ref: b6fa0f20565ce10b4724a120ff0c8d6faff0926b
dir: /vp9/encoder/vp9_encoder.h/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VPX_VP9_ENCODER_VP9_ENCODER_H_ #define VPX_VP9_ENCODER_VP9_ENCODER_H_ #include <stdio.h> #include "./vpx_config.h" #include "vpx/internal/vpx_codec_internal.h" #include "vpx/vp8cx.h" #if CONFIG_INTERNAL_STATS #include "vpx_dsp/ssim.h" #endif #include "vpx_dsp/variance.h" #include "vpx_dsp/psnr.h" #include "vpx_ports/system_state.h" #include "vpx_util/vpx_thread.h" #include "vpx_util/vpx_timestamp.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_ppflags.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_thread_common.h" #include "vp9/common/vp9_onyxc_int.h" #if !CONFIG_REALTIME_ONLY #include "vp9/encoder/vp9_alt_ref_aq.h" #endif #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/encoder/vp9_context_tree.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_ethread.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_job_queue.h" #include "vp9/encoder/vp9_lookahead.h" #include "vp9/encoder/vp9_mbgraph.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_noise_estimate.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_rd.h" #include "vp9/encoder/vp9_speed_features.h" #include "vp9/encoder/vp9_svc_layercontext.h" #include "vp9/encoder/vp9_tokenize.h" #if CONFIG_VP9_TEMPORAL_DENOISING #include "vp9/encoder/vp9_denoiser.h" #endif #ifdef __cplusplus extern "C" { #endif // vp9 uses 10,000,000 ticks/second as time stamp #define TICKS_PER_SEC 10000000 typedef struct { int nmvjointcost[MV_JOINTS]; int nmvcosts[2][MV_VALS]; int nmvcosts_hp[2][MV_VALS]; vpx_prob segment_pred_probs[PREDICTION_PROBS]; unsigned char *last_frame_seg_map_copy; // 0 = Intra, Last, GF, ARF signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; // 0 = ZERO_MV, MV signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; FRAME_CONTEXT fc; } CODING_CONTEXT; typedef enum { // encode_breakout is disabled. ENCODE_BREAKOUT_DISABLED = 0, // encode_breakout is enabled. ENCODE_BREAKOUT_ENABLED = 1, // encode_breakout is enabled with small max_thresh limit. ENCODE_BREAKOUT_LIMITED = 2 } ENCODE_BREAKOUT_TYPE; typedef enum { NORMAL = 0, FOURFIVE = 1, THREEFIVE = 2, ONETWO = 3 } VPX_SCALING; typedef enum { // Good Quality Fast Encoding. The encoder balances quality with the amount of // time it takes to encode the output. Speed setting controls how fast. GOOD, // The encoder places priority on the quality of the output over encoding // speed. The output is compressed at the highest possible quality. This // option takes the longest amount of time to encode. Speed setting ignored. BEST, // Realtime/Live Encoding. This mode is optimized for realtime encoding (for // example, capturing a television signal or feed from a live camera). Speed // setting controls how fast. REALTIME } MODE; typedef enum { FRAMEFLAGS_KEY = 1 << 0, FRAMEFLAGS_GOLDEN = 1 << 1, FRAMEFLAGS_ALTREF = 1 << 2, } FRAMETYPE_FLAGS; typedef enum { NO_AQ = 0, VARIANCE_AQ = 1, COMPLEXITY_AQ = 2, CYCLIC_REFRESH_AQ = 3, EQUATOR360_AQ = 4, PERCEPTUAL_AQ = 5, PSNR_AQ = 6, // AQ based on lookahead temporal // variance (only valid for altref frames) LOOKAHEAD_AQ = 7, AQ_MODE_COUNT // This should always be the last member of the enum } AQ_MODE; typedef enum { RESIZE_NONE = 0, // No frame resizing allowed (except for SVC). RESIZE_FIXED = 1, // All frames are coded at the specified dimension. RESIZE_DYNAMIC = 2 // Coded size of each frame is determined by the codec. } RESIZE_TYPE; typedef enum { kInvalid = 0, kLowSadLowSumdiff = 1, kLowSadHighSumdiff = 2, kHighSadLowSumdiff = 3, kHighSadHighSumdiff = 4, kLowVarHighSumdiff = 5, kVeryHighSad = 6, } CONTENT_STATE_SB; typedef struct VP9EncoderConfig { BITSTREAM_PROFILE profile; vpx_bit_depth_t bit_depth; // Codec bit-depth. int width; // width of data passed to the compressor int height; // height of data passed to the compressor unsigned int input_bit_depth; // Input bit depth. double init_framerate; // set to passed in framerate vpx_rational_t g_timebase; // equivalent to g_timebase in vpx_codec_enc_cfg_t vpx_rational64_t g_timebase_in_ts; // g_timebase * TICKS_PER_SEC int64_t target_bandwidth; // bandwidth to be used in bits per second int noise_sensitivity; // pre processing blur: recommendation 0 int sharpness; // sharpening output: recommendation 0: int speed; // maximum allowed bitrate for any intra frame in % of bitrate target. unsigned int rc_max_intra_bitrate_pct; // maximum allowed bitrate for any inter frame in % of bitrate target. unsigned int rc_max_inter_bitrate_pct; // percent of rate boost for golden frame in CBR mode. unsigned int gf_cbr_boost_pct; MODE mode; int pass; // Key Framing Operations int auto_key; // autodetect cut scenes and set the keyframes int key_freq; // maximum distance to key frame. int lag_in_frames; // how many frames lag before we start encoding // ---------------------------------------------------------------- // DATARATE CONTROL OPTIONS // vbr, cbr, constrained quality or constant quality enum vpx_rc_mode rc_mode; // buffer targeting aggressiveness int under_shoot_pct; int over_shoot_pct; // buffering parameters int64_t starting_buffer_level_ms; int64_t optimal_buffer_level_ms; int64_t maximum_buffer_size_ms; // Frame drop threshold. int drop_frames_water_mark; // controlling quality int fixed_q; int worst_allowed_q; int best_allowed_q; int cq_level; AQ_MODE aq_mode; // Adaptive Quantization mode // Special handling of Adaptive Quantization for AltRef frames int alt_ref_aq; // Internal frame size scaling. RESIZE_TYPE resize_mode; int scaled_frame_width; int scaled_frame_height; // Enable feature to reduce the frame quantization every x frames. int frame_periodic_boost; // two pass datarate control int two_pass_vbrbias; // two pass datarate control tweaks int two_pass_vbrmin_section; int two_pass_vbrmax_section; int vbr_corpus_complexity; // 0 indicates corpus vbr disabled // END DATARATE CONTROL OPTIONS // ---------------------------------------------------------------- // Spatial and temporal scalability. int ss_number_layers; // Number of spatial layers. int ts_number_layers; // Number of temporal layers. // Bitrate allocation for spatial layers. int layer_target_bitrate[VPX_MAX_LAYERS]; int ss_target_bitrate[VPX_SS_MAX_LAYERS]; int ss_enable_auto_arf[VPX_SS_MAX_LAYERS]; // Bitrate allocation (CBR mode) and framerate factor, for temporal layers. int ts_rate_decimator[VPX_TS_MAX_LAYERS]; int enable_auto_arf; int encode_breakout; // early breakout : for video conf recommend 800 /* Bitfield defining the error resiliency features to enable. * Can provide decodable frames after losses in previous * frames and decodable partitions after losses in the same frame. */ unsigned int error_resilient_mode; /* Bitfield defining the parallel decoding mode where the * decoding in successive frames may be conducted in parallel * just by decoding the frame headers. */ unsigned int frame_parallel_decoding_mode; int arnr_max_frames; int arnr_strength; int min_gf_interval; int max_gf_interval; int tile_columns; int tile_rows; int enable_tpl_model; int max_threads; unsigned int target_level; vpx_fixed_buf_t two_pass_stats_in; #if CONFIG_FP_MB_STATS vpx_fixed_buf_t firstpass_mb_stats_in; #endif vp8e_tuning tuning; vp9e_tune_content content; #if CONFIG_VP9_HIGHBITDEPTH int use_highbitdepth; #endif vpx_color_space_t color_space; vpx_color_range_t color_range; int render_width; int render_height; VP9E_TEMPORAL_LAYERING_MODE temporal_layering_mode; int row_mt; unsigned int motion_vector_unit_test; int delta_q_uv; } VP9EncoderConfig; static INLINE int is_lossless_requested(const VP9EncoderConfig *cfg) { return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0; } typedef struct TplDepStats { int64_t intra_cost; int64_t inter_cost; int64_t mc_flow; int64_t mc_dep_cost; int64_t mc_ref_cost; int ref_frame_index; int_mv mv; } TplDepStats; #if CONFIG_NON_GREEDY_MV #define ZERO_MV_MODE 0 #define NEW_MV_MODE 1 #define NEAREST_MV_MODE 2 #define NEAR_MV_MODE 3 #define MAX_MV_MODE 4 #endif typedef struct TplDepFrame { uint8_t is_valid; TplDepStats *tpl_stats_ptr; int stride; int width; int height; int mi_rows; int mi_cols; int base_qindex; #if CONFIG_NON_GREEDY_MV int lambda; int *mv_mode_arr[3]; double *rd_diff_arr[3]; #endif } TplDepFrame; #define TPL_DEP_COST_SCALE_LOG2 4 // TODO(jingning) All spatially adaptive variables should go to TileDataEnc. typedef struct TileDataEnc { TileInfo tile_info; int thresh_freq_fact[BLOCK_SIZES][MAX_MODES]; #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL int thresh_freq_fact_prev[BLOCK_SIZES][MAX_MODES]; #endif // CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL int8_t mode_map[BLOCK_SIZES][MAX_MODES]; FIRSTPASS_DATA fp_data; VP9RowMTSync row_mt_sync; // Used for adaptive_rd_thresh with row multithreading int *row_base_thresh_freq_fact; } TileDataEnc; typedef struct RowMTInfo { JobQueueHandle job_queue_hdl; #if CONFIG_MULTITHREAD pthread_mutex_t job_mutex; #endif } RowMTInfo; typedef struct { TOKENEXTRA *start; TOKENEXTRA *stop; unsigned int count; } TOKENLIST; typedef struct MultiThreadHandle { int allocated_tile_rows; int allocated_tile_cols; int allocated_vert_unit_rows; // Frame level params int num_tile_vert_sbs[MAX_NUM_TILE_ROWS]; // Job Queue structure and handles JobQueue *job_queue; int jobs_per_tile_col; RowMTInfo row_mt_info[MAX_NUM_TILE_COLS]; int thread_id_to_tile_id[MAX_NUM_THREADS]; // Mapping of threads to tiles } MultiThreadHandle; typedef struct RD_COUNTS { vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES]; int64_t comp_pred_diff[REFERENCE_MODES]; int64_t filter_diff[SWITCHABLE_FILTER_CONTEXTS]; } RD_COUNTS; typedef struct ThreadData { MACROBLOCK mb; RD_COUNTS rd_counts; FRAME_COUNTS *counts; PICK_MODE_CONTEXT *leaf_tree; PC_TREE *pc_tree; PC_TREE *pc_root; } ThreadData; struct EncWorkerData; typedef struct ActiveMap { int enabled; int update; unsigned char *map; } ActiveMap; typedef enum { Y, U, V, ALL } STAT_TYPE; typedef struct IMAGE_STAT { double stat[ALL + 1]; double worst; } ImageStat; // Kf noise filtering currently disabled by default in build. // #define ENABLE_KF_DENOISE 1 #define CPB_WINDOW_SIZE 4 #define FRAME_WINDOW_SIZE 128 #define SAMPLE_RATE_GRACE_P 0.015 #define VP9_LEVELS 14 typedef enum { LEVEL_UNKNOWN = 0, LEVEL_AUTO = 1, LEVEL_1 = 10, LEVEL_1_1 = 11, LEVEL_2 = 20, LEVEL_2_1 = 21, LEVEL_3 = 30, LEVEL_3_1 = 31, LEVEL_4 = 40, LEVEL_4_1 = 41, LEVEL_5 = 50, LEVEL_5_1 = 51, LEVEL_5_2 = 52, LEVEL_6 = 60, LEVEL_6_1 = 61, LEVEL_6_2 = 62, LEVEL_MAX = 255 } VP9_LEVEL; typedef struct { VP9_LEVEL level; uint64_t max_luma_sample_rate; uint32_t max_luma_picture_size; uint32_t max_luma_picture_breadth; double average_bitrate; // in kilobits per second double max_cpb_size; // in kilobits double compression_ratio; uint8_t max_col_tiles; uint32_t min_altref_distance; uint8_t max_ref_frame_buffers; } Vp9LevelSpec; extern const Vp9LevelSpec vp9_level_defs[VP9_LEVELS]; typedef struct { int64_t ts; // timestamp uint32_t luma_samples; uint32_t size; // in bytes } FrameRecord; typedef struct { FrameRecord buf[FRAME_WINDOW_SIZE]; uint8_t start; uint8_t len; } FrameWindowBuffer; typedef struct { uint8_t seen_first_altref; uint32_t frames_since_last_altref; uint64_t total_compressed_size; uint64_t total_uncompressed_size; double time_encoded; // in seconds FrameWindowBuffer frame_window_buffer; int ref_refresh_map; } Vp9LevelStats; typedef struct { Vp9LevelStats level_stats; Vp9LevelSpec level_spec; } Vp9LevelInfo; typedef enum { BITRATE_TOO_LARGE = 0, LUMA_PIC_SIZE_TOO_LARGE, LUMA_PIC_BREADTH_TOO_LARGE, LUMA_SAMPLE_RATE_TOO_LARGE, CPB_TOO_LARGE, COMPRESSION_RATIO_TOO_SMALL, TOO_MANY_COLUMN_TILE, ALTREF_DIST_TOO_SMALL, TOO_MANY_REF_BUFFER, TARGET_LEVEL_FAIL_IDS } TARGET_LEVEL_FAIL_ID; typedef struct { int8_t level_index; uint8_t fail_flag; int max_frame_size; // in bits double max_cpb_size; // in bits } LevelConstraint; typedef struct ARNRFilterData { YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS]; int strength; int frame_count; int alt_ref_index; struct scale_factors sf; } ARNRFilterData; typedef struct EncFrameBuf { int mem_valid; int released; YV12_BUFFER_CONFIG frame; } EncFrameBuf; // Maximum operating frame buffer size needed for a GOP using ARF reference. #define MAX_ARF_GOP_SIZE (2 * MAX_LAG_BUFFERS) #define MAX_KMEANS_GROUPS 8 typedef struct KMEANS_DATA { double value; int pos; int group_idx; } KMEANS_DATA; #if CONFIG_RATE_CTRL typedef struct PARTITION_INFO { int row; // row pixel offset of current 4x4 block int column; // column pixel offset of current 4x4 block int row_start; // row pixel offset of the start of the prediction block int column_start; // column pixel offset of the start of the prediction block int width; // prediction block width int height; // prediction block height } PARTITION_INFO; typedef struct MOTION_VECTOR_INFO { MV_REFERENCE_FRAME ref_frame[2]; int_mv mv[2]; } MOTION_VECTOR_INFO; typedef struct ENCODE_COMMAND { int use_external_quantize_index; int external_quantize_index; // A list of binary flags set from the external controller. // Each binary flag indicates whether the frame is an arf or not. const int *external_arf_indexes; } ENCODE_COMMAND; static INLINE void encode_command_init(ENCODE_COMMAND *encode_command) { vp9_zero(*encode_command); encode_command->use_external_quantize_index = 0; encode_command->external_quantize_index = -1; encode_command->external_arf_indexes = NULL; } static INLINE void encode_command_set_external_arf_indexes( ENCODE_COMMAND *encode_command, const int *external_arf_indexes) { encode_command->external_arf_indexes = external_arf_indexes; } static INLINE void encode_command_set_external_quantize_index( ENCODE_COMMAND *encode_command, int quantize_index) { encode_command->use_external_quantize_index = 1; encode_command->external_quantize_index = quantize_index; } static INLINE void encode_command_reset_external_quantize_index( ENCODE_COMMAND *encode_command) { encode_command->use_external_quantize_index = 0; encode_command->external_quantize_index = -1; } // Returns number of units in size of 4, if not multiple not a multiple of 4, // round it up. For example, size is 7, return 2. static INLINE int get_num_unit_4x4(int size) { return (size + 3) >> 2; } #endif // CONFIG_RATE_CTRL typedef struct VP9_COMP { FRAME_INFO frame_info; QUANTS quants; ThreadData td; MB_MODE_INFO_EXT *mbmi_ext_base; DECLARE_ALIGNED(16, int16_t, y_dequant[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, uv_dequant[QINDEX_RANGE][8]); VP9_COMMON common; VP9EncoderConfig oxcf; struct lookahead_ctx *lookahead; struct lookahead_entry *alt_ref_source; YV12_BUFFER_CONFIG *Source; YV12_BUFFER_CONFIG *Last_Source; // NULL for first frame and alt_ref frames YV12_BUFFER_CONFIG *un_scaled_source; YV12_BUFFER_CONFIG scaled_source; YV12_BUFFER_CONFIG *unscaled_last_source; YV12_BUFFER_CONFIG scaled_last_source; #ifdef ENABLE_KF_DENOISE YV12_BUFFER_CONFIG raw_unscaled_source; YV12_BUFFER_CONFIG raw_scaled_source; #endif YV12_BUFFER_CONFIG *raw_source_frame; BLOCK_SIZE tpl_bsize; TplDepFrame tpl_stats[MAX_ARF_GOP_SIZE]; YV12_BUFFER_CONFIG *tpl_recon_frames[REF_FRAMES]; EncFrameBuf enc_frame_buf[REF_FRAMES]; #if CONFIG_MULTITHREAD pthread_mutex_t kmeans_mutex; #endif int kmeans_data_arr_alloc; KMEANS_DATA *kmeans_data_arr; int kmeans_data_size; int kmeans_data_stride; double kmeans_ctr_ls[MAX_KMEANS_GROUPS]; double kmeans_boundary_ls[MAX_KMEANS_GROUPS]; int kmeans_count_ls[MAX_KMEANS_GROUPS]; int kmeans_ctr_num; #if CONFIG_NON_GREEDY_MV MotionFieldInfo motion_field_info; int tpl_ready; int_mv *select_mv_arr; #endif TileDataEnc *tile_data; int allocated_tiles; // Keep track of memory allocated for tiles. // For a still frame, this flag is set to 1 to skip partition search. int partition_search_skippable_frame; int scaled_ref_idx[REFS_PER_FRAME]; int lst_fb_idx; int gld_fb_idx; int alt_fb_idx; int ref_fb_idx[REF_FRAMES]; int refresh_last_frame; int refresh_golden_frame; int refresh_alt_ref_frame; int ext_refresh_frame_flags_pending; int ext_refresh_last_frame; int ext_refresh_golden_frame; int ext_refresh_alt_ref_frame; int ext_refresh_frame_context_pending; int ext_refresh_frame_context; int64_t norm_wiener_variance; int64_t *mb_wiener_variance; int mb_wiener_var_rows; int mb_wiener_var_cols; double *mi_ssim_rdmult_scaling_factors; YV12_BUFFER_CONFIG last_frame_uf; TOKENEXTRA *tile_tok[4][1 << 6]; TOKENLIST *tplist[4][1 << 6]; // Ambient reconstruction err target for force key frames int64_t ambient_err; RD_OPT rd; CODING_CONTEXT coding_context; int *nmvcosts[2]; int *nmvcosts_hp[2]; int *nmvsadcosts[2]; int *nmvsadcosts_hp[2]; int64_t last_time_stamp_seen; int64_t last_end_time_stamp_seen; int64_t first_time_stamp_ever; RATE_CONTROL rc; double framerate; int interp_filter_selected[REF_FRAMES][SWITCHABLE]; struct vpx_codec_pkt_list *output_pkt_list; MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS]; int mbgraph_n_frames; // number of frames filled in the above int static_mb_pct; // % forced skip mbs by segmentation int ref_frame_flags; SPEED_FEATURES sf; uint32_t max_mv_magnitude; int mv_step_param; int allow_comp_inter_inter; // Default value is 1. From first pass stats, encode_breakout may be disabled. ENCODE_BREAKOUT_TYPE allow_encode_breakout; // Get threshold from external input. A suggested threshold is 800 for HD // clips, and 300 for < HD clips. int encode_breakout; uint8_t *segmentation_map; uint8_t *skin_map; // segment threashold for encode breakout int segment_encode_breakout[MAX_SEGMENTS]; CYCLIC_REFRESH *cyclic_refresh; ActiveMap active_map; fractional_mv_step_fp *find_fractional_mv_step; struct scale_factors me_sf; vp9_diamond_search_fn_t diamond_search_sad; vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES]; uint64_t time_receive_data; uint64_t time_compress_data; uint64_t time_pick_lpf; uint64_t time_encode_sb_row; #if CONFIG_FP_MB_STATS int use_fp_mb_stats; #endif TWO_PASS twopass; // Force recalculation of segment_ids for each mode info uint8_t force_update_segmentation; YV12_BUFFER_CONFIG alt_ref_buffer; // class responsible for adaptive // quantization of altref frames struct ALT_REF_AQ *alt_ref_aq; #if CONFIG_INTERNAL_STATS unsigned int mode_chosen_counts[MAX_MODES]; int count; uint64_t total_sq_error; uint64_t total_samples; ImageStat psnr; uint64_t totalp_sq_error; uint64_t totalp_samples; ImageStat psnrp; double total_blockiness; double worst_blockiness; int bytes; double summed_quality; double summed_weights; double summedp_quality; double summedp_weights; unsigned int tot_recode_hits; double worst_ssim; ImageStat ssimg; ImageStat fastssim; ImageStat psnrhvs; int b_calculate_ssimg; int b_calculate_blockiness; int b_calculate_consistency; double total_inconsistency; double worst_consistency; Ssimv *ssim_vars; Metrics metrics; #endif int b_calculate_psnr; int droppable; int initial_width; int initial_height; int initial_mbs; // Number of MBs in the full-size frame; to be used to // normalize the firstpass stats. This will differ from the // number of MBs in the current frame when the frame is // scaled. int use_svc; SVC svc; // Store frame variance info in SOURCE_VAR_BASED_PARTITION search type. diff *source_diff_var; // The threshold used in SOURCE_VAR_BASED_PARTITION search type. unsigned int source_var_thresh; int frames_till_next_var_check; int frame_flags; search_site_config ss_cfg; int mbmode_cost[INTRA_MODES]; unsigned int inter_mode_cost[INTER_MODE_CONTEXTS][INTER_MODES]; int intra_uv_mode_cost[FRAME_TYPES][INTRA_MODES][INTRA_MODES]; int y_mode_costs[INTRA_MODES][INTRA_MODES][INTRA_MODES]; int switchable_interp_costs[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS]; int partition_cost[PARTITION_CONTEXTS][PARTITION_TYPES]; // Indices are: max_tx_size-1, tx_size_ctx, tx_size int tx_size_cost[TX_SIZES - 1][TX_SIZE_CONTEXTS][TX_SIZES]; #if CONFIG_VP9_TEMPORAL_DENOISING VP9_DENOISER denoiser; #endif int resize_pending; RESIZE_STATE resize_state; int external_resize; int resize_scale_num; int resize_scale_den; int resize_avg_qp; int resize_buffer_underflow; int resize_count; int use_skin_detection; int target_level; NOISE_ESTIMATE noise_estimate; // Count on how many consecutive times a block uses small/zeromv for encoding. uint8_t *consec_zero_mv; // VAR_BASED_PARTITION thresholds // 0 - threshold_64x64; 1 - threshold_32x32; // 2 - threshold_16x16; 3 - vbp_threshold_8x8; int64_t vbp_thresholds[4]; int64_t vbp_threshold_minmax; int64_t vbp_threshold_sad; // Threshold used for partition copy int64_t vbp_threshold_copy; BLOCK_SIZE vbp_bsize_min; // Multi-threading int num_workers; VPxWorker *workers; struct EncWorkerData *tile_thr_data; VP9LfSync lf_row_sync; struct VP9BitstreamWorkerData *vp9_bitstream_worker_data; int keep_level_stats; Vp9LevelInfo level_info; MultiThreadHandle multi_thread_ctxt; void (*row_mt_sync_read_ptr)(VP9RowMTSync *const, int, int); void (*row_mt_sync_write_ptr)(VP9RowMTSync *const, int, int, const int); ARNRFilterData arnr_filter_data; int row_mt; unsigned int row_mt_bit_exact; // Previous Partition Info BLOCK_SIZE *prev_partition; int8_t *prev_segment_id; // Used to save the status of whether a block has a low variance in // choose_partitioning. 0 for 64x64, 1~2 for 64x32, 3~4 for 32x64, 5~8 for // 32x32, 9~24 for 16x16. // This is for the last frame and is copied to the current frame // when partition copy happens. uint8_t *prev_variance_low; uint8_t *copied_frame_cnt; uint8_t max_copied_frame; // If the last frame is dropped, we don't copy partition. uint8_t last_frame_dropped; // For each superblock: keeps track of the last time (in frame distance) the // the superblock did not have low source sad. uint8_t *content_state_sb_fd; int compute_source_sad_onepass; LevelConstraint level_constraint; uint8_t *count_arf_frame_usage; uint8_t *count_lastgolden_frame_usage; int multi_layer_arf; vpx_roi_map_t roi; #if CONFIG_RATE_CTRL ENCODE_COMMAND encode_command; PARTITION_INFO *partition_info; MOTION_VECTOR_INFO *motion_vector_info; #endif } VP9_COMP; #if CONFIG_RATE_CTRL // Allocates memory for the partition information. // The unit size is each 4x4 block. // Only called once in vp9_create_compressor(). static INLINE void partition_info_init(struct VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const int unit_width = get_num_unit_4x4(cpi->frame_info.frame_width); const int unit_height = get_num_unit_4x4(cpi->frame_info.frame_height); CHECK_MEM_ERROR(cm, cpi->partition_info, (PARTITION_INFO *)vpx_calloc(unit_width * unit_height, sizeof(PARTITION_INFO))); memset(cpi->partition_info, 0, unit_width * unit_height * sizeof(PARTITION_INFO)); } // Frees memory of the partition information. // Only called once in dealloc_compressor_data(). static INLINE void free_partition_info(struct VP9_COMP *cpi) { vpx_free(cpi->partition_info); cpi->partition_info = NULL; } // Allocates memory for the motion vector information. // The unit size is each 4x4 block. // Only called once in vp9_create_compressor(). static INLINE void motion_vector_info_init(struct VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const int unit_width = get_num_unit_4x4(cpi->frame_info.frame_width); const int unit_height = get_num_unit_4x4(cpi->frame_info.frame_height); CHECK_MEM_ERROR(cm, cpi->motion_vector_info, (MOTION_VECTOR_INFO *)vpx_calloc(unit_width * unit_height, sizeof(MOTION_VECTOR_INFO))); memset(cpi->motion_vector_info, 0, unit_width * unit_height * sizeof(MOTION_VECTOR_INFO)); } // Frees memory of the motion vector information. // Only called once in dealloc_compressor_data(). static INLINE void free_motion_vector_info(struct VP9_COMP *cpi) { vpx_free(cpi->motion_vector_info); cpi->motion_vector_info = NULL; } // This is the c-version counter part of ImageBuffer typedef struct IMAGE_BUFFER { int allocated; int plane_width[3]; int plane_height[3]; uint8_t *plane_buffer[3]; } IMAGE_BUFFER; #endif // CONFIG_RATE_CTRL typedef struct ENCODE_FRAME_RESULT { int show_idx; FRAME_UPDATE_TYPE update_type; #if CONFIG_RATE_CTRL int frame_coding_index; int ref_frame_coding_indexes[MAX_INTER_REF_FRAMES]; int ref_frame_valid_list[MAX_INTER_REF_FRAMES]; double psnr; uint64_t sse; FRAME_COUNTS frame_counts; const PARTITION_INFO *partition_info; const MOTION_VECTOR_INFO *motion_vector_info; IMAGE_BUFFER coded_frame; #endif // CONFIG_RATE_CTRL int quantize_index; } ENCODE_FRAME_RESULT; void vp9_init_encode_frame_result(ENCODE_FRAME_RESULT *encode_frame_result); void vp9_initialize_enc(void); void vp9_update_compressor_with_img_fmt(VP9_COMP *cpi, vpx_img_fmt_t img_fmt); struct VP9_COMP *vp9_create_compressor(const VP9EncoderConfig *oxcf, BufferPool *const pool); void vp9_remove_compressor(VP9_COMP *cpi); void vp9_change_config(VP9_COMP *cpi, const VP9EncoderConfig *oxcf); // receive a frames worth of data. caller can assume that a copy of this // frame is made and not just a copy of the pointer.. int vp9_receive_raw_frame(VP9_COMP *cpi, vpx_enc_frame_flags_t frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time); int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags, size_t *size, uint8_t *dest, int64_t *time_stamp, int64_t *time_end, int flush, ENCODE_FRAME_RESULT *encode_frame_result); int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp9_ppflags_t *flags); int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags); void vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags); int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd); int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd); int vp9_update_entropy(VP9_COMP *cpi, int update); int vp9_set_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows, int cols); int vp9_get_active_map(VP9_COMP *cpi, unsigned char *new_map_16x16, int rows, int cols); int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode); int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width, unsigned int height); void vp9_set_svc(VP9_COMP *cpi, int use_svc); // Check for resetting the rc flags (rc_1_frame, rc_2_frame) if the // configuration change has a large change in avg_frame_bandwidth. // For SVC check for resetting based on spatial layer average bandwidth. // Also reset buffer level to optimal level. void vp9_check_reset_rc_flag(VP9_COMP *cpi); void vp9_set_rc_buffer_sizes(VP9_COMP *cpi); static INLINE int stack_pop(int *stack, int stack_size) { int idx; const int r = stack[0]; for (idx = 1; idx < stack_size; ++idx) stack[idx - 1] = stack[idx]; return r; } static INLINE int stack_top(const int *stack) { return stack[0]; } static INLINE void stack_push(int *stack, int new_item, int stack_size) { int idx; for (idx = stack_size; idx > 0; --idx) stack[idx] = stack[idx - 1]; stack[0] = new_item; } static INLINE void stack_init(int *stack, int length) { int idx; for (idx = 0; idx < length; ++idx) stack[idx] = -1; } int vp9_get_quantizer(const VP9_COMP *cpi); static INLINE int frame_is_kf_gf_arf(const VP9_COMP *cpi) { return frame_is_intra_only(&cpi->common) || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref); } static INLINE int get_ref_frame_map_idx(const VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) { if (ref_frame == LAST_FRAME) { return cpi->lst_fb_idx; } else if (ref_frame == GOLDEN_FRAME) { return cpi->gld_fb_idx; } else { return cpi->alt_fb_idx; } } static INLINE int get_ref_frame_buf_idx(const VP9_COMP *const cpi, int ref_frame) { const VP9_COMMON *const cm = &cpi->common; const int map_idx = get_ref_frame_map_idx(cpi, ref_frame); return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : INVALID_IDX; } static INLINE RefCntBuffer *get_ref_cnt_buffer(const VP9_COMMON *cm, int fb_idx) { return fb_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[fb_idx] : NULL; } static INLINE void get_ref_frame_bufs( const VP9_COMP *cpi, RefCntBuffer *ref_frame_bufs[MAX_INTER_REF_FRAMES]) { const VP9_COMMON *const cm = &cpi->common; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame < MAX_REF_FRAMES; ++ref_frame) { int ref_frame_buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); int inter_ref_idx = mv_ref_frame_to_inter_ref_idx(ref_frame); ref_frame_bufs[inter_ref_idx] = get_ref_cnt_buffer(cm, ref_frame_buf_idx); } } static INLINE YV12_BUFFER_CONFIG *get_ref_frame_buffer( const VP9_COMP *const cpi, MV_REFERENCE_FRAME ref_frame) { const VP9_COMMON *const cm = &cpi->common; const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); return buf_idx != INVALID_IDX ? &cm->buffer_pool->frame_bufs[buf_idx].buf : NULL; } static INLINE int get_token_alloc(int mb_rows, int mb_cols) { // TODO(JBB): double check we can't exceed this token count if we have a // 32x32 transform crossing a boundary at a multiple of 16. // mb_rows, cols are in units of 16 pixels. We assume 3 planes all at full // resolution. We assume up to 1 token per pixel, and then allow // a head room of 4. return mb_rows * mb_cols * (16 * 16 * 3 + 4); } // Get the allocated token size for a tile. It does the same calculation as in // the frame token allocation. static INLINE int allocated_tokens(TileInfo tile) { int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 1) >> 1; int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 1) >> 1; return get_token_alloc(tile_mb_rows, tile_mb_cols); } static INLINE void get_start_tok(VP9_COMP *cpi, int tile_row, int tile_col, int mi_row, TOKENEXTRA **tok) { VP9_COMMON *const cm = &cpi->common; const int tile_cols = 1 << cm->log2_tile_cols; TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col]; const TileInfo *const tile_info = &this_tile->tile_info; int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1; const int mb_row = (mi_row - tile_info->mi_row_start) >> 1; *tok = cpi->tile_tok[tile_row][tile_col] + get_token_alloc(mb_row, tile_mb_cols); } int64_t vp9_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b); #if CONFIG_VP9_HIGHBITDEPTH int64_t vp9_highbd_get_y_sse(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b); #endif // CONFIG_VP9_HIGHBITDEPTH void vp9_scale_references(VP9_COMP *cpi); void vp9_update_reference_frames(VP9_COMP *cpi); void vp9_set_high_precision_mv(VP9_COMP *cpi, int allow_high_precision_mv); YV12_BUFFER_CONFIG *vp9_svc_twostage_scale( VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, YV12_BUFFER_CONFIG *scaled_temp, INTERP_FILTER filter_type, int phase_scaler, INTERP_FILTER filter_type2, int phase_scaler2); YV12_BUFFER_CONFIG *vp9_scale_if_required( VP9_COMMON *cm, YV12_BUFFER_CONFIG *unscaled, YV12_BUFFER_CONFIG *scaled, int use_normative_scaler, INTERP_FILTER filter_type, int phase_scaler); void vp9_apply_encoding_flags(VP9_COMP *cpi, vpx_enc_frame_flags_t flags); static INLINE int is_one_pass_cbr_svc(const struct VP9_COMP *const cpi) { return (cpi->use_svc && cpi->oxcf.pass == 0); } #if CONFIG_VP9_TEMPORAL_DENOISING static INLINE int denoise_svc(const struct VP9_COMP *const cpi) { return (!cpi->use_svc || (cpi->use_svc && cpi->svc.spatial_layer_id >= cpi->svc.first_layer_denoise)); } #endif #define MIN_LOOKAHEAD_FOR_ARFS 4 static INLINE int is_altref_enabled(const VP9_COMP *const cpi) { return !(cpi->oxcf.mode == REALTIME && cpi->oxcf.rc_mode == VPX_CBR) && cpi->oxcf.lag_in_frames >= MIN_LOOKAHEAD_FOR_ARFS && cpi->oxcf.enable_auto_arf; } static INLINE void set_ref_ptrs(const VP9_COMMON *const cm, MACROBLOCKD *xd, MV_REFERENCE_FRAME ref0, MV_REFERENCE_FRAME ref1) { xd->block_refs[0] = &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME : 0]; xd->block_refs[1] = &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME : 0]; } static INLINE int get_chessboard_index(const int frame_index) { return frame_index & 0x1; } static INLINE int *cond_cost_list(const struct VP9_COMP *cpi, int *cost_list) { return cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL; } static INLINE int get_num_vert_units(TileInfo tile, int shift) { int num_vert_units = (tile.mi_row_end - tile.mi_row_start + (1 << shift) - 1) >> shift; return num_vert_units; } static INLINE int get_num_cols(TileInfo tile, int shift) { int num_cols = (tile.mi_col_end - tile.mi_col_start + (1 << shift) - 1) >> shift; return num_cols; } static INLINE int get_level_index(VP9_LEVEL level) { int i; for (i = 0; i < VP9_LEVELS; ++i) { if (level == vp9_level_defs[i].level) return i; } return -1; } // Return the log2 value of max column tiles corresponding to the level that // the picture size fits into. static INLINE int log_tile_cols_from_picsize_level(uint32_t width, uint32_t height) { int i; const uint32_t pic_size = width * height; const uint32_t pic_breadth = VPXMAX(width, height); for (i = LEVEL_1; i < LEVEL_MAX; ++i) { if (vp9_level_defs[i].max_luma_picture_size >= pic_size && vp9_level_defs[i].max_luma_picture_breadth >= pic_breadth) { return get_msb(vp9_level_defs[i].max_col_tiles); } } return INT_MAX; } VP9_LEVEL vp9_get_level(const Vp9LevelSpec *const level_spec); int vp9_set_roi_map(VP9_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[8], int delta_lf[8], int skip[8], int ref_frame[8]); void vp9_new_framerate(VP9_COMP *cpi, double framerate); void vp9_set_row_mt(VP9_COMP *cpi); int vp9_get_psnr(const VP9_COMP *cpi, PSNR_STATS *psnr); #define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl)) #ifdef __cplusplus } // extern "C" #endif #endif // VPX_VP9_ENCODER_VP9_ENCODER_H_