ref: fbfd3fdfb7fa136debada4d4fd65825c80d19db9
dir: /vp9/encoder/x86/vp9_error_avx2.c/
/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include <immintrin.h> #include "./vp9_rtcd.h" #include "vpx/vpx_integer.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_dsp/x86/bitdepth_conversion_avx2.h" int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz) { __m256i sse_256, ssz_256; __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi; __m256i sse_hi, ssz_hi; __m128i sse_128, ssz_128; int64_t sse; const __m256i zero = _mm256_setzero_si256(); // If the block size is 16 then the results will fit in 32 bits. if (block_size == 16) { __m256i coeff_256, dqcoeff_256, coeff_hi, dqcoeff_hi; // Load 16 elements for coeff and dqcoeff. coeff_256 = load_tran_low(coeff); dqcoeff_256 = load_tran_low(dqcoeff); // dqcoeff - coeff dqcoeff_256 = _mm256_sub_epi16(dqcoeff_256, coeff_256); // madd (dqcoeff - coeff) dqcoeff_256 = _mm256_madd_epi16(dqcoeff_256, dqcoeff_256); // madd coeff coeff_256 = _mm256_madd_epi16(coeff_256, coeff_256); // Save the higher 64 bit of each 128 bit lane. dqcoeff_hi = _mm256_srli_si256(dqcoeff_256, 8); coeff_hi = _mm256_srli_si256(coeff_256, 8); // Add the higher 64 bit to the low 64 bit. dqcoeff_256 = _mm256_add_epi32(dqcoeff_256, dqcoeff_hi); coeff_256 = _mm256_add_epi32(coeff_256, coeff_hi); // Expand each double word in the lower 64 bits to quad word. sse_256 = _mm256_unpacklo_epi32(dqcoeff_256, zero); ssz_256 = _mm256_unpacklo_epi32(coeff_256, zero); } else { int i; assert(block_size % 32 == 0); sse_256 = zero; ssz_256 = zero; for (i = 0; i < block_size; i += 32) { __m256i coeff_0, coeff_1, dqcoeff_0, dqcoeff_1; // Load 32 elements for coeff and dqcoeff. coeff_0 = load_tran_low(coeff + i); dqcoeff_0 = load_tran_low(dqcoeff + i); coeff_1 = load_tran_low(coeff + i + 16); dqcoeff_1 = load_tran_low(dqcoeff + i + 16); // dqcoeff - coeff dqcoeff_0 = _mm256_sub_epi16(dqcoeff_0, coeff_0); dqcoeff_1 = _mm256_sub_epi16(dqcoeff_1, coeff_1); // madd (dqcoeff - coeff) dqcoeff_0 = _mm256_madd_epi16(dqcoeff_0, dqcoeff_0); dqcoeff_1 = _mm256_madd_epi16(dqcoeff_1, dqcoeff_1); // madd coeff coeff_0 = _mm256_madd_epi16(coeff_0, coeff_0); coeff_1 = _mm256_madd_epi16(coeff_1, coeff_1); // Add the first madd (dqcoeff - coeff) with the second. dqcoeff_0 = _mm256_add_epi32(dqcoeff_0, dqcoeff_1); // Add the first madd (coeff) with the second. coeff_0 = _mm256_add_epi32(coeff_0, coeff_1); // Expand each double word of madd (dqcoeff - coeff) to quad word. exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_0, zero); exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_0, zero); // expand each double word of madd (coeff) to quad word exp_coeff_lo = _mm256_unpacklo_epi32(coeff_0, zero); exp_coeff_hi = _mm256_unpackhi_epi32(coeff_0, zero); // Add each quad word of madd (dqcoeff - coeff) and madd (coeff). sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_lo); ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_lo); sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_hi); ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_hi); } } // Save the higher 64 bit of each 128 bit lane. sse_hi = _mm256_srli_si256(sse_256, 8); ssz_hi = _mm256_srli_si256(ssz_256, 8); // Add the higher 64 bit to the low 64 bit. sse_256 = _mm256_add_epi64(sse_256, sse_hi); ssz_256 = _mm256_add_epi64(ssz_256, ssz_hi); // Add each 64 bit from each of the 128 bit lane of the 256 bit. sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256), _mm256_extractf128_si256(sse_256, 1)); ssz_128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_256), _mm256_extractf128_si256(ssz_256, 1)); // Store the results. _mm_storel_epi64((__m128i *)(&sse), sse_128); _mm_storel_epi64((__m128i *)(ssz), ssz_128); return sse; } int64_t vp9_block_error_fp_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff, int block_size) { int i; const __m256i zero = _mm256_setzero_si256(); __m256i sse_256 = zero; __m256i sse_hi; __m128i sse_128; int64_t sse; if (block_size == 16) { // Load 16 elements for coeff and dqcoeff. const __m256i _coeff = load_tran_low(coeff); const __m256i _dqcoeff = load_tran_low(dqcoeff); // dqcoeff - coeff const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff); // madd (dqcoeff - coeff) const __m256i error_lo = _mm256_madd_epi16(diff, diff); // Save the higher 64 bit of each 128 bit lane. const __m256i error_hi = _mm256_srli_si256(error_lo, 8); // Add the higher 64 bit to the low 64 bit. const __m256i error = _mm256_add_epi32(error_lo, error_hi); // Expand each double word in the lower 64 bits to quad word. sse_256 = _mm256_unpacklo_epi32(error, zero); } else { for (i = 0; i < block_size; i += 16) { // Load 16 elements for coeff and dqcoeff. const __m256i _coeff = load_tran_low(coeff); const __m256i _dqcoeff = load_tran_low(dqcoeff); const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff); const __m256i error = _mm256_madd_epi16(diff, diff); // Expand each double word of madd (dqcoeff - coeff) to quad word. const __m256i exp_error_lo = _mm256_unpacklo_epi32(error, zero); const __m256i exp_error_hi = _mm256_unpackhi_epi32(error, zero); // Add each quad word of madd (dqcoeff - coeff). sse_256 = _mm256_add_epi64(sse_256, exp_error_lo); sse_256 = _mm256_add_epi64(sse_256, exp_error_hi); coeff += 16; dqcoeff += 16; } } // Save the higher 64 bit of each 128 bit lane. sse_hi = _mm256_srli_si256(sse_256, 8); // Add the higher 64 bit to the low 64 bit. sse_256 = _mm256_add_epi64(sse_256, sse_hi); // Add each 64 bit from each of the 128 bit lane of the 256 bit. sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256), _mm256_extractf128_si256(sse_256, 1)); // Store the results. _mm_storel_epi64((__m128i *)&sse, sse_128); return sse; }