ref: d8c3021d0b3b3c9389d5dd1d2e5abe12cd336fb0
dir: /examples/vp8_multi_resolution_encoder.c/
/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This is an example demonstrating multi-resolution encoding in VP8. * High-resolution input video is down-sampled to lower-resolutions. The * encoder then encodes the video and outputs multiple bitstreams with * different resolutions. * * This test also allows for settings temporal layers for each spatial layer. * Different number of temporal layers per spatial stream may be used. * Currently up to 3 temporal layers per spatial stream (encoder) are supported * in this test. */ #include "./vpx_config.h" #include <stdio.h> #include <stdlib.h> #include <stdarg.h> #include <string.h> #include <math.h> #include <assert.h> #include <sys/time.h> #include "vpx_ports/vpx_timer.h" #include "vpx/vpx_encoder.h" #include "vpx/vp8cx.h" #include "vpx_ports/mem_ops.h" #include "../tools_common.h" #define interface (vpx_codec_vp8_cx()) #define fourcc 0x30385056 void usage_exit(void) { exit(EXIT_FAILURE); } /* * The input video frame is downsampled several times to generate a multi-level * hierarchical structure. NUM_ENCODERS is defined as the number of encoding * levels required. For example, if the size of input video is 1280x720, * NUM_ENCODERS is 3, and down-sampling factor is 2, the encoder outputs 3 * bitstreams with resolution of 1280x720(level 0), 640x360(level 1), and * 320x180(level 2) respectively. */ /* Number of encoders (spatial resolutions) used in this test. */ #define NUM_ENCODERS 3 /* Maximum number of temporal layers allowed for this test. */ #define MAX_NUM_TEMPORAL_LAYERS 3 /* This example uses the scaler function in libyuv. */ #include "third_party/libyuv/include/libyuv/basic_types.h" #include "third_party/libyuv/include/libyuv/scale.h" #include "third_party/libyuv/include/libyuv/cpu_id.h" int (*read_frame_p)(FILE *f, vpx_image_t *img); static int read_frame(FILE *f, vpx_image_t *img) { size_t nbytes, to_read; int res = 1; to_read = img->w * img->h * 3 / 2; nbytes = fread(img->planes[0], 1, to_read, f); if (nbytes != to_read) { res = 0; if (nbytes > 0) printf("Warning: Read partial frame. Check your width & height!\n"); } return res; } static int read_frame_by_row(FILE *f, vpx_image_t *img) { size_t nbytes, to_read; int res = 1; int plane; for (plane = 0; plane < 3; plane++) { unsigned char *ptr; int w = (plane ? (1 + img->d_w) / 2 : img->d_w); int h = (plane ? (1 + img->d_h) / 2 : img->d_h); int r; /* Determine the correct plane based on the image format. The for-loop * always counts in Y,U,V order, but this may not match the order of * the data on disk. */ switch (plane) { case 1: ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V : VPX_PLANE_U]; break; case 2: ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U : VPX_PLANE_V]; break; default: ptr = img->planes[plane]; } for (r = 0; r < h; r++) { to_read = w; nbytes = fread(ptr, 1, to_read, f); if (nbytes != to_read) { res = 0; if (nbytes > 0) printf("Warning: Read partial frame. Check your width & height!\n"); break; } ptr += img->stride[plane]; } if (!res) break; } return res; } static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg, int frame_cnt) { char header[32]; if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return; header[0] = 'D'; header[1] = 'K'; header[2] = 'I'; header[3] = 'F'; mem_put_le16(header + 4, 0); /* version */ mem_put_le16(header + 6, 32); /* headersize */ mem_put_le32(header + 8, fourcc); /* headersize */ mem_put_le16(header + 12, cfg->g_w); /* width */ mem_put_le16(header + 14, cfg->g_h); /* height */ mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */ mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */ mem_put_le32(header + 24, frame_cnt); /* length */ mem_put_le32(header + 28, 0); /* unused */ (void)fwrite(header, 1, 32, outfile); } static void write_ivf_frame_header(FILE *outfile, const vpx_codec_cx_pkt_t *pkt) { char header[12]; vpx_codec_pts_t pts; if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return; pts = pkt->data.frame.pts; mem_put_le32(header, (int)pkt->data.frame.sz); mem_put_le32(header + 4, pts & 0xFFFFFFFF); mem_put_le32(header + 8, pts >> 32); (void)fwrite(header, 1, 12, outfile); } /* Temporal scaling parameters */ /* This sets all the temporal layer parameters given |num_temporal_layers|, * including the target bit allocation across temporal layers. Bit allocation * parameters will be passed in as user parameters in another version. */ static void set_temporal_layer_pattern(int num_temporal_layers, vpx_codec_enc_cfg_t *cfg, int bitrate, int *layer_flags) { assert(num_temporal_layers <= MAX_NUM_TEMPORAL_LAYERS); switch (num_temporal_layers) { case 1: { /* 1-layer */ cfg->ts_number_layers = 1; cfg->ts_periodicity = 1; cfg->ts_rate_decimator[0] = 1; cfg->ts_layer_id[0] = 0; cfg->ts_target_bitrate[0] = bitrate; // Update L only. layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; break; } case 2: { /* 2-layers, with sync point at first frame of layer 1. */ cfg->ts_number_layers = 2; cfg->ts_periodicity = 2; cfg->ts_rate_decimator[0] = 2; cfg->ts_rate_decimator[1] = 1; cfg->ts_layer_id[0] = 0; cfg->ts_layer_id[1] = 1; // Use 60/40 bit allocation as example. cfg->ts_target_bitrate[0] = (int)(0.6f * bitrate); cfg->ts_target_bitrate[1] = bitrate; /* 0=L, 1=GF */ // ARF is used as predictor for all frames, and is only updated on // key frame. Sync point every 8 frames. // Layer 0: predict from L and ARF, update L and G. layer_flags[0] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF; // Layer 1: sync point: predict from L and ARF, and update G. layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF; // Layer 0, predict from L and ARF, update L. layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF; // Layer 1: predict from L, G and ARF, and update G. layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; // Layer 0 layer_flags[4] = layer_flags[2]; // Layer 1 layer_flags[5] = layer_flags[3]; // Layer 0 layer_flags[6] = layer_flags[4]; // Layer 1 layer_flags[7] = layer_flags[5]; break; } case 3: default: { // 3-layers structure where ARF is used as predictor for all frames, // and is only updated on key frame. // Sync points for layer 1 and 2 every 8 frames. cfg->ts_number_layers = 3; cfg->ts_periodicity = 4; cfg->ts_rate_decimator[0] = 4; cfg->ts_rate_decimator[1] = 2; cfg->ts_rate_decimator[2] = 1; cfg->ts_layer_id[0] = 0; cfg->ts_layer_id[1] = 2; cfg->ts_layer_id[2] = 1; cfg->ts_layer_id[3] = 2; // Use 45/20/35 bit allocation as example. cfg->ts_target_bitrate[0] = (int)(0.45f * bitrate); cfg->ts_target_bitrate[1] = (int)(0.65f * bitrate); cfg->ts_target_bitrate[2] = bitrate; /* 0=L, 1=GF, 2=ARF */ // Layer 0: predict from L and ARF; update L and G. layer_flags[0] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; // Layer 2: sync point: predict from L and ARF; update none. layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; // Layer 1: sync point: predict from L and ARF; update G. layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; // Layer 2: predict from L, G, ARF; update none. layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY; // Layer 0: predict from L and ARF; update L. layer_flags[4] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF; // Layer 2: predict from L, G, ARF; update none. layer_flags[5] = layer_flags[3]; // Layer 1: predict from L, G, ARF; update G. layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST; // Layer 2: predict from L, G, ARF; update none. layer_flags[7] = layer_flags[3]; break; } } } /* The periodicity of the pattern given the number of temporal layers. */ static int periodicity_to_num_layers[MAX_NUM_TEMPORAL_LAYERS] = { 1, 8, 8 }; int main(int argc, char **argv) { FILE *infile, *outfile[NUM_ENCODERS]; FILE *downsampled_input[NUM_ENCODERS - 1]; char filename[50]; vpx_codec_ctx_t codec[NUM_ENCODERS]; vpx_codec_enc_cfg_t cfg[NUM_ENCODERS]; int frame_cnt = 0; vpx_image_t raw[NUM_ENCODERS]; vpx_codec_err_t res[NUM_ENCODERS]; int i; int width; int height; int length_frame; int frame_avail; int got_data; int flags = 0; int layer_id = 0; int layer_flags[VPX_TS_MAX_PERIODICITY * NUM_ENCODERS] = { 0 }; int flag_periodicity; /*Currently, only realtime mode is supported in multi-resolution encoding.*/ int arg_deadline = VPX_DL_REALTIME; /* Set show_psnr to 1/0 to show/not show PSNR. Choose show_psnr=0 if you don't need to know PSNR, which will skip PSNR calculation and save encoding time. */ int show_psnr = 0; int key_frame_insert = 0; uint64_t psnr_sse_total[NUM_ENCODERS] = { 0 }; uint64_t psnr_samples_total[NUM_ENCODERS] = { 0 }; double psnr_totals[NUM_ENCODERS][4] = { { 0, 0 } }; int psnr_count[NUM_ENCODERS] = { 0 }; int64_t cx_time = 0; /* Set the required target bitrates for each resolution level. * If target bitrate for highest-resolution level is set to 0, * (i.e. target_bitrate[0]=0), we skip encoding at that level. */ unsigned int target_bitrate[NUM_ENCODERS] = { 1000, 500, 100 }; /* Enter the frame rate of the input video */ int framerate = 30; /* Set down-sampling factor for each resolution level. dsf[0] controls down sampling from level 0 to level 1; dsf[1] controls down sampling from level 1 to level 2; dsf[2] is not used. */ vpx_rational_t dsf[NUM_ENCODERS] = { { 2, 1 }, { 2, 1 }, { 1, 1 } }; /* Set the number of temporal layers for each encoder/resolution level, * starting from highest resoln down to lowest resoln. */ unsigned int num_temporal_layers[NUM_ENCODERS] = { 3, 3, 3 }; if (argc != (7 + 3 * NUM_ENCODERS)) die("Usage: %s <width> <height> <frame_rate> <infile> <outfile(s)> " "<rate_encoder(s)> <temporal_layer(s)> <key_frame_insert> <output " "psnr?> \n", argv[0]); printf("Using %s\n", vpx_codec_iface_name(interface)); width = (int)strtol(argv[1], NULL, 0); height = (int)strtol(argv[2], NULL, 0); framerate = (int)strtol(argv[3], NULL, 0); if (width < 16 || width % 2 || height < 16 || height % 2) die("Invalid resolution: %ldx%ld", width, height); /* Open input video file for encoding */ if (!(infile = fopen(argv[4], "rb"))) die("Failed to open %s for reading", argv[4]); /* Open output file for each encoder to output bitstreams */ for (i = 0; i < NUM_ENCODERS; i++) { if (!target_bitrate[i]) { outfile[i] = NULL; continue; } if (!(outfile[i] = fopen(argv[i + 5], "wb"))) die("Failed to open %s for writing", argv[i + 4]); } // Bitrates per spatial layer: overwrite default rates above. for (i = 0; i < NUM_ENCODERS; i++) { target_bitrate[i] = (int)strtol(argv[NUM_ENCODERS + 5 + i], NULL, 0); } // Temporal layers per spatial layers: overwrite default settings above. for (i = 0; i < NUM_ENCODERS; i++) { num_temporal_layers[i] = (int)strtol(argv[2 * NUM_ENCODERS + 5 + i], NULL, 0); if (num_temporal_layers[i] < 1 || num_temporal_layers[i] > 3) die("Invalid temporal layers: %d, Must be 1, 2, or 3. \n", num_temporal_layers); } /* Open file to write out each spatially downsampled input stream. */ for (i = 0; i < NUM_ENCODERS - 1; i++) { // Highest resoln is encoder 0. if (sprintf(filename, "ds%d.yuv", NUM_ENCODERS - i) < 0) { return EXIT_FAILURE; } downsampled_input[i] = fopen(filename, "wb"); } key_frame_insert = (int)strtol(argv[3 * NUM_ENCODERS + 5], NULL, 0); show_psnr = (int)strtol(argv[3 * NUM_ENCODERS + 6], NULL, 0); /* Populate default encoder configuration */ for (i = 0; i < NUM_ENCODERS; i++) { res[i] = vpx_codec_enc_config_default(interface, &cfg[i], 0); if (res[i]) { printf("Failed to get config: %s\n", vpx_codec_err_to_string(res[i])); return EXIT_FAILURE; } } /* * Update the default configuration according to needs of the application. */ /* Highest-resolution encoder settings */ cfg[0].g_w = width; cfg[0].g_h = height; cfg[0].rc_dropframe_thresh = 0; cfg[0].rc_end_usage = VPX_CBR; cfg[0].rc_resize_allowed = 0; cfg[0].rc_min_quantizer = 2; cfg[0].rc_max_quantizer = 56; cfg[0].rc_undershoot_pct = 100; cfg[0].rc_overshoot_pct = 15; cfg[0].rc_buf_initial_sz = 500; cfg[0].rc_buf_optimal_sz = 600; cfg[0].rc_buf_sz = 1000; cfg[0].g_error_resilient = 1; /* Enable error resilient mode */ cfg[0].g_lag_in_frames = 0; /* Disable automatic keyframe placement */ /* Note: These 3 settings are copied to all levels. But, except the lowest * resolution level, all other levels are set to VPX_KF_DISABLED internally. */ cfg[0].kf_mode = VPX_KF_AUTO; cfg[0].kf_min_dist = 3000; cfg[0].kf_max_dist = 3000; cfg[0].rc_target_bitrate = target_bitrate[0]; /* Set target bitrate */ cfg[0].g_timebase.num = 1; /* Set fps */ cfg[0].g_timebase.den = framerate; /* Other-resolution encoder settings */ for (i = 1; i < NUM_ENCODERS; i++) { memcpy(&cfg[i], &cfg[0], sizeof(vpx_codec_enc_cfg_t)); cfg[i].rc_target_bitrate = target_bitrate[i]; /* Note: Width & height of other-resolution encoders are calculated * from the highest-resolution encoder's size and the corresponding * down_sampling_factor. */ { unsigned int iw = cfg[i - 1].g_w * dsf[i - 1].den + dsf[i - 1].num - 1; unsigned int ih = cfg[i - 1].g_h * dsf[i - 1].den + dsf[i - 1].num - 1; cfg[i].g_w = iw / dsf[i - 1].num; cfg[i].g_h = ih / dsf[i - 1].num; } /* Make width & height to be multiplier of 2. */ // Should support odd size ??? if ((cfg[i].g_w) % 2) cfg[i].g_w++; if ((cfg[i].g_h) % 2) cfg[i].g_h++; } // Set the number of threads per encode/spatial layer. // (1, 1, 1) means no encoder threading. cfg[0].g_threads = 1; cfg[1].g_threads = 1; cfg[2].g_threads = 1; /* Allocate image for each encoder */ for (i = 0; i < NUM_ENCODERS; i++) if (!vpx_img_alloc(&raw[i], VPX_IMG_FMT_I420, cfg[i].g_w, cfg[i].g_h, 32)) die("Failed to allocate image", cfg[i].g_w, cfg[i].g_h); if (raw[0].stride[VPX_PLANE_Y] == (int)raw[0].d_w) read_frame_p = read_frame; else read_frame_p = read_frame_by_row; for (i = 0; i < NUM_ENCODERS; i++) if (outfile[i]) write_ivf_file_header(outfile[i], &cfg[i], 0); /* Temporal layers settings */ for (i = 0; i < NUM_ENCODERS; i++) { set_temporal_layer_pattern(num_temporal_layers[i], &cfg[i], cfg[i].rc_target_bitrate, &layer_flags[i * VPX_TS_MAX_PERIODICITY]); } /* Initialize multi-encoder */ if (vpx_codec_enc_init_multi(&codec[0], interface, &cfg[0], NUM_ENCODERS, (show_psnr ? VPX_CODEC_USE_PSNR : 0), &dsf[0])) die_codec(&codec[0], "Failed to initialize encoder"); /* The extra encoding configuration parameters can be set as follows. */ /* Set encoding speed */ for (i = 0; i < NUM_ENCODERS; i++) { int speed = -6; /* Lower speed for the lowest resolution. */ if (i == NUM_ENCODERS - 1) speed = -4; if (vpx_codec_control(&codec[i], VP8E_SET_CPUUSED, speed)) die_codec(&codec[i], "Failed to set cpu_used"); } /* Set static threshold = 1 for all encoders */ for (i = 0; i < NUM_ENCODERS; i++) { if (vpx_codec_control(&codec[i], VP8E_SET_STATIC_THRESHOLD, 1)) die_codec(&codec[i], "Failed to set static threshold"); } /* Set NOISE_SENSITIVITY to do TEMPORAL_DENOISING */ /* Enable denoising for the highest-resolution encoder. */ if (vpx_codec_control(&codec[0], VP8E_SET_NOISE_SENSITIVITY, 1)) die_codec(&codec[0], "Failed to set noise_sensitivity"); if (vpx_codec_control(&codec[1], VP8E_SET_NOISE_SENSITIVITY, 1)) die_codec(&codec[1], "Failed to set noise_sensitivity"); for (i = 2; i < NUM_ENCODERS; i++) { if (vpx_codec_control(&codec[i], VP8E_SET_NOISE_SENSITIVITY, 0)) die_codec(&codec[i], "Failed to set noise_sensitivity"); } /* Set the number of token partitions */ for (i = 0; i < NUM_ENCODERS; i++) { if (vpx_codec_control(&codec[i], VP8E_SET_TOKEN_PARTITIONS, 1)) die_codec(&codec[i], "Failed to set static threshold"); } /* Set the max intra target bitrate */ for (i = 0; i < NUM_ENCODERS; i++) { unsigned int max_intra_size_pct = (int)(((double)cfg[0].rc_buf_optimal_sz * 0.5) * framerate / 10); if (vpx_codec_control(&codec[i], VP8E_SET_MAX_INTRA_BITRATE_PCT, max_intra_size_pct)) die_codec(&codec[i], "Failed to set static threshold"); // printf("%d %d \n",i,max_intra_size_pct); } frame_avail = 1; got_data = 0; while (frame_avail || got_data) { struct vpx_usec_timer timer; vpx_codec_iter_t iter[NUM_ENCODERS] = { NULL }; const vpx_codec_cx_pkt_t *pkt[NUM_ENCODERS]; flags = 0; frame_avail = read_frame_p(infile, &raw[0]); if (frame_avail) { for (i = 1; i < NUM_ENCODERS; i++) { /*Scale the image down a number of times by downsampling factor*/ /* FilterMode 1 or 2 give better psnr than FilterMode 0. */ I420Scale( raw[i - 1].planes[VPX_PLANE_Y], raw[i - 1].stride[VPX_PLANE_Y], raw[i - 1].planes[VPX_PLANE_U], raw[i - 1].stride[VPX_PLANE_U], raw[i - 1].planes[VPX_PLANE_V], raw[i - 1].stride[VPX_PLANE_V], raw[i - 1].d_w, raw[i - 1].d_h, raw[i].planes[VPX_PLANE_Y], raw[i].stride[VPX_PLANE_Y], raw[i].planes[VPX_PLANE_U], raw[i].stride[VPX_PLANE_U], raw[i].planes[VPX_PLANE_V], raw[i].stride[VPX_PLANE_V], raw[i].d_w, raw[i].d_h, 1); /* Write out down-sampled input. */ length_frame = cfg[i].g_w * cfg[i].g_h * 3 / 2; if (fwrite(raw[i].planes[0], 1, length_frame, downsampled_input[NUM_ENCODERS - i - 1]) != (unsigned int)length_frame) { return EXIT_FAILURE; } } } /* Set the flags (reference and update) for all the encoders.*/ for (i = 0; i < NUM_ENCODERS; i++) { layer_id = cfg[i].ts_layer_id[frame_cnt % cfg[i].ts_periodicity]; flags = 0; flag_periodicity = periodicity_to_num_layers[num_temporal_layers[i] - 1]; flags = layer_flags[i * VPX_TS_MAX_PERIODICITY + frame_cnt % flag_periodicity]; // Key frame flag for first frame. if (frame_cnt == 0) { flags |= VPX_EFLAG_FORCE_KF; } if (frame_cnt > 0 && frame_cnt == key_frame_insert) { flags = VPX_EFLAG_FORCE_KF; } vpx_codec_control(&codec[i], VP8E_SET_FRAME_FLAGS, flags); vpx_codec_control(&codec[i], VP8E_SET_TEMPORAL_LAYER_ID, layer_id); } /* Encode each frame at multi-levels */ /* Note the flags must be set to 0 in the encode call if they are set for each frame with the vpx_codec_control(), as done above. */ vpx_usec_timer_start(&timer); if (vpx_codec_encode(&codec[0], frame_avail ? &raw[0] : NULL, frame_cnt, 1, 0, arg_deadline)) { die_codec(&codec[0], "Failed to encode frame"); } vpx_usec_timer_mark(&timer); cx_time += vpx_usec_timer_elapsed(&timer); for (i = NUM_ENCODERS - 1; i >= 0; i--) { got_data = 0; while ((pkt[i] = vpx_codec_get_cx_data(&codec[i], &iter[i]))) { got_data = 1; switch (pkt[i]->kind) { case VPX_CODEC_CX_FRAME_PKT: write_ivf_frame_header(outfile[i], pkt[i]); (void)fwrite(pkt[i]->data.frame.buf, 1, pkt[i]->data.frame.sz, outfile[i]); break; case VPX_CODEC_PSNR_PKT: if (show_psnr) { int j; psnr_sse_total[i] += pkt[i]->data.psnr.sse[0]; psnr_samples_total[i] += pkt[i]->data.psnr.samples[0]; for (j = 0; j < 4; j++) { psnr_totals[i][j] += pkt[i]->data.psnr.psnr[j]; } psnr_count[i]++; } break; default: break; } fflush(stdout); } } frame_cnt++; } printf("\n"); printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n", frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), 1000000 * (double)frame_cnt / (double)cx_time); fclose(infile); printf("Processed %ld frames.\n", (long int)frame_cnt - 1); for (i = 0; i < NUM_ENCODERS; i++) { /* Calculate PSNR and print it out */ if ((show_psnr) && (psnr_count[i] > 0)) { int j; double ovpsnr = sse_to_psnr(psnr_samples_total[i], 255.0, psnr_sse_total[i]); fprintf(stderr, "\n ENC%d PSNR (Overall/Avg/Y/U/V)", i); fprintf(stderr, " %.3lf", ovpsnr); for (j = 0; j < 4; j++) { fprintf(stderr, " %.3lf", psnr_totals[i][j] / psnr_count[i]); } } if (vpx_codec_destroy(&codec[i])) die_codec(&codec[i], "Failed to destroy codec"); vpx_img_free(&raw[i]); if (!outfile[i]) continue; /* Try to rewrite the file header with the actual frame count */ if (!fseek(outfile[i], 0, SEEK_SET)) write_ivf_file_header(outfile[i], &cfg[i], frame_cnt - 1); fclose(outfile[i]); } return EXIT_SUCCESS; }