi64((const __m128i *)(src + 1)); s[2] = _mm_loadl_epi64((const __m128i *)(src + 2)); s[3] = _mm_loadl_epi64((const __m128i *)(src + 3)); s[4] = _mm_loadl_epi64((const __m128i *)(src + 4)); s[5] = _mm_loadl_epi64((const __m128i *)(src + 5)); s[6] = _mm_loadl_epi64((const __m128i *)(src + 6)); s[7] = _mm_loadl_epi64((const __m128i *)(src + 7)); temp = scale_1_to_2_phase_0_kernel(s, f); _mm_storel_epi64((__m128i *)dst, temp); src += 8; dst += 8; x -= 8; } while (x); } static void scale_plane_1_to_2_phase_0(const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, const ptrdiff_t dst_stride, const int src_w, const int src_h, const int16_t *const coef, uint8_t *const temp_buffer) { int max_width; int y; uint8_t *tmp[9]; __m128i f[4]; max_width = (src_w + 7) & ~7; tmp[0] = temp_buffer + 0 * max_width; tmp[1] = temp_buffer + 1 * max_width; tmp[2] = temp_buffer + 2 * max_width; tmp[3] = temp_buffer + 3 * max_width; tmp[4] = temp_buffer + 4 * max_width; tmp[5] = temp_buffer + 5 * max_width; tmp[6] = temp_buffer + 6 * max_width; tmp[7] = temp_buffer + 7 * max_width; shuffle_filter_ssse3(coef, f); scale_1_to_2_phase_0_row(src - 3 * src_stride - 3, tmp[0], max_width, f); scale_1_to_2_phase_0_row(src - 2 * src_stride - 3, tmp[1], max_width, f); scale_1_to_2_phase_0_row(src - 1 * src_stride - 3, tmp[2], max_width, f); scale_1_to_2_phase_0_row(src + 0 * src_stride - 3, tmp[3], max_width, f); scale_1_to_2_phase_0_row(src + 1 * src_stride - 3, tmp[4], max_width, f); scale_1_to_2_phase_0_row(src + 2 * src_stride - 3, tmp[5], max_width, f); scale_1_to_2_phase_0_row(src + 3 * src_stride - 3, tmp[6], max_width, f); y = src_h; do { int x; scale_1_to_2_phase_0_row(src + 4 * src_stride - 3, tmp[7], max_width, f); for (x = 0; x < max_width; x += 8) { __m128i s[8], C, D, CD; // Even rows const __m128i a = _mm_loadl_epi64((const __m128i *)(src + x)); const __m128i b = _mm_loadl_epi64((const __m128i *)(tmp[3] + x)); const __m128i ab = _mm_unpacklo_epi8(a, b); _mm_storeu_si128((__m128i *)(dst + 2 * x), ab); // Odd rows // Even columns load_8bit_8x8(src + x - 3 * src_stride, src_stride, s); C = scale_1_to_2_phase_0_kernel(s, f); // Odd columns s[0] = _mm_loadl_epi64((const __m128i *)(tmp[0] + x)); s[1] = _mm_loadl_epi64((const __m128i *)(tmp[1] + x)); s[2] = _mm_loadl_epi64((const __m128i *)(tmp[2] + x)); s[3] = _mm_loadl_epi64((const __m128i *)(tmp[3] + x)); s[4] = _mm_loadl_epi64((const __m128i *)(tmp[4] + x)); s[5] = _mm_loadl_epi64((const __m128i *)(tmp[5] + x)); s[6] = _mm_loadl_epi64((const __m128i *)(tmp[6] + x)); s[7] = _mm_loadl_epi64((const __m128i *)(tmp[7] + x)); D = scale_1_to_2_phase_0_kernel(s, f); CD = _mm_unpacklo_epi8(C, D); _mm_storeu_si128((__m128i *)(dst + dst_stride + 2 * x), CD); } src += src_stride; dst += 2 * dst_stride; tmp[8] = tmp[0]; tmp[0] = tmp[1]; tmp[1] = tmp[2]; tmp[2] = tmp[3]; tmp[3] = tmp[4]; tmp[4] = tmp[5]; tmp[5] = tmp[6]; tmp[6] = tmp[7]; tmp[7] = tmp[8]; } while (--y); } void vp9_scale_and_extend_frame_ssse3(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, uint8_t filter_type, int phase_scaler) { const int src_w = src->y_crop_width; const int src_h = src->y_crop_height; const int dst_w = dst->y_crop_width; const int dst_h = dst->y_crop_height; const int dst_uv_w = dst_w / 2; const int dst_uv_h = dst_h / 2; int scaled = 0; // phase_scaler is usually 0 or 8. assert(phase_scaler >= 0 && phase_scaler < 16); if (dst_w * 2 == src_w && dst_h * 2 == src_h) { // 2 to 1 scaled = 1; if (phase_scaler == 0) { scale_plane_2_to_1_phase_0(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h); scale_plane_2_to_1_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); scale_plane_2_to_1_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); } else if (filter_type == BILINEAR) { const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0 scale_plane_2_to_1_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, c0c1); scale_plane_2_to_1_bilinear(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); scale_plane_2_to_1_bilinear(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); } else { const int buffer_stride = (dst_w + 3) & ~3; const int buffer_height = (2 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height); if (temp_buffer) { scale_plane_2_to_1_general( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_2_to_1_general( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_2_to_1_general( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); free(temp_buffer); } else { scaled = 0; } } } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { // 4 to 1 scaled = 1; if (phase_scaler == 0) { scale_plane_4_to_1_phase_0(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h); scale_plane_4_to_1_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); scale_plane_4_to_1_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h); } else if (filter_type == BILINEAR) { const int16_t c0 = vp9_filter_kernels[BILINEAR][phase_scaler][3]; const int16_t c1 = vp9_filter_kernels[BILINEAR][phase_scaler][4]; const __m128i c0c1 = _mm_set1_epi16(c0 | (c1 << 8)); // c0 and c1 >= 0 scale_plane_4_to_1_bilinear(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, c0c1); scale_plane_4_to_1_bilinear(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); scale_plane_4_to_1_bilinear(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, c0c1); } else { const int buffer_stride = (dst_w + 1) & ~1; const int buffer_height = (4 * dst_h + SUBPEL_TAPS - 2 + 7) & ~7; // When dst_w is 1 or 2, we need extra padding to avoid heap read overflow const int extra_padding = 16; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height + extra_padding); if (temp_buffer) { scale_plane_4_to_1_general( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_4_to_1_general( src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); scale_plane_4_to_1_general( src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type][phase_scaler], temp_buffer); free(temp_buffer); } else { scaled = 0; } } } else if (4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h) { // 4 to 3 const int buffer_stride_hor = (dst_w + 5) - ((dst_w + 5) % 6) + 2; const int buffer_stride_ver = (dst_w + 7) & ~7; const int buffer_height = (4 * dst_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; // When the vertical filter reads more pixels than the horizontal filter // generated in each row, we need extra padding to avoid heap read overflow. // For example, the horizontal filter generates 18 pixels but the vertical // filter reads 24 pixels in a row. The difference is multiplied by 2 since // two rows are interlaced together in the optimization. const int extra_padding = (buffer_stride_ver > buffer_stride_hor) ? 2 * (buffer_stride_ver - buffer_stride_hor) : 0; const int buffer_size = buffer_stride_hor * buffer_height + extra_padding; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_size); if (temp_buffer) { scaled = 1; scale_plane_4_to_3_general( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, dst_w, dst_h, vp9_filter_kernels[filter_type], phase_scaler, temp_buffer); scale_plane_4_to_3_general(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type], phase_scaler, temp_buffer); scale_plane_4_to_3_general(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, dst_uv_w, dst_uv_h, vp9_filter_kernels[filter_type], phase_scaler, temp_buffer); free(temp_buffer); } } else if (dst_w == src_w * 2 && dst_h == src_h * 2 && phase_scaler == 0) { // 1 to 2 uint8_t *const temp_buffer = (uint8_t *)malloc(8 * ((src_w + 7) & ~7)); if (temp_buffer) { scaled = 1; scale_plane_1_to_2_phase_0( src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, src_w, src_h, vp9_filter_kernels[filter_type][8], temp_buffer); scale_plane_1_to_2_phase_0(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, src_w / 2, src_h / 2, vp9_filter_kernels[filter_type][8], temp_buffer); scale_plane_1_to_2_phase_0(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, src_w / 2, src_h / 2, vp9_filter_kernels[filter_type][8], temp_buffer); free(temp_buffer); } } if (scaled) { vpx_extend_frame_borders(dst); } else { // Call c version for all other scaling ratios. vp9_scale_and_extend_frame_c(src, dst, filter_type, phase_scaler); } }