ref: ccef52944d0911d7bee9d969e493d0bf0e0093c5
dir: /vp9/encoder/x86/vp9_diamond_search_sad_avx.c/
/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if defined(_MSC_VER) #include <intrin.h> #endif #include <emmintrin.h> #include <smmintrin.h> #include "vpx_dsp/vpx_dsp_common.h" #include "vp9/encoder/vp9_encoder.h" #include "vpx_ports/mem.h" #ifdef __GNUC__ #define LIKELY(v) __builtin_expect(v, 1) #define UNLIKELY(v) __builtin_expect(v, 0) #else #define LIKELY(v) (v) #define UNLIKELY(v) (v) #endif static INLINE int_mv pack_int_mv(int16_t row, int16_t col) { int_mv result; result.as_mv.row = row; result.as_mv.col = col; return result; } static INLINE MV_JOINT_TYPE get_mv_joint(const int_mv mv) { // This is simplified from the C implementation to utilise that // x->nmvjointsadcost[1] == x->nmvjointsadcost[2] and // x->nmvjointsadcost[1] == x->nmvjointsadcost[3] return mv.as_int == 0 ? 0 : 1; } static INLINE int mv_cost(const int_mv mv, const int *joint_cost, int *const comp_cost[2]) { return joint_cost[get_mv_joint(mv)] + comp_cost[0][mv.as_mv.row] + comp_cost[1][mv.as_mv.col]; } static int mvsad_err_cost(const MACROBLOCK *x, const int_mv mv, const MV *ref, int sad_per_bit) { const int_mv diff = pack_int_mv(mv.as_mv.row - ref->row, mv.as_mv.col - ref->col); return ROUND_POWER_OF_TWO( (unsigned)mv_cost(diff, x->nmvjointsadcost, x->nmvsadcost) * sad_per_bit, VP9_PROB_COST_SHIFT); } /***************************************************************************** * This function utilizes 3 properties of the cost function lookup tables, * * constructed in using 'cal_nmvjointsadcost' and 'cal_nmvsadcosts' in * * vp9_encoder.c. * * For the joint cost: * * - mvjointsadcost[1] == mvjointsadcost[2] == mvjointsadcost[3] * * For the component costs: * * - For all i: mvsadcost[0][i] == mvsadcost[1][i] * * (Equal costs for both components) * * - For all i: mvsadcost[0][i] == mvsadcost[0][-i] * * (Cost function is even) * * If these do not hold, then this function cannot be used without * * modification, in which case you can revert to using the C implementation, * * which does not rely on these properties. * *****************************************************************************/ int vp9_diamond_search_sad_avx(const MACROBLOCK *x, const search_site_config *cfg, MV *ref_mv, MV *best_mv, int search_param, int sad_per_bit, int *num00, const vp9_variance_fn_ptr_t *fn_ptr, const MV *center_mv) { const int_mv maxmv = pack_int_mv(x->mv_limits.row_max, x->mv_limits.col_max); const __m128i v_max_mv_w = _mm_set1_epi32(maxmv.as_int); const int_mv minmv = pack_int_mv(x->mv_limits.row_min, x->mv_limits.col_min); const __m128i v_min_mv_w = _mm_set1_epi32(minmv.as_int); const __m128i v_spb_d = _mm_set1_epi32(sad_per_bit); const __m128i v_joint_cost_0_d = _mm_set1_epi32(x->nmvjointsadcost[0]); const __m128i v_joint_cost_1_d = _mm_set1_epi32(x->nmvjointsadcost[1]); // search_param determines the length of the initial step and hence the number // of iterations. // 0 = initial step (MAX_FIRST_STEP) pel // 1 = (MAX_FIRST_STEP/2) pel, // 2 = (MAX_FIRST_STEP/4) pel... const MV *ss_mv = &cfg->ss_mv[cfg->searches_per_step * search_param]; const intptr_t *ss_os = &cfg->ss_os[cfg->searches_per_step * search_param]; const int tot_steps = cfg->total_steps - search_param; const int_mv fcenter_mv = pack_int_mv(center_mv->row >> 3, center_mv->col >> 3); const __m128i vfcmv = _mm_set1_epi32(fcenter_mv.as_int); const int ref_row = clamp(ref_mv->row, minmv.as_mv.row, maxmv.as_mv.row); const int ref_col = clamp(ref_mv->col, minmv.as_mv.col, maxmv.as_mv.col); int_mv bmv = pack_int_mv(ref_row, ref_col); int_mv new_bmv = bmv; __m128i v_bmv_w = _mm_set1_epi32(bmv.as_int); const int what_stride = x->plane[0].src.stride; const int in_what_stride = x->e_mbd.plane[0].pre[0].stride; const uint8_t *const what = x->plane[0].src.buf; const uint8_t *const in_what = x->e_mbd.plane[0].pre[0].buf + ref_row * in_what_stride + ref_col; // Work out the start point for the search const uint8_t *best_address = in_what; const uint8_t *new_best_address = best_address; #if ARCH_X86_64 __m128i v_ba_q = _mm_set1_epi64x((intptr_t)best_address); #else __m128i v_ba_d = _mm_set1_epi32((intptr_t)best_address); #endif unsigned int best_sad; int i, j, step; // Check the prerequisite cost function properties that are easy to check // in an assert. See the function-level documentation for details on all // prerequisites. assert(x->nmvjointsadcost[1] == x->nmvjointsadcost[2]); assert(x->nmvjointsadcost[1] == x->nmvjointsadcost[3]); // Check the starting position best_sad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride); best_sad += mvsad_err_cost(x, bmv, &fcenter_mv.as_mv, sad_per_bit); *num00 = 0; for (i = 0, step = 0; step < tot_steps; step++) { for (j = 0; j < cfg->searches_per_step; j += 4, i += 4) { __m128i v_sad_d, v_cost_d, v_outside_d, v_inside_d, v_diff_mv_w; #if ARCH_X86_64 __m128i v_blocka[2]; #else __m128i v_blocka[1]; #endif // Compute the candidate motion vectors const __m128i v_ss_mv_w = _mm_loadu_si128((const __m128i *)&ss_mv[i]); const __m128i v_these_mv_w = _mm_add_epi16(v_bmv_w, v_ss_mv_w); // Clamp them to the search bounds __m128i v_these_mv_clamp_w = v_these_mv_w; v_these_mv_clamp_w = _mm_min_epi16(v_these_mv_clamp_w, v_max_mv_w); v_these_mv_clamp_w = _mm_max_epi16(v_these_mv_clamp_w, v_min_mv_w); // The ones that did not change are inside the search area v_inside_d = _mm_cmpeq_epi32(v_these_mv_clamp_w, v_these_mv_w); // If none of them are inside, then move on if (LIKELY(_mm_test_all_zeros(v_inside_d, v_inside_d))) { continue; } // The inverse mask indicates which of the MVs are outside v_outside_d = _mm_xor_si128(v_inside_d, _mm_set1_epi8(0xff)); // Shift right to keep the sign bit clear, we will use this later // to set the cost to the maximum value. v_outside_d = _mm_srli_epi32(v_outside_d, 1); // Compute the difference MV v_diff_mv_w = _mm_sub_epi16(v_these_mv_clamp_w, vfcmv); // We utilise the fact that the cost function is even, and use the // absolute difference. This allows us to use unsigned indexes later // and reduces cache pressure somewhat as only a half of the table // is ever referenced. v_diff_mv_w = _mm_abs_epi16(v_diff_mv_w); // Compute the SIMD pointer offsets. { #if ARCH_X86_64 // sizeof(intptr_t) == 8 // Load the offsets __m128i v_bo10_q = _mm_loadu_si128((const __m128i *)&ss_os[i + 0]); __m128i v_bo32_q = _mm_loadu_si128((const __m128i *)&ss_os[i + 2]); // Set the ones falling outside to zero v_bo10_q = _mm_and_si128(v_bo10_q, _mm_cvtepi32_epi64(v_inside_d)); v_bo32_q = _mm_and_si128(v_bo32_q, _mm_unpackhi_epi32(v_inside_d, v_inside_d)); // Compute the candidate addresses v_blocka[0] = _mm_add_epi64(v_ba_q, v_bo10_q); v_blocka[1] = _mm_add_epi64(v_ba_q, v_bo32_q); #else // ARCH_X86 // sizeof(intptr_t) == 4 __m128i v_bo_d = _mm_loadu_si128((const __m128i *)&ss_os[i]); v_bo_d = _mm_and_si128(v_bo_d, v_inside_d); v_blocka[0] = _mm_add_epi32(v_ba_d, v_bo_d); #endif } fn_ptr->sdx4df(what, what_stride, (const uint8_t **)&v_blocka[0], in_what_stride, (uint32_t *)&v_sad_d); // Look up the component cost of the residual motion vector { const int32_t row0 = _mm_extract_epi16(v_diff_mv_w, 0); const int32_t col0 = _mm_extract_epi16(v_diff_mv_w, 1); const int32_t row1 = _mm_extract_epi16(v_diff_mv_w, 2); const int32_t col1 = _mm_extract_epi16(v_diff_mv_w, 3); const int32_t row2 = _mm_extract_epi16(v_diff_mv_w, 4); const int32_t col2 = _mm_extract_epi16(v_diff_mv_w, 5); const int32_t row3 = _mm_extract_epi16(v_diff_mv_w, 6); const int32_t col3 = _mm_extract_epi16(v_diff_mv_w, 7); // Note: This is a use case for vpgather in AVX2 const uint32_t cost0 = x->nmvsadcost[0][row0] + x->nmvsadcost[0][col0]; const uint32_t cost1 = x->nmvsadcost[0][row1] + x->nmvsadcost[0][col1]; const uint32_t cost2 = x->nmvsadcost[0][row2] + x->nmvsadcost[0][col2]; const uint32_t cost3 = x->nmvsadcost[0][row3] + x->nmvsadcost[0][col3]; __m128i v_cost_10_d, v_cost_32_d; v_cost_10_d = _mm_cvtsi32_si128(cost0); v_cost_10_d = _mm_insert_epi32(v_cost_10_d, cost1, 1); v_cost_32_d = _mm_cvtsi32_si128(cost2); v_cost_32_d = _mm_insert_epi32(v_cost_32_d, cost3, 1); v_cost_d = _mm_unpacklo_epi64(v_cost_10_d, v_cost_32_d); } // Now add in the joint cost { const __m128i v_sel_d = _mm_cmpeq_epi32(v_diff_mv_w, _mm_setzero_si128()); const __m128i v_joint_cost_d = _mm_blendv_epi8(v_joint_cost_1_d, v_joint_cost_0_d, v_sel_d); v_cost_d = _mm_add_epi32(v_cost_d, v_joint_cost_d); } // Multiply by sad_per_bit v_cost_d = _mm_mullo_epi32(v_cost_d, v_spb_d); // ROUND_POWER_OF_TWO(v_cost_d, VP9_PROB_COST_SHIFT) v_cost_d = _mm_add_epi32(v_cost_d, _mm_set1_epi32(1 << (VP9_PROB_COST_SHIFT - 1))); v_cost_d = _mm_srai_epi32(v_cost_d, VP9_PROB_COST_SHIFT); // Add the cost to the sad v_sad_d = _mm_add_epi32(v_sad_d, v_cost_d); // Make the motion vectors outside the search area have max cost // by or'ing in the comparison mask, this way the minimum search won't // pick them. v_sad_d = _mm_or_si128(v_sad_d, v_outside_d); // Find the minimum value and index horizontally in v_sad_d { // Try speculatively on 16 bits, so we can use the minpos intrinsic const __m128i v_sad_w = _mm_packus_epi32(v_sad_d, v_sad_d); const __m128i v_minp_w = _mm_minpos_epu16(v_sad_w); uint32_t local_best_sad = _mm_extract_epi16(v_minp_w, 0); uint32_t local_best_idx = _mm_extract_epi16(v_minp_w, 1); // If the local best value is not saturated, just use it, otherwise // find the horizontal minimum again the hard way on 32 bits. // This is executed rarely. if (UNLIKELY(local_best_sad == 0xffff)) { __m128i v_loval_d, v_hival_d, v_loidx_d, v_hiidx_d, v_sel_d; v_loval_d = v_sad_d; v_loidx_d = _mm_set_epi32(3, 2, 1, 0); v_hival_d = _mm_srli_si128(v_loval_d, 8); v_hiidx_d = _mm_srli_si128(v_loidx_d, 8); v_sel_d = _mm_cmplt_epi32(v_hival_d, v_loval_d); v_loval_d = _mm_blendv_epi8(v_loval_d, v_hival_d, v_sel_d); v_loidx_d = _mm_blendv_epi8(v_loidx_d, v_hiidx_d, v_sel_d); v_hival_d = _mm_srli_si128(v_loval_d, 4); v_hiidx_d = _mm_srli_si128(v_loidx_d, 4); v_sel_d = _mm_cmplt_epi32(v_hival_d, v_loval_d); v_loval_d = _mm_blendv_epi8(v_loval_d, v_hival_d, v_sel_d); v_loidx_d = _mm_blendv_epi8(v_loidx_d, v_hiidx_d, v_sel_d); local_best_sad = _mm_extract_epi32(v_loval_d, 0); local_best_idx = _mm_extract_epi32(v_loidx_d, 0); } // Update the global minimum if the local minimum is smaller if (LIKELY(local_best_sad < best_sad)) { new_bmv = ((const int_mv *)&v_these_mv_w)[local_best_idx]; new_best_address = ((const uint8_t **)v_blocka)[local_best_idx]; best_sad = local_best_sad; } } } bmv = new_bmv; best_address = new_best_address; v_bmv_w = _mm_set1_epi32(bmv.as_int); #if ARCH_X86_64 v_ba_q = _mm_set1_epi64x((intptr_t)best_address); #else v_ba_d = _mm_set1_epi32((intptr_t)best_address); #endif if (UNLIKELY(best_address == in_what)) { (*num00)++; } } *best_mv = bmv.as_mv; return best_sad; }