ref: bf3fe26f7e1b51ac3578bdd27616f8c3b6e9b7d3
dir: /vp9/common/vp9_scale.c/
/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_dsp_rtcd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_scale.h" #include "vpx_dsp/vpx_filter.h" static INLINE int scaled_x(int val, const struct scale_factors *sf) { return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT); } static INLINE int scaled_y(int val, const struct scale_factors *sf) { return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT); } static int unscaled_value(int val, const struct scale_factors *sf) { (void)sf; return val; } static int get_fixed_point_scale_factor(int other_size, int this_size) { // Calculate scaling factor once for each reference frame // and use fixed point scaling factors in decoding and encoding routines. // Hardware implementations can calculate scale factor in device driver // and use multiplication and shifting on hardware instead of division. return (other_size << REF_SCALE_SHIFT) / this_size; } MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) { const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK; const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK; const MV32 res = { scaled_y(mv->row, sf) + y_off_q4, scaled_x(mv->col, sf) + x_off_q4 }; return res; } #if CONFIG_VP9_HIGHBITDEPTH void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, int other_h, int this_w, int this_h, int use_highbd) { #else void vp9_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w, int other_h, int this_w, int this_h) { #endif if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) { sf->x_scale_fp = REF_INVALID_SCALE; sf->y_scale_fp = REF_INVALID_SCALE; return; } sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w); sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h); sf->x_step_q4 = scaled_x(16, sf); sf->y_step_q4 = scaled_y(16, sf); if (vp9_is_scaled(sf)) { sf->scale_value_x = scaled_x; sf->scale_value_y = scaled_y; } else { sf->scale_value_x = unscaled_value; sf->scale_value_y = unscaled_value; } // TODO(agrange): Investigate the best choice of functions to use here // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what // to do at full-pel offsets. The current selection, where the filter is // applied in one direction only, and not at all for 0,0, seems to give the // best quality, but it may be worth trying an additional mode that does // do the filtering on full-pel. if (sf->x_step_q4 == 16) { if (sf->y_step_q4 == 16) { // No scaling in either direction. sf->predict[0][0][0] = vpx_convolve_copy; sf->predict[0][0][1] = vpx_convolve_avg; sf->predict[0][1][0] = vpx_convolve8_vert; sf->predict[0][1][1] = vpx_convolve8_avg_vert; sf->predict[1][0][0] = vpx_convolve8_horiz; sf->predict[1][0][1] = vpx_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. sf->predict[0][0][0] = vpx_scaled_vert; sf->predict[0][0][1] = vpx_scaled_avg_vert; sf->predict[0][1][0] = vpx_scaled_vert; sf->predict[0][1][1] = vpx_scaled_avg_vert; sf->predict[1][0][0] = vpx_scaled_2d; sf->predict[1][0][1] = vpx_scaled_avg_2d; } } else { if (sf->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. sf->predict[0][0][0] = vpx_scaled_horiz; sf->predict[0][0][1] = vpx_scaled_avg_horiz; sf->predict[0][1][0] = vpx_scaled_2d; sf->predict[0][1][1] = vpx_scaled_avg_2d; sf->predict[1][0][0] = vpx_scaled_horiz; sf->predict[1][0][1] = vpx_scaled_avg_horiz; } else { // Must always scale in both directions. sf->predict[0][0][0] = vpx_scaled_2d; sf->predict[0][0][1] = vpx_scaled_avg_2d; sf->predict[0][1][0] = vpx_scaled_2d; sf->predict[0][1][1] = vpx_scaled_avg_2d; sf->predict[1][0][0] = vpx_scaled_2d; sf->predict[1][0][1] = vpx_scaled_avg_2d; } } // 2D subpel motion always gets filtered in both directions if ((sf->x_step_q4 != 16) || (sf->y_step_q4 != 16)) { sf->predict[1][1][0] = vpx_scaled_2d; sf->predict[1][1][1] = vpx_scaled_avg_2d; } else { sf->predict[1][1][0] = vpx_convolve8; sf->predict[1][1][1] = vpx_convolve8_avg; } #if CONFIG_VP9_HIGHBITDEPTH if (use_highbd) { if (sf->x_step_q4 == 16) { if (sf->y_step_q4 == 16) { // No scaling in either direction. sf->highbd_predict[0][0][0] = vpx_highbd_convolve_copy; sf->highbd_predict[0][0][1] = vpx_highbd_convolve_avg; sf->highbd_predict[0][1][0] = vpx_highbd_convolve8_vert; sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg_vert; sf->highbd_predict[1][0][0] = vpx_highbd_convolve8_horiz; sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg_horiz; } else { // No scaling in x direction. Must always scale in the y direction. sf->highbd_predict[0][0][0] = vpx_highbd_convolve8_vert; sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg_vert; sf->highbd_predict[0][1][0] = vpx_highbd_convolve8_vert; sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg_vert; sf->highbd_predict[1][0][0] = vpx_highbd_convolve8; sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg; } } else { if (sf->y_step_q4 == 16) { // No scaling in the y direction. Must always scale in the x direction. sf->highbd_predict[0][0][0] = vpx_highbd_convolve8_horiz; sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg_horiz; sf->highbd_predict[0][1][0] = vpx_highbd_convolve8; sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg; sf->highbd_predict[1][0][0] = vpx_highbd_convolve8_horiz; sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg_horiz; } else { // Must always scale in both directions. sf->highbd_predict[0][0][0] = vpx_highbd_convolve8; sf->highbd_predict[0][0][1] = vpx_highbd_convolve8_avg; sf->highbd_predict[0][1][0] = vpx_highbd_convolve8; sf->highbd_predict[0][1][1] = vpx_highbd_convolve8_avg; sf->highbd_predict[1][0][0] = vpx_highbd_convolve8; sf->highbd_predict[1][0][1] = vpx_highbd_convolve8_avg; } } // 2D subpel motion always gets filtered in both directions. sf->highbd_predict[1][1][0] = vpx_highbd_convolve8; sf->highbd_predict[1][1][1] = vpx_highbd_convolve8_avg; } #endif }