ref: fccaa5fa7a3e134949f5ea9fe3d4f3c388d4243b
dir: /vpx_dsp/ppc/deblock_vsx.c/
/* * Copyright (c) 2018 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <assert.h> #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/ppc/types_vsx.h" extern const int16_t vpx_rv[]; static const uint8x16_t load_merge = { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F }; static const uint8x16_t st8_perm = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F }; static INLINE uint8x16_t apply_filter(uint8x16_t ctx[4], uint8x16_t v, uint8x16_t filter) { const uint8x16_t k1 = vec_avg(ctx[0], ctx[1]); const uint8x16_t k2 = vec_avg(ctx[3], ctx[2]); const uint8x16_t k3 = vec_avg(k1, k2); const uint8x16_t f_a = vec_max(vec_absd(v, ctx[0]), vec_absd(v, ctx[1])); const uint8x16_t f_b = vec_max(vec_absd(v, ctx[2]), vec_absd(v, ctx[3])); const bool8x16_t mask = vec_cmplt(vec_max(f_a, f_b), filter); return vec_sel(v, vec_avg(k3, v), mask); } static INLINE void vert_ctx(uint8x16_t ctx[4], int col, uint8_t *src, int stride) { ctx[0] = vec_vsx_ld(col - 2 * stride, src); ctx[1] = vec_vsx_ld(col - stride, src); ctx[2] = vec_vsx_ld(col + stride, src); ctx[3] = vec_vsx_ld(col + 2 * stride, src); } static INLINE void horz_ctx(uint8x16_t ctx[4], uint8x16_t left_ctx, uint8x16_t v, uint8x16_t right_ctx) { static const uint8x16_t l2_perm = { 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D }; static const uint8x16_t l1_perm = { 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E }; static const uint8x16_t r1_perm = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10 }; static const uint8x16_t r2_perm = { 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11 }; ctx[0] = vec_perm(left_ctx, v, l2_perm); ctx[1] = vec_perm(left_ctx, v, l1_perm); ctx[2] = vec_perm(v, right_ctx, r1_perm); ctx[3] = vec_perm(v, right_ctx, r2_perm); } void vpx_post_proc_down_and_across_mb_row_vsx(unsigned char *src_ptr, unsigned char *dst_ptr, int src_pixels_per_line, int dst_pixels_per_line, int cols, unsigned char *f, int size) { int row, col; uint8x16_t ctx[4], out, v, left_ctx; for (row = 0; row < size; row++) { for (col = 0; col < cols - 8; col += 16) { const uint8x16_t filter = vec_vsx_ld(col, f); v = vec_vsx_ld(col, src_ptr); vert_ctx(ctx, col, src_ptr, src_pixels_per_line); vec_vsx_st(apply_filter(ctx, v, filter), col, dst_ptr); } if (col != cols) { const uint8x16_t filter = vec_vsx_ld(col, f); v = vec_vsx_ld(col, src_ptr); vert_ctx(ctx, col, src_ptr, src_pixels_per_line); out = apply_filter(ctx, v, filter); vec_vsx_st(vec_perm(out, v, st8_perm), col, dst_ptr); } /* now post_proc_across */ left_ctx = vec_splats(dst_ptr[0]); v = vec_vsx_ld(0, dst_ptr); for (col = 0; col < cols - 8; col += 16) { const uint8x16_t filter = vec_vsx_ld(col, f); const uint8x16_t right_ctx = (col + 16 == cols) ? vec_splats(dst_ptr[cols - 1]) : vec_vsx_ld(col, dst_ptr + 16); horz_ctx(ctx, left_ctx, v, right_ctx); vec_vsx_st(apply_filter(ctx, v, filter), col, dst_ptr); left_ctx = v; v = right_ctx; } if (col != cols) { const uint8x16_t filter = vec_vsx_ld(col, f); const uint8x16_t right_ctx = vec_splats(dst_ptr[cols - 1]); horz_ctx(ctx, left_ctx, v, right_ctx); out = apply_filter(ctx, v, filter); vec_vsx_st(vec_perm(out, v, st8_perm), col, dst_ptr); } src_ptr += src_pixels_per_line; dst_ptr += dst_pixels_per_line; } } // C: s[c + 7] static INLINE int16x8_t next7l_s16(uint8x16_t c) { static const uint8x16_t next7_perm = { 0x07, 0x10, 0x08, 0x11, 0x09, 0x12, 0x0A, 0x13, 0x0B, 0x14, 0x0C, 0x15, 0x0D, 0x16, 0x0E, 0x17, }; return (int16x8_t)vec_perm(c, vec_zeros_u8, next7_perm); } // Slide across window and add. static INLINE int16x8_t slide_sum_s16(int16x8_t x) { // x = A B C D E F G H // // 0 A B C D E F G const int16x8_t sum1 = vec_add(x, vec_slo(x, vec_splats((int8_t)(2 << 3)))); // 0 0 A B C D E F const int16x8_t sum2 = vec_add(vec_slo(x, vec_splats((int8_t)(4 << 3))), // 0 0 0 A B C D E vec_slo(x, vec_splats((int8_t)(6 << 3)))); // 0 0 0 0 A B C D const int16x8_t sum3 = vec_add(vec_slo(x, vec_splats((int8_t)(8 << 3))), // 0 0 0 0 0 A B C vec_slo(x, vec_splats((int8_t)(10 << 3)))); // 0 0 0 0 0 0 A B const int16x8_t sum4 = vec_add(vec_slo(x, vec_splats((int8_t)(12 << 3))), // 0 0 0 0 0 0 0 A vec_slo(x, vec_splats((int8_t)(14 << 3)))); return vec_add(vec_add(sum1, sum2), vec_add(sum3, sum4)); } // Slide across window and add. static INLINE int32x4_t slide_sumsq_s32(int32x4_t xsq_even, int32x4_t xsq_odd) { // 0 A C E // + 0 B D F int32x4_t sumsq_1 = vec_add(vec_slo(xsq_even, vec_splats((int8_t)(4 << 3))), vec_slo(xsq_odd, vec_splats((int8_t)(4 << 3)))); // 0 0 A C // + 0 0 B D int32x4_t sumsq_2 = vec_add(vec_slo(xsq_even, vec_splats((int8_t)(8 << 3))), vec_slo(xsq_odd, vec_splats((int8_t)(8 << 3)))); // 0 0 0 A // + 0 0 0 B int32x4_t sumsq_3 = vec_add(vec_slo(xsq_even, vec_splats((int8_t)(12 << 3))), vec_slo(xsq_odd, vec_splats((int8_t)(12 << 3)))); sumsq_1 = vec_add(sumsq_1, xsq_even); sumsq_2 = vec_add(sumsq_2, sumsq_3); return vec_add(sumsq_1, sumsq_2); } // C: (b + sum + val) >> 4 static INLINE int16x8_t filter_s16(int16x8_t b, int16x8_t sum, int16x8_t val) { return vec_sra(vec_add(vec_add(b, sum), val), vec_splats((uint16_t)4)); } // C: sumsq * 15 - sum * sum static INLINE bool16x8_t mask_s16(int32x4_t sumsq_even, int32x4_t sumsq_odd, int16x8_t sum, int32x4_t lim) { static const uint8x16_t mask_merge = { 0x00, 0x01, 0x10, 0x11, 0x04, 0x05, 0x14, 0x15, 0x08, 0x09, 0x18, 0x19, 0x0C, 0x0D, 0x1C, 0x1D }; const int32x4_t sumsq_odd_scaled = vec_mul(sumsq_odd, vec_splats((int32_t)15)); const int32x4_t sumsq_even_scaled = vec_mul(sumsq_even, vec_splats((int32_t)15)); const int32x4_t thres_odd = vec_sub(sumsq_odd_scaled, vec_mulo(sum, sum)); const int32x4_t thres_even = vec_sub(sumsq_even_scaled, vec_mule(sum, sum)); const bool32x4_t mask_odd = vec_cmplt(thres_odd, lim); const bool32x4_t mask_even = vec_cmplt(thres_even, lim); return vec_perm((bool16x8_t)mask_even, (bool16x8_t)mask_odd, mask_merge); } void vpx_mbpost_proc_across_ip_vsx(unsigned char *src, int pitch, int rows, int cols, int flimit) { int row, col; const int32x4_t lim = vec_splats(flimit); // 8 columns are processed at a time. assert(cols % 8 == 0); for (row = 0; row < rows; row++) { // The sum is signed and requires at most 13 bits. // (8 bits + sign) * 15 (4 bits) int16x8_t sum; // The sum of squares requires at most 20 bits. // (16 bits + sign) * 15 (4 bits) int32x4_t sumsq_even, sumsq_odd; // Fill left context with first col. int16x8_t left_ctx = vec_splats((int16_t)src[0]); int16_t s = src[0] * 9; int32_t ssq = src[0] * src[0] * 9 + 16; // Fill the next 6 columns of the sliding window with cols 2 to 7. for (col = 1; col <= 6; ++col) { s += src[col]; ssq += src[col] * src[col]; } // Set this sum to every element in the window. sum = vec_splats(s); sumsq_even = vec_splats(ssq); sumsq_odd = vec_splats(ssq); for (col = 0; col < cols; col += 8) { bool16x8_t mask; int16x8_t filtered, masked; uint8x16_t out; const uint8x16_t val = vec_vsx_ld(0, src + col); const int16x8_t val_high = unpack_to_s16_h(val); // C: s[c + 7] const int16x8_t right_ctx = (col + 8 == cols) ? vec_splats((int16_t)src[col + 7]) : next7l_s16(val); // C: x = s[c + 7] - s[c - 8]; const int16x8_t x = vec_sub(right_ctx, left_ctx); const int32x4_t xsq_even = vec_sub(vec_mule(right_ctx, right_ctx), vec_mule(left_ctx, left_ctx)); const int32x4_t xsq_odd = vec_sub(vec_mulo(right_ctx, right_ctx), vec_mulo(left_ctx, left_ctx)); const int32x4_t sumsq_tmp = slide_sumsq_s32(xsq_even, xsq_odd); // A C E G // 0 B D F // 0 A C E // 0 0 B D // 0 0 A C // 0 0 0 B // 0 0 0 A sumsq_even = vec_add(sumsq_even, sumsq_tmp); // B D F G // A C E G // 0 B D F // 0 A C E // 0 0 B D // 0 0 A C // 0 0 0 B // 0 0 0 A sumsq_odd = vec_add(sumsq_odd, vec_add(sumsq_tmp, xsq_odd)); sum = vec_add(sum, slide_sum_s16(x)); // C: (8 + sum + s[c]) >> 4 filtered = filter_s16(vec_splats((int16_t)8), sum, val_high); // C: sumsq * 15 - sum * sum mask = mask_s16(sumsq_even, sumsq_odd, sum, lim); masked = vec_sel(val_high, filtered, mask); out = vec_perm((uint8x16_t)masked, vec_vsx_ld(0, src + col), load_merge); vec_vsx_st(out, 0, src + col); // Update window sum and square sum sum = vec_splat(sum, 7); sumsq_even = vec_splat(sumsq_odd, 3); sumsq_odd = vec_splat(sumsq_odd, 3); // C: s[c - 8] (for next iteration) left_ctx = val_high; } src += pitch; } } void vpx_mbpost_proc_down_vsx(uint8_t *dst, int pitch, int rows, int cols, int flimit) { int col, row, i; int16x8_t window[16]; const int32x4_t lim = vec_splats(flimit); // 8 columns are processed at a time. assert(cols % 8 == 0); // If rows is less than 8 the bottom border extension fails. assert(rows >= 8); for (col = 0; col < cols; col += 8) { // The sum is signed and requires at most 13 bits. // (8 bits + sign) * 15 (4 bits) int16x8_t r1, sum; // The sum of squares requires at most 20 bits. // (16 bits + sign) * 15 (4 bits) int32x4_t sumsq_even, sumsq_odd; r1 = unpack_to_s16_h(vec_vsx_ld(0, dst)); // Fill sliding window with first row. for (i = 0; i <= 8; i++) { window[i] = r1; } // First 9 rows of the sliding window are the same. // sum = r1 * 9 sum = vec_mladd(r1, vec_splats((int16_t)9), vec_zeros_s16); // sumsq = r1 * r1 * 9 sumsq_even = vec_mule(sum, r1); sumsq_odd = vec_mulo(sum, r1); // Fill the next 6 rows of the sliding window with rows 2 to 7. for (i = 1; i <= 6; ++i) { const int16x8_t next_row = unpack_to_s16_h(vec_vsx_ld(i * pitch, dst)); window[i + 8] = next_row; sum = vec_add(sum, next_row); sumsq_odd = vec_add(sumsq_odd, vec_mulo(next_row, next_row)); sumsq_even = vec_add(sumsq_even, vec_mule(next_row, next_row)); } for (row = 0; row < rows; row++) { int32x4_t d15_even, d15_odd, d0_even, d0_odd; bool16x8_t mask; int16x8_t filtered, masked; uint8x16_t out; const int16x8_t rv = vec_vsx_ld(0, vpx_rv + (row & 127)); // Move the sliding window if (row + 7 < rows) { window[15] = unpack_to_s16_h(vec_vsx_ld((row + 7) * pitch, dst)); } else { window[15] = window[14]; } // C: sum += s[7 * pitch] - s[-8 * pitch]; sum = vec_add(sum, vec_sub(window[15], window[0])); // C: sumsq += s[7 * pitch] * s[7 * pitch] - s[-8 * pitch] * s[-8 * // pitch]; // Optimization Note: Caching a squared-window for odd and even is // slower than just repeating the multiplies. d15_odd = vec_mulo(window[15], window[15]); d15_even = vec_mule(window[15], window[15]); d0_odd = vec_mulo(window[0], window[0]); d0_even = vec_mule(window[0], window[0]); sumsq_odd = vec_add(sumsq_odd, vec_sub(d15_odd, d0_odd)); sumsq_even = vec_add(sumsq_even, vec_sub(d15_even, d0_even)); // C: (vpx_rv[(r & 127) + (c & 7)] + sum + s[0]) >> 4 filtered = filter_s16(rv, sum, window[8]); // C: sumsq * 15 - sum * sum mask = mask_s16(sumsq_even, sumsq_odd, sum, lim); masked = vec_sel(window[8], filtered, mask); // TODO(ltrudeau) If cols % 16 == 0, we could just process 16 per // iteration out = vec_perm((uint8x16_t)masked, vec_vsx_ld(0, dst + row * pitch), load_merge); vec_vsx_st(out, 0, dst + row * pitch); // Optimization Note: Turns out that the following loop is faster than // using pointers to manage the sliding window. for (i = 1; i < 16; i++) { window[i - 1] = window[i]; } } dst += 8; } }