ref: f80d1b33c41b55511ae278607bb533531b5b6e85
dir: /vpx_dsp/x86/convolve_avx2.h/
/* * Copyright (c) 2017 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VPX_VPX_DSP_X86_CONVOLVE_AVX2_H_ #define VPX_VPX_DSP_X86_CONVOLVE_AVX2_H_ #include <immintrin.h> // AVX2 #include "./vpx_config.h" #if defined(__clang__) #if (__clang_major__ > 0 && __clang_major__ < 3) || \ (__clang_major__ == 3 && __clang_minor__ <= 3) || \ (defined(__APPLE__) && defined(__apple_build_version__) && \ ((__clang_major__ == 4 && __clang_minor__ <= 2) || \ (__clang_major__ == 5 && __clang_minor__ == 0))) #define MM256_BROADCASTSI128_SI256(x) \ _mm_broadcastsi128_si256((__m128i const *)&(x)) #else // clang > 3.3, and not 5.0 on macosx. #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // clang <= 3.3 #elif defined(__GNUC__) #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) #define MM256_BROADCASTSI128_SI256(x) \ _mm_broadcastsi128_si256((__m128i const *)&(x)) #elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 #define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) #else // gcc > 4.7 #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // gcc <= 4.6 #else // !(gcc || clang) #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) #endif // __clang__ static INLINE void shuffle_filter_avx2(const int16_t *const filter, __m256i *const f) { const __m256i f_values = MM256_BROADCASTSI128_SI256(_mm_load_si128((const __m128i *)filter)); // pack and duplicate the filter values f[0] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0200u)); f[1] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0604u)); f[2] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0a08u)); f[3] = _mm256_shuffle_epi8(f_values, _mm256_set1_epi16(0x0e0cu)); } static INLINE __m256i convolve8_16_avx2(const __m256i *const s, const __m256i *const f) { // multiply 2 adjacent elements with the filter and add the result const __m256i k_64 = _mm256_set1_epi16(1 << 6); const __m256i x0 = _mm256_maddubs_epi16(s[0], f[0]); const __m256i x1 = _mm256_maddubs_epi16(s[1], f[1]); const __m256i x2 = _mm256_maddubs_epi16(s[2], f[2]); const __m256i x3 = _mm256_maddubs_epi16(s[3], f[3]); __m256i sum1, sum2; // sum the results together, saturating only on the final step // adding x0 with x2 and x1 with x3 is the only order that prevents // outranges for all filters sum1 = _mm256_add_epi16(x0, x2); sum2 = _mm256_add_epi16(x1, x3); // add the rounding offset early to avoid another saturated add sum1 = _mm256_add_epi16(sum1, k_64); sum1 = _mm256_adds_epi16(sum1, sum2); // round and shift by 7 bit each 16 bit sum1 = _mm256_srai_epi16(sum1, 7); return sum1; } static INLINE __m128i convolve8_8_avx2(const __m256i *const s, const __m256i *const f) { // multiply 2 adjacent elements with the filter and add the result const __m128i k_64 = _mm_set1_epi16(1 << 6); const __m128i x0 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[0]), _mm256_castsi256_si128(f[0])); const __m128i x1 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[1]), _mm256_castsi256_si128(f[1])); const __m128i x2 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[2]), _mm256_castsi256_si128(f[2])); const __m128i x3 = _mm_maddubs_epi16(_mm256_castsi256_si128(s[3]), _mm256_castsi256_si128(f[3])); __m128i sum1, sum2; // sum the results together, saturating only on the final step // adding x0 with x2 and x1 with x3 is the only order that prevents // outranges for all filters sum1 = _mm_add_epi16(x0, x2); sum2 = _mm_add_epi16(x1, x3); // add the rounding offset early to avoid another saturated add sum1 = _mm_add_epi16(sum1, k_64); sum1 = _mm_adds_epi16(sum1, sum2); // shift by 7 bit each 16 bit sum1 = _mm_srai_epi16(sum1, 7); return sum1; } static INLINE __m256i mm256_loadu2_si128(const void *lo, const void *hi) { const __m256i tmp = _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)lo)); return _mm256_inserti128_si256(tmp, _mm_loadu_si128((const __m128i *)hi), 1); } static INLINE __m256i mm256_loadu2_epi64(const void *lo, const void *hi) { const __m256i tmp = _mm256_castsi128_si256(_mm_loadl_epi64((const __m128i *)lo)); return _mm256_inserti128_si256(tmp, _mm_loadl_epi64((const __m128i *)hi), 1); } static INLINE void mm256_store2_si128(__m128i *const dst_ptr_1, __m128i *const dst_ptr_2, const __m256i *const src) { _mm_store_si128(dst_ptr_1, _mm256_castsi256_si128(*src)); _mm_store_si128(dst_ptr_2, _mm256_extractf128_si256(*src, 1)); } static INLINE void mm256_storeu2_epi64(__m128i *const dst_ptr_1, __m128i *const dst_ptr_2, const __m256i *const src) { _mm_storel_epi64(dst_ptr_1, _mm256_castsi256_si128(*src)); _mm_storel_epi64(dst_ptr_2, _mm256_extractf128_si256(*src, 1)); } static INLINE void mm256_storeu2_epi32(__m128i *const dst_ptr_1, __m128i *const dst_ptr_2, const __m256i *const src) { *((uint32_t *)(dst_ptr_1)) = _mm_cvtsi128_si32(_mm256_castsi256_si128(*src)); *((uint32_t *)(dst_ptr_2)) = _mm_cvtsi128_si32(_mm256_extractf128_si256(*src, 1)); } static INLINE __m256i mm256_round_epi16(const __m256i *const src, const __m256i *const half_depth, const int depth) { const __m256i nearest_src = _mm256_adds_epi16(*src, *half_depth); return _mm256_srai_epi16(nearest_src, depth); } #undef MM256_BROADCASTSI128_SI256 #endif // VPX_VPX_DSP_X86_CONVOLVE_AVX2_H_