ref: f644f5b75d714d9366125fa0ec679ae7aca6251b
dir: /test/dct_test.cc/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <math.h> #include <stdlib.h> #include <string.h> #include <tuple> #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vp9_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "test/acm_random.h" #include "test/buffer.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp9/common/vp9_entropy.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" #include "vpx_ports/mem.h" using libvpx_test::ACMRandom; using libvpx_test::Buffer; using std::make_tuple; using std::tuple; namespace { typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride); typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride); typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride, int tx_type); typedef void (*FhtFuncRef)(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size, int tx_type); typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type); typedef void (*IhtWithBdFunc)(const tran_low_t *in, uint8_t *out, int stride, int tx_type, int bd); template <FdctFunc fn> void fdct_wrapper(const int16_t *in, tran_low_t *out, int stride, int tx_type) { (void)tx_type; fn(in, out, stride); } template <IdctFunc fn> void idct_wrapper(const tran_low_t *in, uint8_t *out, int stride, int tx_type, int bd) { (void)tx_type; (void)bd; fn(in, out, stride); } template <IhtFunc fn> void iht_wrapper(const tran_low_t *in, uint8_t *out, int stride, int tx_type, int bd) { (void)bd; fn(in, out, stride, tx_type); } #if CONFIG_VP9_HIGHBITDEPTH typedef void (*HighbdIdctFunc)(const tran_low_t *in, uint16_t *out, int stride, int bd); typedef void (*HighbdIhtFunc)(const tran_low_t *in, uint16_t *out, int stride, int tx_type, int bd); template <HighbdIdctFunc fn> void highbd_idct_wrapper(const tran_low_t *in, uint8_t *out, int stride, int tx_type, int bd) { (void)tx_type; fn(in, CAST_TO_SHORTPTR(out), stride, bd); } template <HighbdIhtFunc fn> void highbd_iht_wrapper(const tran_low_t *in, uint8_t *out, int stride, int tx_type, int bd) { fn(in, CAST_TO_SHORTPTR(out), stride, tx_type, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH struct FuncInfo { FhtFunc ft_func; IhtWithBdFunc it_func; int size; int pixel_size; }; /* forward transform, inverse transform, size, transform type, bit depth */ typedef tuple<int, const FuncInfo *, int, vpx_bit_depth_t> DctParam; void fdct_ref(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size, int /*tx_type*/) { const int16_t *i = in.TopLeftPixel(); const int i_stride = in.stride(); tran_low_t *o = out->TopLeftPixel(); if (size == 4) { vpx_fdct4x4_c(i, o, i_stride); } else if (size == 8) { vpx_fdct8x8_c(i, o, i_stride); } else if (size == 16) { vpx_fdct16x16_c(i, o, i_stride); } else if (size == 32) { vpx_fdct32x32_c(i, o, i_stride); } } void fht_ref(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size, int tx_type) { const int16_t *i = in.TopLeftPixel(); const int i_stride = in.stride(); tran_low_t *o = out->TopLeftPixel(); if (size == 4) { vp9_fht4x4_c(i, o, i_stride, tx_type); } else if (size == 8) { vp9_fht8x8_c(i, o, i_stride, tx_type); } else if (size == 16) { vp9_fht16x16_c(i, o, i_stride, tx_type); } } void fwht_ref(const Buffer<int16_t> &in, Buffer<tran_low_t> *out, int size, int /*tx_type*/) { ASSERT_EQ(size, 4); vp9_fwht4x4_c(in.TopLeftPixel(), out->TopLeftPixel(), in.stride()); } class TransTestBase : public ::testing::TestWithParam<DctParam> { public: virtual void SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); const int idx = GET_PARAM(0); const FuncInfo *func_info = &(GET_PARAM(1)[idx]); tx_type_ = GET_PARAM(2); bit_depth_ = GET_PARAM(3); fwd_txfm_ = func_info->ft_func; inv_txfm_ = func_info->it_func; size_ = func_info->size; pixel_size_ = func_info->pixel_size; max_pixel_value_ = (1 << bit_depth_) - 1; // Randomize stride_ to a value less than or equal to 1024 stride_ = rnd_(1024) + 1; if (stride_ < size_) { stride_ = size_; } // Align stride_ to 16 if it's bigger than 16. if (stride_ > 16) { stride_ &= ~15; } block_size_ = size_ * stride_; src_ = reinterpret_cast<uint8_t *>( vpx_memalign(16, pixel_size_ * block_size_)); ASSERT_NE(src_, nullptr); dst_ = reinterpret_cast<uint8_t *>( vpx_memalign(16, pixel_size_ * block_size_)); ASSERT_NE(dst_, nullptr); } virtual void TearDown() { vpx_free(src_); src_ = nullptr; vpx_free(dst_); dst_ = nullptr; libvpx_test::ClearSystemState(); } void InitMem() { if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return; if (pixel_size_ == 1) { for (int j = 0; j < block_size_; ++j) { src_[j] = rnd_.Rand16() & max_pixel_value_; } for (int j = 0; j < block_size_; ++j) { dst_[j] = rnd_.Rand16() & max_pixel_value_; } } else { ASSERT_EQ(pixel_size_, 2); uint16_t *const src = reinterpret_cast<uint16_t *>(src_); uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_); for (int j = 0; j < block_size_; ++j) { src[j] = rnd_.Rand16() & max_pixel_value_; } for (int j = 0; j < block_size_; ++j) { dst[j] = rnd_.Rand16() & max_pixel_value_; } } } void RunFwdTxfm(const Buffer<int16_t> &in, Buffer<tran_low_t> *out) { fwd_txfm_(in.TopLeftPixel(), out->TopLeftPixel(), in.stride(), tx_type_); } void RunInvTxfm(const Buffer<tran_low_t> &in, uint8_t *out) { inv_txfm_(in.TopLeftPixel(), out, stride_, tx_type_, bit_depth_); } protected: void RunAccuracyCheck(int limit) { if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return; ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer<int16_t> test_input_block = Buffer<int16_t>(size_, size_, 8, size_ == 4 ? 0 : 16); ASSERT_TRUE(test_input_block.Init()); ASSERT_NE(test_input_block.TopLeftPixel(), nullptr); Buffer<tran_low_t> test_temp_block = Buffer<tran_low_t>(size_, size_, 0, 16); ASSERT_TRUE(test_temp_block.Init()); uint32_t max_error = 0; int64_t total_error = 0; const int count_test_block = 10000; for (int i = 0; i < count_test_block; ++i) { InitMem(); for (int h = 0; h < size_; ++h) { for (int w = 0; w < size_; ++w) { if (pixel_size_ == 1) { test_input_block.TopLeftPixel()[h * test_input_block.stride() + w] = src_[h * stride_ + w] - dst_[h * stride_ + w]; } else { ASSERT_EQ(pixel_size_, 2); const uint16_t *const src = reinterpret_cast<uint16_t *>(src_); const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_); test_input_block.TopLeftPixel()[h * test_input_block.stride() + w] = src[h * stride_ + w] - dst[h * stride_ + w]; } } } ASM_REGISTER_STATE_CHECK(RunFwdTxfm(test_input_block, &test_temp_block)); ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst_)); for (int h = 0; h < size_; ++h) { for (int w = 0; w < size_; ++w) { int diff; if (pixel_size_ == 1) { diff = dst_[h * stride_ + w] - src_[h * stride_ + w]; } else { ASSERT_EQ(pixel_size_, 2); const uint16_t *const src = reinterpret_cast<uint16_t *>(src_); const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_); diff = dst[h * stride_ + w] - src[h * stride_ + w]; } const uint32_t error = diff * diff; if (max_error < error) max_error = error; total_error += error; } } } EXPECT_GE(static_cast<uint32_t>(limit), max_error) << "Error: " << size_ << "x" << size_ << " transform/inverse transform has an individual round trip error > " << limit; EXPECT_GE(count_test_block * limit, total_error) << "Error: " << size_ << "x" << size_ << " transform/inverse transform has average round trip error > " << limit << " per block"; } void RunCoeffCheck() { if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return; ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; Buffer<int16_t> input_block = Buffer<int16_t>(size_, size_, 8, size_ == 4 ? 0 : 16); ASSERT_TRUE(input_block.Init()); Buffer<tran_low_t> output_ref_block = Buffer<tran_low_t>(size_, size_, 0); ASSERT_TRUE(output_ref_block.Init()); Buffer<tran_low_t> output_block = Buffer<tran_low_t>(size_, size_, 0, 16); ASSERT_TRUE(output_block.Init()); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with input range [-max_pixel_value_, // max_pixel_value_]. input_block.Set(&rnd, -max_pixel_value_, max_pixel_value_); fwd_txfm_ref(input_block, &output_ref_block, size_, tx_type_); ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_block, &output_block)); // The minimum quant value is 4. EXPECT_TRUE(output_block.CheckValues(output_ref_block)); if (::testing::Test::HasFailure()) { printf("Size: %d Transform type: %d\n", size_, tx_type_); output_block.PrintDifference(output_ref_block); return; } } } void RunMemCheck() { if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return; ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 5000; Buffer<int16_t> input_extreme_block = Buffer<int16_t>(size_, size_, 8, size_ == 4 ? 0 : 16); ASSERT_TRUE(input_extreme_block.Init()); Buffer<tran_low_t> output_ref_block = Buffer<tran_low_t>(size_, size_, 0); ASSERT_TRUE(output_ref_block.Init()); Buffer<tran_low_t> output_block = Buffer<tran_low_t>(size_, size_, 0, 16); ASSERT_TRUE(output_block.Init()); for (int i = 0; i < count_test_block; ++i) { // Initialize a test block with -max_pixel_value_ or max_pixel_value_. if (i == 0) { input_extreme_block.Set(max_pixel_value_); } else if (i == 1) { input_extreme_block.Set(-max_pixel_value_); } else { ASSERT_NE(input_extreme_block.TopLeftPixel(), nullptr); for (int h = 0; h < size_; ++h) { for (int w = 0; w < size_; ++w) { input_extreme_block .TopLeftPixel()[h * input_extreme_block.stride() + w] = rnd.Rand8() % 2 ? max_pixel_value_ : -max_pixel_value_; } } } fwd_txfm_ref(input_extreme_block, &output_ref_block, size_, tx_type_); ASM_REGISTER_STATE_CHECK(RunFwdTxfm(input_extreme_block, &output_block)); // The minimum quant value is 4. EXPECT_TRUE(output_block.CheckValues(output_ref_block)); ASSERT_NE(output_block.TopLeftPixel(), nullptr); for (int h = 0; h < size_; ++h) { for (int w = 0; w < size_; ++w) { EXPECT_GE( 4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block.TopLeftPixel()[h * output_block.stride() + w])) << "Error: " << size_ << "x" << size_ << " transform has coefficient larger than 4*DCT_MAX_VALUE" << " at " << w << "," << h; if (::testing::Test::HasFailure()) { printf("Size: %d Transform type: %d\n", size_, tx_type_); output_block.DumpBuffer(); return; } } } } } void RunInvAccuracyCheck(int limit) { if (pixel_size_ == 1 && bit_depth_ > VPX_BITS_8) return; ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = 1000; Buffer<int16_t> in = Buffer<int16_t>(size_, size_, 4); ASSERT_TRUE(in.Init()); Buffer<tran_low_t> coeff = Buffer<tran_low_t>(size_, size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer<uint8_t> dst = Buffer<uint8_t>(size_, size_, 0, 16); ASSERT_TRUE(dst.Init()); Buffer<uint8_t> src = Buffer<uint8_t>(size_, size_, 0); ASSERT_TRUE(src.Init()); Buffer<uint16_t> dst16 = Buffer<uint16_t>(size_, size_, 0, 16); ASSERT_TRUE(dst16.Init()); Buffer<uint16_t> src16 = Buffer<uint16_t>(size_, size_, 0); ASSERT_TRUE(src16.Init()); for (int i = 0; i < count_test_block; ++i) { InitMem(); ASSERT_NE(in.TopLeftPixel(), nullptr); // Initialize a test block with input range [-max_pixel_value_, // max_pixel_value_]. for (int h = 0; h < size_; ++h) { for (int w = 0; w < size_; ++w) { if (pixel_size_ == 1) { in.TopLeftPixel()[h * in.stride() + w] = src_[h * stride_ + w] - dst_[h * stride_ + w]; } else { ASSERT_EQ(pixel_size_, 2); const uint16_t *const src = reinterpret_cast<uint16_t *>(src_); const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_); in.TopLeftPixel()[h * in.stride() + w] = src[h * stride_ + w] - dst[h * stride_ + w]; } } } fwd_txfm_ref(in, &coeff, size_, tx_type_); ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst_)); for (int h = 0; h < size_; ++h) { for (int w = 0; w < size_; ++w) { int diff; if (pixel_size_ == 1) { diff = dst_[h * stride_ + w] - src_[h * stride_ + w]; } else { ASSERT_EQ(pixel_size_, 2); const uint16_t *const src = reinterpret_cast<uint16_t *>(src_); const uint16_t *const dst = reinterpret_cast<uint16_t *>(dst_); diff = dst[h * stride_ + w] - src[h * stride_ + w]; } const uint32_t error = diff * diff; EXPECT_GE(static_cast<uint32_t>(limit), error) << "Error: " << size_ << "x" << size_ << " inverse transform has error " << error << " at " << w << "," << h; if (::testing::Test::HasFailure()) { printf("Size: %d Transform type: %d\n", size_, tx_type_); return; } } } } } FhtFunc fwd_txfm_; FhtFuncRef fwd_txfm_ref; IhtWithBdFunc inv_txfm_; ACMRandom rnd_; uint8_t *src_; uint8_t *dst_; vpx_bit_depth_t bit_depth_; int tx_type_; int max_pixel_value_; int size_; int stride_; int pixel_size_; int block_size_; }; /* -------------------------------------------------------------------------- */ class TransDCT : public TransTestBase { public: TransDCT() { fwd_txfm_ref = fdct_ref; } }; TEST_P(TransDCT, AccuracyCheck) { int t = 1; if (size_ == 16 && bit_depth_ > 10 && pixel_size_ == 2) { t = 2; } else if (size_ == 32 && bit_depth_ > 10 && pixel_size_ == 2) { t = 7; } RunAccuracyCheck(t); } TEST_P(TransDCT, CoeffCheck) { RunCoeffCheck(); } TEST_P(TransDCT, MemCheck) { RunMemCheck(); } TEST_P(TransDCT, InvAccuracyCheck) { RunInvAccuracyCheck(1); } static const FuncInfo dct_c_func_info[] = { #if CONFIG_VP9_HIGHBITDEPTH { &fdct_wrapper<vpx_highbd_fdct4x4_c>, &highbd_idct_wrapper<vpx_highbd_idct4x4_16_add_c>, 4, 2 }, { &fdct_wrapper<vpx_highbd_fdct8x8_c>, &highbd_idct_wrapper<vpx_highbd_idct8x8_64_add_c>, 8, 2 }, { &fdct_wrapper<vpx_highbd_fdct16x16_c>, &highbd_idct_wrapper<vpx_highbd_idct16x16_256_add_c>, 16, 2 }, { &fdct_wrapper<vpx_highbd_fdct32x32_c>, &highbd_idct_wrapper<vpx_highbd_idct32x32_1024_add_c>, 32, 2 }, #endif { &fdct_wrapper<vpx_fdct4x4_c>, &idct_wrapper<vpx_idct4x4_16_add_c>, 4, 1 }, { &fdct_wrapper<vpx_fdct8x8_c>, &idct_wrapper<vpx_idct8x8_64_add_c>, 8, 1 }, { &fdct_wrapper<vpx_fdct16x16_c>, &idct_wrapper<vpx_idct16x16_256_add_c>, 16, 1 }, { &fdct_wrapper<vpx_fdct32x32_c>, &idct_wrapper<vpx_idct32x32_1024_add_c>, 32, 1 } }; INSTANTIATE_TEST_SUITE_P( C, TransDCT, ::testing::Combine( ::testing::Range(0, static_cast<int>(sizeof(dct_c_func_info) / sizeof(dct_c_func_info[0]))), ::testing::Values(dct_c_func_info), ::testing::Values(0), ::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12))); #if !CONFIG_EMULATE_HARDWARE #if HAVE_SSE2 static const FuncInfo dct_sse2_func_info[] = { #if CONFIG_VP9_HIGHBITDEPTH { &fdct_wrapper<vpx_highbd_fdct4x4_sse2>, &highbd_idct_wrapper<vpx_highbd_idct4x4_16_add_sse2>, 4, 2 }, { &fdct_wrapper<vpx_highbd_fdct8x8_sse2>, &highbd_idct_wrapper<vpx_highbd_idct8x8_64_add_sse2>, 8, 2 }, { &fdct_wrapper<vpx_highbd_fdct16x16_sse2>, &highbd_idct_wrapper<vpx_highbd_idct16x16_256_add_sse2>, 16, 2 }, { &fdct_wrapper<vpx_highbd_fdct32x32_sse2>, &highbd_idct_wrapper<vpx_highbd_idct32x32_1024_add_sse2>, 32, 2 }, #endif { &fdct_wrapper<vpx_fdct4x4_sse2>, &idct_wrapper<vpx_idct4x4_16_add_sse2>, 4, 1 }, { &fdct_wrapper<vpx_fdct8x8_sse2>, &idct_wrapper<vpx_idct8x8_64_add_sse2>, 8, 1 }, { &fdct_wrapper<vpx_fdct16x16_sse2>, &idct_wrapper<vpx_idct16x16_256_add_sse2>, 16, 1 }, { &fdct_wrapper<vpx_fdct32x32_sse2>, &idct_wrapper<vpx_idct32x32_1024_add_sse2>, 32, 1 } }; INSTANTIATE_TEST_SUITE_P( SSE2, TransDCT, ::testing::Combine( ::testing::Range(0, static_cast<int>(sizeof(dct_sse2_func_info) / sizeof(dct_sse2_func_info[0]))), ::testing::Values(dct_sse2_func_info), ::testing::Values(0), ::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12))); #endif // HAVE_SSE2 #if HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && VPX_ARCH_X86_64 // vpx_fdct8x8_ssse3 is only available in 64 bit builds. static const FuncInfo dct_ssse3_func_info = { &fdct_wrapper<vpx_fdct8x8_ssse3>, &idct_wrapper<vpx_idct8x8_64_add_sse2>, 8, 1 }; // TODO(johannkoenig): high bit depth fdct8x8. INSTANTIATE_TEST_SUITE_P(SSSE3, TransDCT, ::testing::Values(make_tuple(0, &dct_ssse3_func_info, 0, VPX_BITS_8))); #endif // HAVE_SSSE3 && !CONFIG_VP9_HIGHBITDEPTH && VPX_ARCH_X86_64 #if HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH static const FuncInfo dct_avx2_func_info = { &fdct_wrapper<vpx_fdct32x32_avx2>, &idct_wrapper<vpx_idct32x32_1024_add_sse2>, 32, 1 }; // TODO(johannkoenig): high bit depth fdct32x32. INSTANTIATE_TEST_SUITE_P(AVX2, TransDCT, ::testing::Values(make_tuple(0, &dct_avx2_func_info, 0, VPX_BITS_8))); #endif // HAVE_AVX2 && !CONFIG_VP9_HIGHBITDEPTH #if HAVE_NEON static const FuncInfo dct_neon_func_info[4] = { { &fdct_wrapper<vpx_fdct4x4_neon>, &idct_wrapper<vpx_idct4x4_16_add_neon>, 4, 1 }, { &fdct_wrapper<vpx_fdct8x8_neon>, &idct_wrapper<vpx_idct8x8_64_add_neon>, 8, 1 }, { &fdct_wrapper<vpx_fdct16x16_neon>, &idct_wrapper<vpx_idct16x16_256_add_neon>, 16, 1 }, { &fdct_wrapper<vpx_fdct32x32_neon>, &idct_wrapper<vpx_idct32x32_1024_add_neon>, 32, 1 } }; INSTANTIATE_TEST_SUITE_P( NEON, TransDCT, ::testing::Combine(::testing::Range(0, 4), ::testing::Values(dct_neon_func_info), ::testing::Values(0), ::testing::Values(VPX_BITS_8))); #endif // HAVE_NEON #if HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH static const FuncInfo dct_msa_func_info[4] = { { &fdct_wrapper<vpx_fdct4x4_msa>, &idct_wrapper<vpx_idct4x4_16_add_msa>, 4, 1 }, { &fdct_wrapper<vpx_fdct8x8_msa>, &idct_wrapper<vpx_idct8x8_64_add_msa>, 8, 1 }, { &fdct_wrapper<vpx_fdct16x16_msa>, &idct_wrapper<vpx_idct16x16_256_add_msa>, 16, 1 }, { &fdct_wrapper<vpx_fdct32x32_msa>, &idct_wrapper<vpx_idct32x32_1024_add_msa>, 32, 1 } }; INSTANTIATE_TEST_SUITE_P( MSA, TransDCT, ::testing::Combine(::testing::Range(0, 4), ::testing::Values(dct_msa_func_info), ::testing::Values(0), ::testing::Values(VPX_BITS_8))); #endif // HAVE_MSA && !CONFIG_VP9_HIGHBITDEPTH #if HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH static const FuncInfo dct_vsx_func_info = { &fdct_wrapper<vpx_fdct4x4_c>, &idct_wrapper<vpx_idct4x4_16_add_vsx>, 4, 1 }; INSTANTIATE_TEST_SUITE_P(VSX, TransDCT, ::testing::Values(make_tuple(0, &dct_vsx_func_info, 0, VPX_BITS_8))); #endif // HAVE_VSX && !CONFIG_VP9_HIGHBITDEPTH && #endif // !CONFIG_EMULATE_HARDWARE /* -------------------------------------------------------------------------- */ class TransHT : public TransTestBase { public: TransHT() { fwd_txfm_ref = fht_ref; } }; TEST_P(TransHT, AccuracyCheck) { RunAccuracyCheck(size_ == 16 && bit_depth_ > 10 && pixel_size_ == 2 ? 2 : 1); } TEST_P(TransHT, CoeffCheck) { RunCoeffCheck(); } TEST_P(TransHT, MemCheck) { RunMemCheck(); } TEST_P(TransHT, InvAccuracyCheck) { RunInvAccuracyCheck(1); } static const FuncInfo ht_c_func_info[] = { #if CONFIG_VP9_HIGHBITDEPTH { &vp9_highbd_fht4x4_c, &highbd_iht_wrapper<vp9_highbd_iht4x4_16_add_c>, 4, 2 }, { &vp9_highbd_fht8x8_c, &highbd_iht_wrapper<vp9_highbd_iht8x8_64_add_c>, 8, 2 }, { &vp9_highbd_fht16x16_c, &highbd_iht_wrapper<vp9_highbd_iht16x16_256_add_c>, 16, 2 }, #endif { &vp9_fht4x4_c, &iht_wrapper<vp9_iht4x4_16_add_c>, 4, 1 }, { &vp9_fht8x8_c, &iht_wrapper<vp9_iht8x8_64_add_c>, 8, 1 }, { &vp9_fht16x16_c, &iht_wrapper<vp9_iht16x16_256_add_c>, 16, 1 } }; INSTANTIATE_TEST_SUITE_P( C, TransHT, ::testing::Combine( ::testing::Range(0, static_cast<int>(sizeof(ht_c_func_info) / sizeof(ht_c_func_info[0]))), ::testing::Values(ht_c_func_info), ::testing::Range(0, 4), ::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12))); #if !CONFIG_EMULATE_HARDWARE #if HAVE_NEON static const FuncInfo ht_neon_func_info[] = { #if CONFIG_VP9_HIGHBITDEPTH { &vp9_highbd_fht4x4_c, &highbd_iht_wrapper<vp9_highbd_iht4x4_16_add_neon>, 4, 2 }, { &vp9_highbd_fht8x8_c, &highbd_iht_wrapper<vp9_highbd_iht8x8_64_add_neon>, 8, 2 }, { &vp9_highbd_fht16x16_c, &highbd_iht_wrapper<vp9_highbd_iht16x16_256_add_neon>, 16, 2 }, #endif { &vp9_fht4x4_c, &iht_wrapper<vp9_iht4x4_16_add_neon>, 4, 1 }, { &vp9_fht8x8_c, &iht_wrapper<vp9_iht8x8_64_add_neon>, 8, 1 }, { &vp9_fht16x16_c, &iht_wrapper<vp9_iht16x16_256_add_neon>, 16, 1 } }; INSTANTIATE_TEST_SUITE_P( NEON, TransHT, ::testing::Combine( ::testing::Range(0, static_cast<int>(sizeof(ht_neon_func_info) / sizeof(ht_neon_func_info[0]))), ::testing::Values(ht_neon_func_info), ::testing::Range(0, 4), ::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12))); #endif // HAVE_NEON #if HAVE_SSE2 static const FuncInfo ht_sse2_func_info[3] = { { &vp9_fht4x4_sse2, &iht_wrapper<vp9_iht4x4_16_add_sse2>, 4, 1 }, { &vp9_fht8x8_sse2, &iht_wrapper<vp9_iht8x8_64_add_sse2>, 8, 1 }, { &vp9_fht16x16_sse2, &iht_wrapper<vp9_iht16x16_256_add_sse2>, 16, 1 } }; INSTANTIATE_TEST_SUITE_P( SSE2, TransHT, ::testing::Combine(::testing::Range(0, 3), ::testing::Values(ht_sse2_func_info), ::testing::Range(0, 4), ::testing::Values(VPX_BITS_8))); #endif // HAVE_SSE2 #if HAVE_SSE4_1 && CONFIG_VP9_HIGHBITDEPTH static const FuncInfo ht_sse4_1_func_info[3] = { { &vp9_highbd_fht4x4_c, &highbd_iht_wrapper<vp9_highbd_iht4x4_16_add_sse4_1>, 4, 2 }, { vp9_highbd_fht8x8_c, &highbd_iht_wrapper<vp9_highbd_iht8x8_64_add_sse4_1>, 8, 2 }, { &vp9_highbd_fht16x16_c, &highbd_iht_wrapper<vp9_highbd_iht16x16_256_add_sse4_1>, 16, 2 } }; INSTANTIATE_TEST_SUITE_P( SSE4_1, TransHT, ::testing::Combine(::testing::Range(0, 3), ::testing::Values(ht_sse4_1_func_info), ::testing::Range(0, 4), ::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12))); #endif // HAVE_SSE4_1 && CONFIG_VP9_HIGHBITDEPTH #if HAVE_VSX && !CONFIG_EMULATE_HARDWARE && !CONFIG_VP9_HIGHBITDEPTH static const FuncInfo ht_vsx_func_info[3] = { { &vp9_fht4x4_c, &iht_wrapper<vp9_iht4x4_16_add_vsx>, 4, 1 }, { &vp9_fht8x8_c, &iht_wrapper<vp9_iht8x8_64_add_vsx>, 8, 1 }, { &vp9_fht16x16_c, &iht_wrapper<vp9_iht16x16_256_add_vsx>, 16, 1 } }; INSTANTIATE_TEST_SUITE_P(VSX, TransHT, ::testing::Combine(::testing::Range(0, 3), ::testing::Values(ht_vsx_func_info), ::testing::Range(0, 4), ::testing::Values(VPX_BITS_8))); #endif // HAVE_VSX #endif // !CONFIG_EMULATE_HARDWARE /* -------------------------------------------------------------------------- */ class TransWHT : public TransTestBase { public: TransWHT() { fwd_txfm_ref = fwht_ref; } }; TEST_P(TransWHT, AccuracyCheck) { RunAccuracyCheck(0); } TEST_P(TransWHT, CoeffCheck) { RunCoeffCheck(); } TEST_P(TransWHT, MemCheck) { RunMemCheck(); } TEST_P(TransWHT, InvAccuracyCheck) { RunInvAccuracyCheck(0); } static const FuncInfo wht_c_func_info[] = { #if CONFIG_VP9_HIGHBITDEPTH { &fdct_wrapper<vp9_highbd_fwht4x4_c>, &highbd_idct_wrapper<vpx_highbd_iwht4x4_16_add_c>, 4, 2 }, #endif { &fdct_wrapper<vp9_fwht4x4_c>, &idct_wrapper<vpx_iwht4x4_16_add_c>, 4, 1 } }; INSTANTIATE_TEST_SUITE_P( C, TransWHT, ::testing::Combine( ::testing::Range(0, static_cast<int>(sizeof(wht_c_func_info) / sizeof(wht_c_func_info[0]))), ::testing::Values(wht_c_func_info), ::testing::Values(0), ::testing::Values(VPX_BITS_8, VPX_BITS_10, VPX_BITS_12))); #if HAVE_SSE2 && !CONFIG_EMULATE_HARDWARE static const FuncInfo wht_sse2_func_info = { &fdct_wrapper<vp9_fwht4x4_sse2>, &idct_wrapper<vpx_iwht4x4_16_add_sse2>, 4, 1 }; INSTANTIATE_TEST_SUITE_P(SSE2, TransWHT, ::testing::Values(make_tuple(0, &wht_sse2_func_info, 0, VPX_BITS_8))); #endif // HAVE_SSE2 && !CONFIG_EMULATE_HARDWARE #if HAVE_VSX && !CONFIG_EMULATE_HARDWARE && !CONFIG_VP9_HIGHBITDEPTH static const FuncInfo wht_vsx_func_info = { &fdct_wrapper<vp9_fwht4x4_c>, &idct_wrapper<vpx_iwht4x4_16_add_vsx>, 4, 1 }; INSTANTIATE_TEST_SUITE_P(VSX, TransWHT, ::testing::Values(make_tuple(0, &wht_vsx_func_info, 0, VPX_BITS_8))); #endif // HAVE_VSX && !CONFIG_EMULATE_HARDWARE } // namespace