ref: cbf0b1688a95508db4e468506065538af1a73801
dir: /vpx_dsp/psnrhvs.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. * * This code was originally written by: Gregory Maxwell, at the Daala * project. */ #include <assert.h> #include <stdio.h> #include <stdlib.h> #include <math.h> #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/ssim.h" #include "vpx_ports/system_state.h" #include "vpx_dsp/psnr.h" #if !defined(M_PI) #define M_PI (3.141592653589793238462643) #endif #include <string.h> static void od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, int xstride) { int i, j; (void)xstride; vpx_fdct8x8(x, y, ystride); for (i = 0; i < 8; i++) for (j = 0; j < 8; j++) *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3; } #if CONFIG_VP9_HIGHBITDEPTH static void hbd_od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, int xstride) { int i, j; (void)xstride; vpx_highbd_fdct8x8(x, y, ystride); for (i = 0; i < 8; i++) for (j = 0; j < 8; j++) *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3; } #endif /* Normalized inverse quantization matrix for 8x8 DCT at the point of * transparency. This is not the JPEG based matrix from the paper, this one gives a slightly higher MOS agreement.*/ static const double csf_y[8][8] = { { 1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411, 1.00227514334, 0.678296995242, 0.466224900598, 0.3265091542 }, { 2.2901594831, 1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963, 0.868920337363, 0.61280991668, 0.436405793551 }, { 2.08509755623, 2.04793073064, 1.34329019223, 1.09205635862, 0.875748795257, 0.670882927016, 0.501731932449, 0.372504254596 }, { 1.48366094411, 1.68731108984, 1.09205635862, 0.772819797575, 0.605636379554, 0.48309405692, 0.380429446972, 0.295774038565 }, { 1.00227514334, 1.2305666963, 0.875748795257, 0.605636379554, 0.448996256676, 0.352889268808, 0.283006984131, 0.226951348204 }, { 0.678296995242, 0.868920337363, 0.670882927016, 0.48309405692, 0.352889268808, 0.27032073436, 0.215017739696, 0.17408067321 }, { 0.466224900598, 0.61280991668, 0.501731932449, 0.380429446972, 0.283006984131, 0.215017739696, 0.168869545842, 0.136153931001 }, { 0.3265091542, 0.436405793551, 0.372504254596, 0.295774038565, 0.226951348204, 0.17408067321, 0.136153931001, 0.109083846276 } }; static const double csf_cb420[8][8] = { { 1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788, 0.898018824055, 0.74725392039, 0.615105596242 }, { 2.46074210438, 1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972, 1.17428548929, 0.996404342439, 0.830890433625 }, { 1.18284184739, 1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362, 0.960060382087, 0.849823426169, 0.731221236837 }, { 1.14982565193, 1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099, 0.751437590932, 0.685398513368, 0.608694761374 }, { 1.05017074788, 1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187, 0.605503172737, 0.55002013668, 0.495804539034 }, { 0.898018824055, 1.17428548929, 0.960060382087, 0.751437590932, 0.605503172737, 0.514674450957, 0.454353482512, 0.407050308965 }, { 0.74725392039, 0.996404342439, 0.849823426169, 0.685398513368, 0.55002013668, 0.454353482512, 0.389234902883, 0.342353999733 }, { 0.615105596242, 0.830890433625, 0.731221236837, 0.608694761374, 0.495804539034, 0.407050308965, 0.342353999733, 0.295530605237 } }; static const double csf_cr420[8][8] = { { 2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469, 0.867069376285, 0.721500455585, 0.593906509971 }, { 2.62502345193, 1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198, 1.13381474809, 0.962064122248, 0.802254508198 }, { 1.26180942886, 1.17180569821, 0.944981930573, 0.990876405848, 0.995903384143, 0.926972725286, 0.820534991409, 0.706020324706 }, { 1.11019789803, 1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195, 0.725539939514, 0.661776842059, 0.587716619023 }, { 1.01397751469, 1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286, 0.584635025748, 0.531064164893, 0.478717061273 }, { 0.867069376285, 1.13381474809, 0.926972725286, 0.725539939514, 0.584635025748, 0.496936637883, 0.438694579826, 0.393021669543 }, { 0.721500455585, 0.962064122248, 0.820534991409, 0.661776842059, 0.531064164893, 0.438694579826, 0.375820256136, 0.330555063063 }, { 0.593906509971, 0.802254508198, 0.706020324706, 0.587716619023, 0.478717061273, 0.393021669543, 0.330555063063, 0.285345396658 } }; static double convert_score_db(double _score, double _weight, int bit_depth) { int16_t pix_max = 255; assert(_score * _weight >= 0.0); if (bit_depth == 10) pix_max = 1023; else if (bit_depth == 12) pix_max = 4095; if (_weight * _score < pix_max * pix_max * 1e-10) return MAX_PSNR; return 10 * (log10(pix_max * pix_max) - log10(_weight * _score)); } static double calc_psnrhvs(const unsigned char *src, int _systride, const unsigned char *dst, int _dystride, double _par, int _w, int _h, int _step, const double _csf[8][8], uint32_t bit_depth, uint32_t _shift) { double ret; const uint8_t *_src8 = src; const uint8_t *_dst8 = dst; const uint16_t *_src16 = CONVERT_TO_SHORTPTR(src); const uint16_t *_dst16 = CONVERT_TO_SHORTPTR(dst); DECLARE_ALIGNED(16, int16_t, dct_s[8 * 8]); DECLARE_ALIGNED(16, int16_t, dct_d[8 * 8]); DECLARE_ALIGNED(16, tran_low_t, dct_s_coef[8 * 8]); DECLARE_ALIGNED(16, tran_low_t, dct_d_coef[8 * 8]); double mask[8][8]; int pixels; int x; int y; (void)_par; ret = pixels = 0; /*In the PSNR-HVS-M paper[1] the authors describe the construction of their masking table as "we have used the quantization table for the color component Y of JPEG [6] that has been also obtained on the basis of CSF. Note that the values in quantization table JPEG have been normalized and then squared." Their CSF matrix (from PSNR-HVS) was also constructed from the JPEG matrices. I can not find any obvious scheme of normalizing to produce their table, but if I multiply their CSF by 0.3885746225901003 and square the result I get their masking table. I have no idea where this constant comes from, but deviating from it too greatly hurts MOS agreement. [1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli, Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking of DCT basis functions", CD-ROM Proceedings of the Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p. Suggested in aomedia issue #2363: 0.3885746225901003 is a reciprocal of the maximum coefficient (2.573509) of the old JPEG based matrix from the paper. Since you are not using that, divide by actual maximum coefficient. */ for (x = 0; x < 8; x++) for (y = 0; y < 8; y++) mask[x][y] = (_csf[x][y] / _csf[1][0]) * (_csf[x][y] / _csf[1][0]); for (y = 0; y < _h - 7; y += _step) { for (x = 0; x < _w - 7; x += _step) { int i; int j; double s_means[4]; double d_means[4]; double s_vars[4]; double d_vars[4]; double s_gmean = 0; double d_gmean = 0; double s_gvar = 0; double d_gvar = 0; double s_mask = 0; double d_mask = 0; for (i = 0; i < 4; i++) s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { int sub = ((i & 12) >> 2) + ((j & 12) >> 1); if (bit_depth == 8 && _shift == 0) { dct_s[i * 8 + j] = _src8[(y + i) * _systride + (j + x)]; dct_d[i * 8 + j] = _dst8[(y + i) * _dystride + (j + x)]; } else if (bit_depth == 10 || bit_depth == 12) { dct_s[i * 8 + j] = _src16[(y + i) * _systride + (j + x)] >> _shift; dct_d[i * 8 + j] = _dst16[(y + i) * _dystride + (j + x)] >> _shift; } s_gmean += dct_s[i * 8 + j]; d_gmean += dct_d[i * 8 + j]; s_means[sub] += dct_s[i * 8 + j]; d_means[sub] += dct_d[i * 8 + j]; } } s_gmean /= 64.f; d_gmean /= 64.f; for (i = 0; i < 4; i++) s_means[i] /= 16.f; for (i = 0; i < 4; i++) d_means[i] /= 16.f; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { int sub = ((i & 12) >> 2) + ((j & 12) >> 1); s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean); d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean); s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub]) * (dct_s[i * 8 + j] - s_means[sub]); d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub]) * (dct_d[i * 8 + j] - d_means[sub]); } } s_gvar *= 1 / 63.f * 64; d_gvar *= 1 / 63.f * 64; for (i = 0; i < 4; i++) s_vars[i] *= 1 / 15.f * 16; for (i = 0; i < 4; i++) d_vars[i] *= 1 / 15.f * 16; if (s_gvar > 0) s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar; if (d_gvar > 0) d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar; #if CONFIG_VP9_HIGHBITDEPTH if (bit_depth == 10 || bit_depth == 12) { hbd_od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8); hbd_od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8); } #endif if (bit_depth == 8) { od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8); od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8); } for (i = 0; i < 8; i++) for (j = (i == 0); j < 8; j++) s_mask += dct_s_coef[i * 8 + j] * dct_s_coef[i * 8 + j] * mask[i][j]; for (i = 0; i < 8; i++) for (j = (i == 0); j < 8; j++) d_mask += dct_d_coef[i * 8 + j] * dct_d_coef[i * 8 + j] * mask[i][j]; s_mask = sqrt(s_mask * s_gvar) / 32.f; d_mask = sqrt(d_mask * d_gvar) / 32.f; if (d_mask > s_mask) s_mask = d_mask; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { double err; err = fabs((double)(dct_s_coef[i * 8 + j] - dct_d_coef[i * 8 + j])); if (i != 0 || j != 0) err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j]; ret += (err * _csf[i][j]) * (err * _csf[i][j]); pixels++; } } } } if (pixels <= 0) return 0; ret /= pixels; return ret; } double vpx_psnrhvs(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dest, double *y_psnrhvs, double *u_psnrhvs, double *v_psnrhvs, uint32_t bd, uint32_t in_bd) { double psnrhvs; const double par = 1.0; const int step = 7; uint32_t bd_shift = 0; vpx_clear_system_state(); assert(bd == 8 || bd == 10 || bd == 12); assert(bd >= in_bd); bd_shift = bd - in_bd; *y_psnrhvs = calc_psnrhvs(src->y_buffer, src->y_stride, dest->y_buffer, dest->y_stride, par, src->y_crop_width, src->y_crop_height, step, csf_y, bd, bd_shift); *u_psnrhvs = calc_psnrhvs(src->u_buffer, src->uv_stride, dest->u_buffer, dest->uv_stride, par, src->uv_crop_width, src->uv_crop_height, step, csf_cb420, bd, bd_shift); *v_psnrhvs = calc_psnrhvs(src->v_buffer, src->uv_stride, dest->v_buffer, dest->uv_stride, par, src->uv_crop_width, src->uv_crop_height, step, csf_cr420, bd, bd_shift); psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs)); return convert_score_db(psnrhvs, 1.0, in_bd); }