ref: c713f846168f4d6fd6a5e2150a115eaa661e5c77
dir: /vpx_dsp/loopfilter.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_ports/mem.h" static INLINE int8_t signed_char_clamp(int t) { return (int8_t)clamp(t, -128, 127); } #if CONFIG_VP9_HIGHBITDEPTH static INLINE int16_t signed_char_clamp_high(int t, int bd) { switch (bd) { case 10: return (int16_t)clamp(t, -128 * 4, 128 * 4 - 1); case 12: return (int16_t)clamp(t, -128 * 16, 128 * 16 - 1); case 8: default: return (int16_t)clamp(t, -128, 128 - 1); } } #endif // Should we apply any filter at all: 11111111 yes, 00000000 no static INLINE int8_t filter_mask(uint8_t limit, uint8_t blimit, uint8_t p3, uint8_t p2, uint8_t p1, uint8_t p0, uint8_t q0, uint8_t q1, uint8_t q2, uint8_t q3) { int8_t mask = 0; mask |= (abs(p3 - p2) > limit) * -1; mask |= (abs(p2 - p1) > limit) * -1; mask |= (abs(p1 - p0) > limit) * -1; mask |= (abs(q1 - q0) > limit) * -1; mask |= (abs(q2 - q1) > limit) * -1; mask |= (abs(q3 - q2) > limit) * -1; mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit) * -1; return ~mask; } static INLINE int8_t flat_mask4(uint8_t thresh, uint8_t p3, uint8_t p2, uint8_t p1, uint8_t p0, uint8_t q0, uint8_t q1, uint8_t q2, uint8_t q3) { int8_t mask = 0; mask |= (abs(p1 - p0) > thresh) * -1; mask |= (abs(q1 - q0) > thresh) * -1; mask |= (abs(p2 - p0) > thresh) * -1; mask |= (abs(q2 - q0) > thresh) * -1; mask |= (abs(p3 - p0) > thresh) * -1; mask |= (abs(q3 - q0) > thresh) * -1; return ~mask; } static INLINE int8_t flat_mask5(uint8_t thresh, uint8_t p4, uint8_t p3, uint8_t p2, uint8_t p1, uint8_t p0, uint8_t q0, uint8_t q1, uint8_t q2, uint8_t q3, uint8_t q4) { int8_t mask = ~flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3); mask |= (abs(p4 - p0) > thresh) * -1; mask |= (abs(q4 - q0) > thresh) * -1; return ~mask; } // Is there high edge variance internal edge: 11111111 yes, 00000000 no static INLINE int8_t hev_mask(uint8_t thresh, uint8_t p1, uint8_t p0, uint8_t q0, uint8_t q1) { int8_t hev = 0; hev |= (abs(p1 - p0) > thresh) * -1; hev |= (abs(q1 - q0) > thresh) * -1; return hev; } static INLINE void filter4(int8_t mask, uint8_t thresh, uint8_t *op1, uint8_t *op0, uint8_t *oq0, uint8_t *oq1) { int8_t filter1, filter2; const int8_t ps1 = (int8_t)(*op1 ^ 0x80); const int8_t ps0 = (int8_t)(*op0 ^ 0x80); const int8_t qs0 = (int8_t)(*oq0 ^ 0x80); const int8_t qs1 = (int8_t)(*oq1 ^ 0x80); const int8_t hev = hev_mask(thresh, *op1, *op0, *oq0, *oq1); // add outer taps if we have high edge variance int8_t filter = signed_char_clamp(ps1 - qs1) & hev; // inner taps filter = signed_char_clamp(filter + 3 * (qs0 - ps0)) & mask; // save bottom 3 bits so that we round one side +4 and the other +3 // if it equals 4 we'll set it to adjust by -1 to account for the fact // we'd round it by 3 the other way filter1 = signed_char_clamp(filter + 4) >> 3; filter2 = signed_char_clamp(filter + 3) >> 3; *oq0 = (uint8_t)(signed_char_clamp(qs0 - filter1) ^ 0x80); *op0 = (uint8_t)(signed_char_clamp(ps0 + filter2) ^ 0x80); // outer tap adjustments filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev; *oq1 = (uint8_t)(signed_char_clamp(qs1 - filter) ^ 0x80); *op1 = (uint8_t)(signed_char_clamp(ps1 + filter) ^ 0x80); } void vpx_lpf_horizontal_4_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8; ++i) { const uint8_t p3 = s[-4 * pitch], p2 = s[-3 * pitch], p1 = s[-2 * pitch], p0 = s[-pitch]; const uint8_t q0 = s[0 * pitch], q1 = s[1 * pitch], q2 = s[2 * pitch], q3 = s[3 * pitch]; const int8_t mask = filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); filter4(mask, *thresh, s - 2 * pitch, s - 1 * pitch, s, s + 1 * pitch); ++s; } } void vpx_lpf_horizontal_4_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1) { vpx_lpf_horizontal_4_c(s, pitch, blimit0, limit0, thresh0); vpx_lpf_horizontal_4_c(s + 8, pitch, blimit1, limit1, thresh1); } void vpx_lpf_vertical_4_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8; ++i) { const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; const int8_t mask = filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); filter4(mask, *thresh, s - 2, s - 1, s, s + 1); s += pitch; } } void vpx_lpf_vertical_4_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1) { vpx_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0); vpx_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1); } static INLINE void filter8(int8_t mask, uint8_t thresh, uint8_t flat, uint8_t *op3, uint8_t *op2, uint8_t *op1, uint8_t *op0, uint8_t *oq0, uint8_t *oq1, uint8_t *oq2, uint8_t *oq3) { if (flat && mask) { const uint8_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3; // 7-tap filter [1, 1, 1, 2, 1, 1, 1] *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3); *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3); *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3); *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3); *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3); *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3); } else { filter4(mask, thresh, op1, op0, oq0, oq1); } } void vpx_lpf_horizontal_8_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8; ++i) { const uint8_t p3 = s[-4 * pitch], p2 = s[-3 * pitch], p1 = s[-2 * pitch], p0 = s[-pitch]; const uint8_t q0 = s[0 * pitch], q1 = s[1 * pitch], q2 = s[2 * pitch], q3 = s[3 * pitch]; const int8_t mask = filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); filter8(mask, *thresh, flat, s - 4 * pitch, s - 3 * pitch, s - 2 * pitch, s - 1 * pitch, s, s + 1 * pitch, s + 2 * pitch, s + 3 * pitch); ++s; } } void vpx_lpf_horizontal_8_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1) { vpx_lpf_horizontal_8_c(s, pitch, blimit0, limit0, thresh0); vpx_lpf_horizontal_8_c(s + 8, pitch, blimit1, limit1, thresh1); } void vpx_lpf_vertical_8_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { int i; for (i = 0; i < 8; ++i) { const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; const int8_t mask = filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); filter8(mask, *thresh, flat, s - 4, s - 3, s - 2, s - 1, s, s + 1, s + 2, s + 3); s += pitch; } } void vpx_lpf_vertical_8_dual_c(uint8_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1) { vpx_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0); vpx_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1); } static INLINE void filter16(int8_t mask, uint8_t thresh, uint8_t flat, uint8_t flat2, uint8_t *op7, uint8_t *op6, uint8_t *op5, uint8_t *op4, uint8_t *op3, uint8_t *op2, uint8_t *op1, uint8_t *op0, uint8_t *oq0, uint8_t *oq1, uint8_t *oq2, uint8_t *oq3, uint8_t *oq4, uint8_t *oq5, uint8_t *oq6, uint8_t *oq7) { if (flat2 && flat && mask) { const uint8_t p7 = *op7, p6 = *op6, p5 = *op5, p4 = *op4, p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; const uint8_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3, q4 = *oq4, q5 = *oq5, q6 = *oq6, q7 = *oq7; // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1] *op6 = ROUND_POWER_OF_TWO( p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 + q0, 4); *op5 = ROUND_POWER_OF_TWO( p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 + q0 + q1, 4); *op4 = ROUND_POWER_OF_TWO( p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 + q0 + q1 + q2, 4); *op3 = ROUND_POWER_OF_TWO( p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 + q0 + q1 + q2 + q3, 4); *op2 = ROUND_POWER_OF_TWO( p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 + q0 + q1 + q2 + q3 + q4, 4); *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 + q0 + q1 + q2 + q3 + q4 + q5, 4); *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 + q0 + q1 + q2 + q3 + q4 + q5 + q6, 4); *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 + q0 * 2 + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4); *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 + q0 + q1 * 2 + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4); *oq2 = ROUND_POWER_OF_TWO( p4 + p3 + p2 + p1 + p0 + q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, 4); *oq3 = ROUND_POWER_OF_TWO( p3 + p2 + p1 + p0 + q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4); *oq4 = ROUND_POWER_OF_TWO( p2 + p1 + p0 + q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4); *oq5 = ROUND_POWER_OF_TWO( p1 + p0 + q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4); *oq6 = ROUND_POWER_OF_TWO( p0 + q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4); } else { filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3); } } static void mb_lpf_horizontal_edge_w(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8 * count; ++i) { const uint8_t p3 = s[-4 * pitch], p2 = s[-3 * pitch], p1 = s[-2 * pitch], p0 = s[-pitch]; const uint8_t q0 = s[0 * pitch], q1 = s[1 * pitch], q2 = s[2 * pitch], q3 = s[3 * pitch]; const int8_t mask = filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); const int8_t flat2 = flat_mask5( 1, s[-8 * pitch], s[-7 * pitch], s[-6 * pitch], s[-5 * pitch], p0, q0, s[4 * pitch], s[5 * pitch], s[6 * pitch], s[7 * pitch]); filter16(mask, *thresh, flat, flat2, s - 8 * pitch, s - 7 * pitch, s - 6 * pitch, s - 5 * pitch, s - 4 * pitch, s - 3 * pitch, s - 2 * pitch, s - 1 * pitch, s, s + 1 * pitch, s + 2 * pitch, s + 3 * pitch, s + 4 * pitch, s + 5 * pitch, s + 6 * pitch, s + 7 * pitch); ++s; } } void vpx_lpf_horizontal_16_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { mb_lpf_horizontal_edge_w(s, pitch, blimit, limit, thresh, 1); } void vpx_lpf_horizontal_16_dual_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { mb_lpf_horizontal_edge_w(s, pitch, blimit, limit, thresh, 2); } static void mb_lpf_vertical_edge_w(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count) { int i; for (i = 0; i < count; ++i) { const uint8_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; const uint8_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; const int8_t mask = filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3); const int8_t flat = flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3); const int8_t flat2 = flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0, q0, s[4], s[5], s[6], s[7]); filter16(mask, *thresh, flat, flat2, s - 8, s - 7, s - 6, s - 5, s - 4, s - 3, s - 2, s - 1, s, s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, s + 7); s += pitch; } } void vpx_lpf_vertical_16_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { mb_lpf_vertical_edge_w(s, pitch, blimit, limit, thresh, 8); } void vpx_lpf_vertical_16_dual_c(uint8_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh) { mb_lpf_vertical_edge_w(s, pitch, blimit, limit, thresh, 16); } #if CONFIG_VP9_HIGHBITDEPTH // Should we apply any filter at all: 11111111 yes, 00000000 no ? static INLINE int8_t highbd_filter_mask(uint8_t limit, uint8_t blimit, uint16_t p3, uint16_t p2, uint16_t p1, uint16_t p0, uint16_t q0, uint16_t q1, uint16_t q2, uint16_t q3, int bd) { int8_t mask = 0; int16_t limit16 = (uint16_t)limit << (bd - 8); int16_t blimit16 = (uint16_t)blimit << (bd - 8); mask |= (abs(p3 - p2) > limit16) * -1; mask |= (abs(p2 - p1) > limit16) * -1; mask |= (abs(p1 - p0) > limit16) * -1; mask |= (abs(q1 - q0) > limit16) * -1; mask |= (abs(q2 - q1) > limit16) * -1; mask |= (abs(q3 - q2) > limit16) * -1; mask |= (abs(p0 - q0) * 2 + abs(p1 - q1) / 2 > blimit16) * -1; return ~mask; } static INLINE int8_t highbd_flat_mask4(uint8_t thresh, uint16_t p3, uint16_t p2, uint16_t p1, uint16_t p0, uint16_t q0, uint16_t q1, uint16_t q2, uint16_t q3, int bd) { int8_t mask = 0; int16_t thresh16 = (uint16_t)thresh << (bd - 8); mask |= (abs(p1 - p0) > thresh16) * -1; mask |= (abs(q1 - q0) > thresh16) * -1; mask |= (abs(p2 - p0) > thresh16) * -1; mask |= (abs(q2 - q0) > thresh16) * -1; mask |= (abs(p3 - p0) > thresh16) * -1; mask |= (abs(q3 - q0) > thresh16) * -1; return ~mask; } static INLINE int8_t highbd_flat_mask5(uint8_t thresh, uint16_t p4, uint16_t p3, uint16_t p2, uint16_t p1, uint16_t p0, uint16_t q0, uint16_t q1, uint16_t q2, uint16_t q3, uint16_t q4, int bd) { int8_t mask = ~highbd_flat_mask4(thresh, p3, p2, p1, p0, q0, q1, q2, q3, bd); int16_t thresh16 = (uint16_t)thresh << (bd - 8); mask |= (abs(p4 - p0) > thresh16) * -1; mask |= (abs(q4 - q0) > thresh16) * -1; return ~mask; } // Is there high edge variance internal edge: // 11111111_11111111 yes, 00000000_00000000 no ? static INLINE int16_t highbd_hev_mask(uint8_t thresh, uint16_t p1, uint16_t p0, uint16_t q0, uint16_t q1, int bd) { int16_t hev = 0; int16_t thresh16 = (uint16_t)thresh << (bd - 8); hev |= (abs(p1 - p0) > thresh16) * -1; hev |= (abs(q1 - q0) > thresh16) * -1; return hev; } static INLINE void highbd_filter4(int8_t mask, uint8_t thresh, uint16_t *op1, uint16_t *op0, uint16_t *oq0, uint16_t *oq1, int bd) { int16_t filter1, filter2; // ^0x80 equivalent to subtracting 0x80 from the values to turn them // into -128 to +127 instead of 0 to 255. int shift = bd - 8; const int16_t ps1 = (int16_t)*op1 - (0x80 << shift); const int16_t ps0 = (int16_t)*op0 - (0x80 << shift); const int16_t qs0 = (int16_t)*oq0 - (0x80 << shift); const int16_t qs1 = (int16_t)*oq1 - (0x80 << shift); const int16_t hev = highbd_hev_mask(thresh, *op1, *op0, *oq0, *oq1, bd); // Add outer taps if we have high edge variance. int16_t filter = signed_char_clamp_high(ps1 - qs1, bd) & hev; // Inner taps. filter = signed_char_clamp_high(filter + 3 * (qs0 - ps0), bd) & mask; // Save bottom 3 bits so that we round one side +4 and the other +3 // if it equals 4 we'll set it to adjust by -1 to account for the fact // we'd round it by 3 the other way. filter1 = signed_char_clamp_high(filter + 4, bd) >> 3; filter2 = signed_char_clamp_high(filter + 3, bd) >> 3; *oq0 = signed_char_clamp_high(qs0 - filter1, bd) + (0x80 << shift); *op0 = signed_char_clamp_high(ps0 + filter2, bd) + (0x80 << shift); // Outer tap adjustments. filter = ROUND_POWER_OF_TWO(filter1, 1) & ~hev; *oq1 = signed_char_clamp_high(qs1 - filter, bd) + (0x80 << shift); *op1 = signed_char_clamp_high(ps1 + filter, bd) + (0x80 << shift); } void vpx_highbd_lpf_horizontal_4_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8; ++i) { const uint16_t p3 = s[-4 * pitch]; const uint16_t p2 = s[-3 * pitch]; const uint16_t p1 = s[-2 * pitch]; const uint16_t p0 = s[-pitch]; const uint16_t q0 = s[0 * pitch]; const uint16_t q1 = s[1 * pitch]; const uint16_t q2 = s[2 * pitch]; const uint16_t q3 = s[3 * pitch]; const int8_t mask = highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); highbd_filter4(mask, *thresh, s - 2 * pitch, s - 1 * pitch, s, s + 1 * pitch, bd); ++s; } } void vpx_highbd_lpf_horizontal_4_dual_c( uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, int bd) { vpx_highbd_lpf_horizontal_4_c(s, pitch, blimit0, limit0, thresh0, bd); vpx_highbd_lpf_horizontal_4_c(s + 8, pitch, blimit1, limit1, thresh1, bd); } void vpx_highbd_lpf_vertical_4_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8; ++i) { const uint16_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; const uint16_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; const int8_t mask = highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); highbd_filter4(mask, *thresh, s - 2, s - 1, s, s + 1, bd); s += pitch; } } void vpx_highbd_lpf_vertical_4_dual_c( uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, int bd) { vpx_highbd_lpf_vertical_4_c(s, pitch, blimit0, limit0, thresh0, bd); vpx_highbd_lpf_vertical_4_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1, bd); } static INLINE void highbd_filter8(int8_t mask, uint8_t thresh, uint8_t flat, uint16_t *op3, uint16_t *op2, uint16_t *op1, uint16_t *op0, uint16_t *oq0, uint16_t *oq1, uint16_t *oq2, uint16_t *oq3, int bd) { if (flat && mask) { const uint16_t p3 = *op3, p2 = *op2, p1 = *op1, p0 = *op0; const uint16_t q0 = *oq0, q1 = *oq1, q2 = *oq2, q3 = *oq3; // 7-tap filter [1, 1, 1, 2, 1, 1, 1] *op2 = ROUND_POWER_OF_TWO(p3 + p3 + p3 + 2 * p2 + p1 + p0 + q0, 3); *op1 = ROUND_POWER_OF_TWO(p3 + p3 + p2 + 2 * p1 + p0 + q0 + q1, 3); *op0 = ROUND_POWER_OF_TWO(p3 + p2 + p1 + 2 * p0 + q0 + q1 + q2, 3); *oq0 = ROUND_POWER_OF_TWO(p2 + p1 + p0 + 2 * q0 + q1 + q2 + q3, 3); *oq1 = ROUND_POWER_OF_TWO(p1 + p0 + q0 + 2 * q1 + q2 + q3 + q3, 3); *oq2 = ROUND_POWER_OF_TWO(p0 + q0 + q1 + 2 * q2 + q3 + q3 + q3, 3); } else { highbd_filter4(mask, thresh, op1, op0, oq0, oq1, bd); } } void vpx_highbd_lpf_horizontal_8_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8; ++i) { const uint16_t p3 = s[-4 * pitch], p2 = s[-3 * pitch], p1 = s[-2 * pitch], p0 = s[-pitch]; const uint16_t q0 = s[0 * pitch], q1 = s[1 * pitch], q2 = s[2 * pitch], q3 = s[3 * pitch]; const int8_t mask = highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); highbd_filter8(mask, *thresh, flat, s - 4 * pitch, s - 3 * pitch, s - 2 * pitch, s - 1 * pitch, s, s + 1 * pitch, s + 2 * pitch, s + 3 * pitch, bd); ++s; } } void vpx_highbd_lpf_horizontal_8_dual_c( uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, int bd) { vpx_highbd_lpf_horizontal_8_c(s, pitch, blimit0, limit0, thresh0, bd); vpx_highbd_lpf_horizontal_8_c(s + 8, pitch, blimit1, limit1, thresh1, bd); } void vpx_highbd_lpf_vertical_8_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { int i; for (i = 0; i < 8; ++i) { const uint16_t p3 = s[-4], p2 = s[-3], p1 = s[-2], p0 = s[-1]; const uint16_t q0 = s[0], q1 = s[1], q2 = s[2], q3 = s[3]; const int8_t mask = highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); highbd_filter8(mask, *thresh, flat, s - 4, s - 3, s - 2, s - 1, s, s + 1, s + 2, s + 3, bd); s += pitch; } } void vpx_highbd_lpf_vertical_8_dual_c( uint16_t *s, int pitch, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, int bd) { vpx_highbd_lpf_vertical_8_c(s, pitch, blimit0, limit0, thresh0, bd); vpx_highbd_lpf_vertical_8_c(s + 8 * pitch, pitch, blimit1, limit1, thresh1, bd); } static INLINE void highbd_filter16(int8_t mask, uint8_t thresh, uint8_t flat, uint8_t flat2, uint16_t *op7, uint16_t *op6, uint16_t *op5, uint16_t *op4, uint16_t *op3, uint16_t *op2, uint16_t *op1, uint16_t *op0, uint16_t *oq0, uint16_t *oq1, uint16_t *oq2, uint16_t *oq3, uint16_t *oq4, uint16_t *oq5, uint16_t *oq6, uint16_t *oq7, int bd) { if (flat2 && flat && mask) { const uint16_t p7 = *op7; const uint16_t p6 = *op6; const uint16_t p5 = *op5; const uint16_t p4 = *op4; const uint16_t p3 = *op3; const uint16_t p2 = *op2; const uint16_t p1 = *op1; const uint16_t p0 = *op0; const uint16_t q0 = *oq0; const uint16_t q1 = *oq1; const uint16_t q2 = *oq2; const uint16_t q3 = *oq3; const uint16_t q4 = *oq4; const uint16_t q5 = *oq5; const uint16_t q6 = *oq6; const uint16_t q7 = *oq7; // 15-tap filter [1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1] *op6 = ROUND_POWER_OF_TWO( p7 * 7 + p6 * 2 + p5 + p4 + p3 + p2 + p1 + p0 + q0, 4); *op5 = ROUND_POWER_OF_TWO( p7 * 6 + p6 + p5 * 2 + p4 + p3 + p2 + p1 + p0 + q0 + q1, 4); *op4 = ROUND_POWER_OF_TWO( p7 * 5 + p6 + p5 + p4 * 2 + p3 + p2 + p1 + p0 + q0 + q1 + q2, 4); *op3 = ROUND_POWER_OF_TWO( p7 * 4 + p6 + p5 + p4 + p3 * 2 + p2 + p1 + p0 + q0 + q1 + q2 + q3, 4); *op2 = ROUND_POWER_OF_TWO( p7 * 3 + p6 + p5 + p4 + p3 + p2 * 2 + p1 + p0 + q0 + q1 + q2 + q3 + q4, 4); *op1 = ROUND_POWER_OF_TWO(p7 * 2 + p6 + p5 + p4 + p3 + p2 + p1 * 2 + p0 + q0 + q1 + q2 + q3 + q4 + q5, 4); *op0 = ROUND_POWER_OF_TWO(p7 + p6 + p5 + p4 + p3 + p2 + p1 + p0 * 2 + q0 + q1 + q2 + q3 + q4 + q5 + q6, 4); *oq0 = ROUND_POWER_OF_TWO(p6 + p5 + p4 + p3 + p2 + p1 + p0 + q0 * 2 + q1 + q2 + q3 + q4 + q5 + q6 + q7, 4); *oq1 = ROUND_POWER_OF_TWO(p5 + p4 + p3 + p2 + p1 + p0 + q0 + q1 * 2 + q2 + q3 + q4 + q5 + q6 + q7 * 2, 4); *oq2 = ROUND_POWER_OF_TWO( p4 + p3 + p2 + p1 + p0 + q0 + q1 + q2 * 2 + q3 + q4 + q5 + q6 + q7 * 3, 4); *oq3 = ROUND_POWER_OF_TWO( p3 + p2 + p1 + p0 + q0 + q1 + q2 + q3 * 2 + q4 + q5 + q6 + q7 * 4, 4); *oq4 = ROUND_POWER_OF_TWO( p2 + p1 + p0 + q0 + q1 + q2 + q3 + q4 * 2 + q5 + q6 + q7 * 5, 4); *oq5 = ROUND_POWER_OF_TWO( p1 + p0 + q0 + q1 + q2 + q3 + q4 + q5 * 2 + q6 + q7 * 6, 4); *oq6 = ROUND_POWER_OF_TWO( p0 + q0 + q1 + q2 + q3 + q4 + q5 + q6 * 2 + q7 * 7, 4); } else { highbd_filter8(mask, thresh, flat, op3, op2, op1, op0, oq0, oq1, oq2, oq3, bd); } } static void highbd_mb_lpf_horizontal_edge_w(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd) { int i; // loop filter designed to work using chars so that we can make maximum use // of 8 bit simd instructions. for (i = 0; i < 8 * count; ++i) { const uint16_t p3 = s[-4 * pitch]; const uint16_t p2 = s[-3 * pitch]; const uint16_t p1 = s[-2 * pitch]; const uint16_t p0 = s[-pitch]; const uint16_t q0 = s[0 * pitch]; const uint16_t q1 = s[1 * pitch]; const uint16_t q2 = s[2 * pitch]; const uint16_t q3 = s[3 * pitch]; const int8_t mask = highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); const int8_t flat2 = highbd_flat_mask5( 1, s[-8 * pitch], s[-7 * pitch], s[-6 * pitch], s[-5 * pitch], p0, q0, s[4 * pitch], s[5 * pitch], s[6 * pitch], s[7 * pitch], bd); highbd_filter16(mask, *thresh, flat, flat2, s - 8 * pitch, s - 7 * pitch, s - 6 * pitch, s - 5 * pitch, s - 4 * pitch, s - 3 * pitch, s - 2 * pitch, s - 1 * pitch, s, s + 1 * pitch, s + 2 * pitch, s + 3 * pitch, s + 4 * pitch, s + 5 * pitch, s + 6 * pitch, s + 7 * pitch, bd); ++s; } } void vpx_highbd_lpf_horizontal_16_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { highbd_mb_lpf_horizontal_edge_w(s, pitch, blimit, limit, thresh, 1, bd); } void vpx_highbd_lpf_horizontal_16_dual_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { highbd_mb_lpf_horizontal_edge_w(s, pitch, blimit, limit, thresh, 2, bd); } static void highbd_mb_lpf_vertical_edge_w(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd) { int i; for (i = 0; i < count; ++i) { const uint16_t p3 = s[-4]; const uint16_t p2 = s[-3]; const uint16_t p1 = s[-2]; const uint16_t p0 = s[-1]; const uint16_t q0 = s[0]; const uint16_t q1 = s[1]; const uint16_t q2 = s[2]; const uint16_t q3 = s[3]; const int8_t mask = highbd_filter_mask(*limit, *blimit, p3, p2, p1, p0, q0, q1, q2, q3, bd); const int8_t flat = highbd_flat_mask4(1, p3, p2, p1, p0, q0, q1, q2, q3, bd); const int8_t flat2 = highbd_flat_mask5(1, s[-8], s[-7], s[-6], s[-5], p0, q0, s[4], s[5], s[6], s[7], bd); highbd_filter16(mask, *thresh, flat, flat2, s - 8, s - 7, s - 6, s - 5, s - 4, s - 3, s - 2, s - 1, s, s + 1, s + 2, s + 3, s + 4, s + 5, s + 6, s + 7, bd); s += pitch; } } void vpx_highbd_lpf_vertical_16_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { highbd_mb_lpf_vertical_edge_w(s, pitch, blimit, limit, thresh, 8, bd); } void vpx_highbd_lpf_vertical_16_dual_c(uint16_t *s, int pitch, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int bd) { highbd_mb_lpf_vertical_edge_w(s, pitch, blimit, limit, thresh, 16, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH