shithub: lwext4

ref: a8d8a94bfac9a6dfcbbfb463f62444f968637d5a
dir: /demos/stm32f429_disco/stm/stm32f4_spl/src/stm32f4xx_fsmc.c/

View raw version
/**
  ******************************************************************************
  * @file    stm32f4xx_fsmc.c
  * @author  MCD Application Team
  * @version V1.3.0
  * @date    08-November-2013
 * @brief    This file provides firmware functions to manage the following 
  *          functionalities of the FSMC peripheral:           
  *           + Interface with SRAM, PSRAM, NOR and OneNAND memories
  *           + Interface with NAND memories
  *           + Interface with 16-bit PC Card compatible memories  
  *           + Interrupts and flags management   
  *           
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
  *
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
  * You may not use this file except in compliance with the License.
  * You may obtain a copy of the License at:
  *
  *        http://www.st.com/software_license_agreement_liberty_v2
  *
  * Unless required by applicable law or agreed to in writing, software 
  * distributed under the License is distributed on an "AS IS" BASIS, 
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  * See the License for the specific language governing permissions and
  * limitations under the License.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_fsmc.h"
#include "stm32f4xx_rcc.h"

#if defined (STM32F40_41xxx)

/** @addtogroup STM32F4xx_StdPeriph_Driver
  * @{
  */

/** @defgroup FSMC 
  * @brief FSMC driver modules
  * @{
  */ 

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/* --------------------- FSMC registers bit mask ---------------------------- */
/* FSMC BCRx Mask */
#define BCR_MBKEN_SET          ((uint32_t)0x00000001)
#define BCR_MBKEN_RESET        ((uint32_t)0x000FFFFE)
#define BCR_FACCEN_SET         ((uint32_t)0x00000040)

/* FSMC PCRx Mask */
#define PCR_PBKEN_SET          ((uint32_t)0x00000004)
#define PCR_PBKEN_RESET        ((uint32_t)0x000FFFFB)
#define PCR_ECCEN_SET          ((uint32_t)0x00000040)
#define PCR_ECCEN_RESET        ((uint32_t)0x000FFFBF)
#define PCR_MEMORYTYPE_NAND    ((uint32_t)0x00000008)

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/** @defgroup FSMC_Private_Functions
  * @{
  */

/** @defgroup FSMC_Group1 NOR/SRAM Controller functions
 *  @brief   NOR/SRAM Controller functions 
 *
@verbatim   
 ===============================================================================
                    ##### NOR and SRAM Controller functions #####
 ===============================================================================  

 [..] The following sequence should be followed to configure the FSMC to interface
      with SRAM, PSRAM, NOR or OneNAND memory connected to the NOR/SRAM Bank:
 
   (#) Enable the clock for the FSMC and associated GPIOs using the following functions:
          RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);
          RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);

   (#) FSMC pins configuration 
       (++) Connect the involved FSMC pins to AF12 using the following function 
            GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC); 
       (++) Configure these FSMC pins in alternate function mode by calling the function
            GPIO_Init();    
       
   (#) Declare a FSMC_NORSRAMInitTypeDef structure, for example:
          FSMC_NORSRAMInitTypeDef  FSMC_NORSRAMInitStructure;
      and fill the FSMC_NORSRAMInitStructure variable with the allowed values of
      the structure member.
      
   (#) Initialize the NOR/SRAM Controller by calling the function
          FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure); 

   (#) Then enable the NOR/SRAM Bank, for example:
          FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM2, ENABLE);  

   (#) At this stage you can read/write from/to the memory connected to the NOR/SRAM Bank. 
   
@endverbatim
  * @{
  */

/**
  * @brief  De-initializes the FSMC NOR/SRAM Banks registers to their default 
  *   reset values.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1  
  *            @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2 
  *            @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3 
  *            @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4 
  * @retval None
  */
void FSMC_NORSRAMDeInit(uint32_t FSMC_Bank)
{
  /* Check the parameter */
  assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
  
  /* FSMC_Bank1_NORSRAM1 */
  if(FSMC_Bank == FSMC_Bank1_NORSRAM1)
  {
    FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030DB;    
  }
  /* FSMC_Bank1_NORSRAM2,  FSMC_Bank1_NORSRAM3 or FSMC_Bank1_NORSRAM4 */
  else
  {   
    FSMC_Bank1->BTCR[FSMC_Bank] = 0x000030D2; 
  }
  FSMC_Bank1->BTCR[FSMC_Bank + 1] = 0x0FFFFFFF;
  FSMC_Bank1E->BWTR[FSMC_Bank] = 0x0FFFFFFF;  
}

/**
  * @brief  Initializes the FSMC NOR/SRAM Banks according to the specified
  *         parameters in the FSMC_NORSRAMInitStruct.
  * @param  FSMC_NORSRAMInitStruct : pointer to a FSMC_NORSRAMInitTypeDef structure
  *         that contains the configuration information for the FSMC NOR/SRAM 
  *         specified Banks.                       
  * @retval None
  */
void FSMC_NORSRAMInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
{ 
  /* Check the parameters */
  assert_param(IS_FSMC_NORSRAM_BANK(FSMC_NORSRAMInitStruct->FSMC_Bank));
  assert_param(IS_FSMC_MUX(FSMC_NORSRAMInitStruct->FSMC_DataAddressMux));
  assert_param(IS_FSMC_MEMORY(FSMC_NORSRAMInitStruct->FSMC_MemoryType));
  assert_param(IS_FSMC_MEMORY_WIDTH(FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth));
  assert_param(IS_FSMC_BURSTMODE(FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode));
  assert_param(IS_FSMC_ASYNWAIT(FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait));
  assert_param(IS_FSMC_WAIT_POLARITY(FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity));
  assert_param(IS_FSMC_WRAP_MODE(FSMC_NORSRAMInitStruct->FSMC_WrapMode));
  assert_param(IS_FSMC_WAIT_SIGNAL_ACTIVE(FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive));
  assert_param(IS_FSMC_WRITE_OPERATION(FSMC_NORSRAMInitStruct->FSMC_WriteOperation));
  assert_param(IS_FSMC_WAITE_SIGNAL(FSMC_NORSRAMInitStruct->FSMC_WaitSignal));
  assert_param(IS_FSMC_EXTENDED_MODE(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode));
  assert_param(IS_FSMC_WRITE_BURST(FSMC_NORSRAMInitStruct->FSMC_WriteBurst));  
  assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime));
  assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime));
  assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime));
  assert_param(IS_FSMC_TURNAROUND_TIME(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration));
  assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision));
  assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency));
  assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode)); 
  
  /* Bank1 NOR/SRAM control register configuration */ 
  FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] = 
            (uint32_t)FSMC_NORSRAMInitStruct->FSMC_DataAddressMux |
            FSMC_NORSRAMInitStruct->FSMC_MemoryType |
            FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth |
            FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode |
            FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait |
            FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity |
            FSMC_NORSRAMInitStruct->FSMC_WrapMode |
            FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive |
            FSMC_NORSRAMInitStruct->FSMC_WriteOperation |
            FSMC_NORSRAMInitStruct->FSMC_WaitSignal |
            FSMC_NORSRAMInitStruct->FSMC_ExtendedMode |
            FSMC_NORSRAMInitStruct->FSMC_WriteBurst;
  if(FSMC_NORSRAMInitStruct->FSMC_MemoryType == FSMC_MemoryType_NOR)
  {
    FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank] |= (uint32_t)BCR_FACCEN_SET;
  }
  /* Bank1 NOR/SRAM timing register configuration */
  FSMC_Bank1->BTCR[FSMC_NORSRAMInitStruct->FSMC_Bank+1] = 
            (uint32_t)FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime |
            (FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime << 4) |
            (FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime << 8) |
            (FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration << 16) |
            (FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision << 20) |
            (FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency << 24) |
             FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode;
            
    
  /* Bank1 NOR/SRAM timing register for write configuration, if extended mode is used */
  if(FSMC_NORSRAMInitStruct->FSMC_ExtendedMode == FSMC_ExtendedMode_Enable)
  {
    assert_param(IS_FSMC_ADDRESS_SETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime));
    assert_param(IS_FSMC_ADDRESS_HOLD_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime));
    assert_param(IS_FSMC_DATASETUP_TIME(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime));
    assert_param(IS_FSMC_CLK_DIV(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision));
    assert_param(IS_FSMC_DATA_LATENCY(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency));
    assert_param(IS_FSMC_ACCESS_MODE(FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode));
    FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] = 
              (uint32_t)FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime |
              (FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime << 4 )|
              (FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime << 8) |
              (FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision << 20) |
              (FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency << 24) |
               FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode;
  }
  else
  {
    FSMC_Bank1E->BWTR[FSMC_NORSRAMInitStruct->FSMC_Bank] = 0x0FFFFFFF;
  }
}

/**
  * @brief  Fills each FSMC_NORSRAMInitStruct member with its default value.
  * @param  FSMC_NORSRAMInitStruct: pointer to a FSMC_NORSRAMInitTypeDef structure 
  *         which will be initialized.
  * @retval None
  */
void FSMC_NORSRAMStructInit(FSMC_NORSRAMInitTypeDef* FSMC_NORSRAMInitStruct)
{  
  /* Reset NOR/SRAM Init structure parameters values */
  FSMC_NORSRAMInitStruct->FSMC_Bank = FSMC_Bank1_NORSRAM1;
  FSMC_NORSRAMInitStruct->FSMC_DataAddressMux = FSMC_DataAddressMux_Enable;
  FSMC_NORSRAMInitStruct->FSMC_MemoryType = FSMC_MemoryType_SRAM;
  FSMC_NORSRAMInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
  FSMC_NORSRAMInitStruct->FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
  FSMC_NORSRAMInitStruct->FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;
  FSMC_NORSRAMInitStruct->FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
  FSMC_NORSRAMInitStruct->FSMC_WrapMode = FSMC_WrapMode_Disable;
  FSMC_NORSRAMInitStruct->FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
  FSMC_NORSRAMInitStruct->FSMC_WriteOperation = FSMC_WriteOperation_Enable;
  FSMC_NORSRAMInitStruct->FSMC_WaitSignal = FSMC_WaitSignal_Enable;
  FSMC_NORSRAMInitStruct->FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
  FSMC_NORSRAMInitStruct->FSMC_WriteBurst = FSMC_WriteBurst_Disable;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressSetupTime = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AddressHoldTime = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataSetupTime = 0xFF;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_CLKDivision = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_DataLatency = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_ReadWriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A; 
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressSetupTime = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AddressHoldTime = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataSetupTime = 0xFF;
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_BusTurnAroundDuration = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_CLKDivision = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_DataLatency = 0xF;
  FSMC_NORSRAMInitStruct->FSMC_WriteTimingStruct->FSMC_AccessMode = FSMC_AccessMode_A;
}

/**
  * @brief  Enables or disables the specified NOR/SRAM Memory Bank.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank1_NORSRAM1: FSMC Bank1 NOR/SRAM1  
  *            @arg FSMC_Bank1_NORSRAM2: FSMC Bank1 NOR/SRAM2 
  *            @arg FSMC_Bank1_NORSRAM3: FSMC Bank1 NOR/SRAM3 
  *            @arg FSMC_Bank1_NORSRAM4: FSMC Bank1 NOR/SRAM4 
  * @param  NewState: new state of the FSMC_Bank. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void FSMC_NORSRAMCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
  assert_param(IS_FSMC_NORSRAM_BANK(FSMC_Bank));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the selected NOR/SRAM Bank by setting the PBKEN bit in the BCRx register */
    FSMC_Bank1->BTCR[FSMC_Bank] |= BCR_MBKEN_SET;
  }
  else
  {
    /* Disable the selected NOR/SRAM Bank by clearing the PBKEN bit in the BCRx register */
    FSMC_Bank1->BTCR[FSMC_Bank] &= BCR_MBKEN_RESET;
  }
}
/**
  * @}
  */

/** @defgroup FSMC_Group2 NAND Controller functions
 *  @brief   NAND Controller functions 
 *
@verbatim   
 ===============================================================================
                    ##### NAND Controller functions #####
 ===============================================================================  

 [..]  The following sequence should be followed to configure the FSMC to interface 
       with 8-bit or 16-bit NAND memory connected to the NAND Bank:
 
  (#) Enable the clock for the FSMC and associated GPIOs using the following functions:
      (++)  RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);
      (++)  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);

  (#) FSMC pins configuration 
      (++) Connect the involved FSMC pins to AF12 using the following function 
           GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC); 
      (++) Configure these FSMC pins in alternate function mode by calling the function
           GPIO_Init();    
       
  (#) Declare a FSMC_NANDInitTypeDef structure, for example:
      FSMC_NANDInitTypeDef  FSMC_NANDInitStructure;
      and fill the FSMC_NANDInitStructure variable with the allowed values of
      the structure member.
      
  (#) Initialize the NAND Controller by calling the function
      FSMC_NANDInit(&FSMC_NANDInitStructure); 

  (#) Then enable the NAND Bank, for example:
      FSMC_NANDCmd(FSMC_Bank3_NAND, ENABLE);  

  (#) At this stage you can read/write from/to the memory connected to the NAND Bank. 
   
 [..]
  (@) To enable the Error Correction Code (ECC), you have to use the function
      FSMC_NANDECCCmd(FSMC_Bank3_NAND, ENABLE);  
 [..]
  (@) and to get the current ECC value you have to use the function
      ECCval = FSMC_GetECC(FSMC_Bank3_NAND); 

@endverbatim
  * @{
  */
  
/**
  * @brief  De-initializes the FSMC NAND Banks registers to their default reset values.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND 
  * @retval None
  */
void FSMC_NANDDeInit(uint32_t FSMC_Bank)
{
  /* Check the parameter */
  assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
  
  if(FSMC_Bank == FSMC_Bank2_NAND)
  {
    /* Set the FSMC_Bank2 registers to their reset values */
    FSMC_Bank2->PCR2 = 0x00000018;
    FSMC_Bank2->SR2 = 0x00000040;
    FSMC_Bank2->PMEM2 = 0xFCFCFCFC;
    FSMC_Bank2->PATT2 = 0xFCFCFCFC;  
  }
  /* FSMC_Bank3_NAND */  
  else
  {
    /* Set the FSMC_Bank3 registers to their reset values */
    FSMC_Bank3->PCR3 = 0x00000018;
    FSMC_Bank3->SR3 = 0x00000040;
    FSMC_Bank3->PMEM3 = 0xFCFCFCFC;
    FSMC_Bank3->PATT3 = 0xFCFCFCFC; 
  }  
}

/**
  * @brief  Initializes the FSMC NAND Banks according to the specified parameters
  *         in the FSMC_NANDInitStruct.
  * @param  FSMC_NANDInitStruct : pointer to a FSMC_NANDInitTypeDef structure that
  *         contains the configuration information for the FSMC NAND specified Banks.                       
  * @retval None
  */
void FSMC_NANDInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct)
{
  uint32_t tmppcr = 0x00000000, tmppmem = 0x00000000, tmppatt = 0x00000000; 
    
  /* Check the parameters */
  assert_param( IS_FSMC_NAND_BANK(FSMC_NANDInitStruct->FSMC_Bank));
  assert_param( IS_FSMC_WAIT_FEATURE(FSMC_NANDInitStruct->FSMC_Waitfeature));
  assert_param( IS_FSMC_MEMORY_WIDTH(FSMC_NANDInitStruct->FSMC_MemoryDataWidth));
  assert_param( IS_FSMC_ECC_STATE(FSMC_NANDInitStruct->FSMC_ECC));
  assert_param( IS_FSMC_ECCPAGE_SIZE(FSMC_NANDInitStruct->FSMC_ECCPageSize));
  assert_param( IS_FSMC_TCLR_TIME(FSMC_NANDInitStruct->FSMC_TCLRSetupTime));
  assert_param( IS_FSMC_TAR_TIME(FSMC_NANDInitStruct->FSMC_TARSetupTime));
  assert_param(IS_FSMC_SETUP_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime));
  assert_param(IS_FSMC_WAIT_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime));
  assert_param(IS_FSMC_HOLD_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime));
  assert_param(IS_FSMC_HIZ_TIME(FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime));
  assert_param(IS_FSMC_SETUP_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime));
  assert_param(IS_FSMC_WAIT_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime));
  assert_param(IS_FSMC_HOLD_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime));
  assert_param(IS_FSMC_HIZ_TIME(FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime));
  
  /* Set the tmppcr value according to FSMC_NANDInitStruct parameters */
  tmppcr = (uint32_t)FSMC_NANDInitStruct->FSMC_Waitfeature |
            PCR_MEMORYTYPE_NAND |
            FSMC_NANDInitStruct->FSMC_MemoryDataWidth |
            FSMC_NANDInitStruct->FSMC_ECC |
            FSMC_NANDInitStruct->FSMC_ECCPageSize |
            (FSMC_NANDInitStruct->FSMC_TCLRSetupTime << 9 )|
            (FSMC_NANDInitStruct->FSMC_TARSetupTime << 13);
            
  /* Set tmppmem value according to FSMC_CommonSpaceTimingStructure parameters */
  tmppmem = (uint32_t)FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime |
            (FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
            (FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
            (FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime << 24); 
            
  /* Set tmppatt value according to FSMC_AttributeSpaceTimingStructure parameters */
  tmppatt = (uint32_t)FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime |
            (FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
            (FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
            (FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime << 24);
  
  if(FSMC_NANDInitStruct->FSMC_Bank == FSMC_Bank2_NAND)
  {
    /* FSMC_Bank2_NAND registers configuration */
    FSMC_Bank2->PCR2 = tmppcr;
    FSMC_Bank2->PMEM2 = tmppmem;
    FSMC_Bank2->PATT2 = tmppatt;
  }
  else
  {
    /* FSMC_Bank3_NAND registers configuration */
    FSMC_Bank3->PCR3 = tmppcr;
    FSMC_Bank3->PMEM3 = tmppmem;
    FSMC_Bank3->PATT3 = tmppatt;
  }
}


/**
  * @brief  Fills each FSMC_NANDInitStruct member with its default value.
  * @param  FSMC_NANDInitStruct: pointer to a FSMC_NANDInitTypeDef structure which
  *         will be initialized.
  * @retval None
  */
void FSMC_NANDStructInit(FSMC_NANDInitTypeDef* FSMC_NANDInitStruct)
{ 
  /* Reset NAND Init structure parameters values */
  FSMC_NANDInitStruct->FSMC_Bank = FSMC_Bank2_NAND;
  FSMC_NANDInitStruct->FSMC_Waitfeature = FSMC_Waitfeature_Disable;
  FSMC_NANDInitStruct->FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
  FSMC_NANDInitStruct->FSMC_ECC = FSMC_ECC_Disable;
  FSMC_NANDInitStruct->FSMC_ECCPageSize = FSMC_ECCPageSize_256Bytes;
  FSMC_NANDInitStruct->FSMC_TCLRSetupTime = 0x0;
  FSMC_NANDInitStruct->FSMC_TARSetupTime = 0x0;
  FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
  FSMC_NANDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;	  
}

/**
  * @brief  Enables or disables the specified NAND Memory Bank.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  * @param  NewState: new state of the FSMC_Bank. This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void FSMC_NANDCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
  assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the selected NAND Bank by setting the PBKEN bit in the PCRx register */
    if(FSMC_Bank == FSMC_Bank2_NAND)
    {
      FSMC_Bank2->PCR2 |= PCR_PBKEN_SET;
    }
    else
    {
      FSMC_Bank3->PCR3 |= PCR_PBKEN_SET;
    }
  }
  else
  {
    /* Disable the selected NAND Bank by clearing the PBKEN bit in the PCRx register */
    if(FSMC_Bank == FSMC_Bank2_NAND)
    {
      FSMC_Bank2->PCR2 &= PCR_PBKEN_RESET;
    }
    else
    {
      FSMC_Bank3->PCR3 &= PCR_PBKEN_RESET;
    }
  }
}
/**
  * @brief  Enables or disables the FSMC NAND ECC feature.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  * @param  NewState: new state of the FSMC NAND ECC feature.  
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void FSMC_NANDECCCmd(uint32_t FSMC_Bank, FunctionalState NewState)
{
  assert_param(IS_FSMC_NAND_BANK(FSMC_Bank));
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the selected NAND Bank ECC function by setting the ECCEN bit in the PCRx register */
    if(FSMC_Bank == FSMC_Bank2_NAND)
    {
      FSMC_Bank2->PCR2 |= PCR_ECCEN_SET;
    }
    else
    {
      FSMC_Bank3->PCR3 |= PCR_ECCEN_SET;
    }
  }
  else
  {
    /* Disable the selected NAND Bank ECC function by clearing the ECCEN bit in the PCRx register */
    if(FSMC_Bank == FSMC_Bank2_NAND)
    {
      FSMC_Bank2->PCR2 &= PCR_ECCEN_RESET;
    }
    else
    {
      FSMC_Bank3->PCR3 &= PCR_ECCEN_RESET;
    }
  }
}

/**
  * @brief  Returns the error correction code register value.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  * @retval The Error Correction Code (ECC) value.
  */
uint32_t FSMC_GetECC(uint32_t FSMC_Bank)
{
  uint32_t eccval = 0x00000000;
  
  if(FSMC_Bank == FSMC_Bank2_NAND)
  {
    /* Get the ECCR2 register value */
    eccval = FSMC_Bank2->ECCR2;
  }
  else
  {
    /* Get the ECCR3 register value */
    eccval = FSMC_Bank3->ECCR3;
  }
  /* Return the error correction code value */
  return(eccval);
}
/**
  * @}
  */

/** @defgroup FSMC_Group3 PCCARD Controller functions
 *  @brief   PCCARD Controller functions 
 *
@verbatim   
 ===============================================================================
                    ##### PCCARD Controller functions #####
 ===============================================================================  

 [..]  he following sequence should be followed to configure the FSMC to interface 
       with 16-bit PC Card compatible memory connected to the PCCARD Bank:
 
  (#)  Enable the clock for the FSMC and associated GPIOs using the following functions:
       (++)  RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);
       (++)  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);

  (#) FSMC pins configuration 
       (++) Connect the involved FSMC pins to AF12 using the following function 
            GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FSMC); 
       (++) Configure these FSMC pins in alternate function mode by calling the function
            GPIO_Init();    
       
  (#) Declare a FSMC_PCCARDInitTypeDef structure, for example:
      FSMC_PCCARDInitTypeDef  FSMC_PCCARDInitStructure;
      and fill the FSMC_PCCARDInitStructure variable with the allowed values of
      the structure member.
      
  (#) Initialize the PCCARD Controller by calling the function
      FSMC_PCCARDInit(&FSMC_PCCARDInitStructure); 

  (#) Then enable the PCCARD Bank:
      FSMC_PCCARDCmd(ENABLE);  

  (#) At this stage you can read/write from/to the memory connected to the PCCARD Bank. 
 
@endverbatim
  * @{
  */

/**
  * @brief  De-initializes the FSMC PCCARD Bank registers to their default reset values.
  * @param  None                       
  * @retval None
  */
void FSMC_PCCARDDeInit(void)
{
  /* Set the FSMC_Bank4 registers to their reset values */
  FSMC_Bank4->PCR4 = 0x00000018; 
  FSMC_Bank4->SR4 = 0x00000000;	
  FSMC_Bank4->PMEM4 = 0xFCFCFCFC;
  FSMC_Bank4->PATT4 = 0xFCFCFCFC;
  FSMC_Bank4->PIO4 = 0xFCFCFCFC;
}

/**
  * @brief  Initializes the FSMC PCCARD Bank according to the specified parameters
  *         in the FSMC_PCCARDInitStruct.
  * @param  FSMC_PCCARDInitStruct : pointer to a FSMC_PCCARDInitTypeDef structure
  *         that contains the configuration information for the FSMC PCCARD Bank.                       
  * @retval None
  */
void FSMC_PCCARDInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct)
{
  /* Check the parameters */
  assert_param(IS_FSMC_WAIT_FEATURE(FSMC_PCCARDInitStruct->FSMC_Waitfeature));
  assert_param(IS_FSMC_TCLR_TIME(FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime));
  assert_param(IS_FSMC_TAR_TIME(FSMC_PCCARDInitStruct->FSMC_TARSetupTime));
 
  assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime));
  assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime));
  assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime));
  assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime));
  
  assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime));
  assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime));
  assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime));
  assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime));
  assert_param(IS_FSMC_SETUP_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime));
  assert_param(IS_FSMC_WAIT_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime));
  assert_param(IS_FSMC_HOLD_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime));
  assert_param(IS_FSMC_HIZ_TIME(FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime));
  
  /* Set the PCR4 register value according to FSMC_PCCARDInitStruct parameters */
  FSMC_Bank4->PCR4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_Waitfeature |
                     FSMC_MemoryDataWidth_16b |  
                     (FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime << 9) |
                     (FSMC_PCCARDInitStruct->FSMC_TARSetupTime << 13);
            
  /* Set PMEM4 register value according to FSMC_CommonSpaceTimingStructure parameters */
  FSMC_Bank4->PMEM4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime |
                      (FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
                      (FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
                      (FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime << 24); 
            
  /* Set PATT4 register value according to FSMC_AttributeSpaceTimingStructure parameters */
  FSMC_Bank4->PATT4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime |
                      (FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
                      (FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
                      (FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime << 24);	
            
  /* Set PIO4 register value according to FSMC_IOSpaceTimingStructure parameters */
  FSMC_Bank4->PIO4 = (uint32_t)FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime |
                     (FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime << 8) |
                     (FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime << 16)|
                     (FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime << 24);             
}

/**
  * @brief  Fills each FSMC_PCCARDInitStruct member with its default value.
  * @param  FSMC_PCCARDInitStruct: pointer to a FSMC_PCCARDInitTypeDef structure
  *         which will be initialized.
  * @retval None
  */
void FSMC_PCCARDStructInit(FSMC_PCCARDInitTypeDef* FSMC_PCCARDInitStruct)
{
  /* Reset PCCARD Init structure parameters values */
  FSMC_PCCARDInitStruct->FSMC_Waitfeature = FSMC_Waitfeature_Disable;
  FSMC_PCCARDInitStruct->FSMC_TCLRSetupTime = 0x0;
  FSMC_PCCARDInitStruct->FSMC_TARSetupTime = 0x0;
  FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_SetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_CommonSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_SetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_AttributeSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;	
  FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_SetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_WaitSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HoldSetupTime = 0xFC;
  FSMC_PCCARDInitStruct->FSMC_IOSpaceTimingStruct->FSMC_HiZSetupTime = 0xFC;
}

/**
  * @brief  Enables or disables the PCCARD Memory Bank.
  * @param  NewState: new state of the PCCARD Memory Bank.  
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void FSMC_PCCARDCmd(FunctionalState NewState)
{
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the PCCARD Bank by setting the PBKEN bit in the PCR4 register */
    FSMC_Bank4->PCR4 |= PCR_PBKEN_SET;
  }
  else
  {
    /* Disable the PCCARD Bank by clearing the PBKEN bit in the PCR4 register */
    FSMC_Bank4->PCR4 &= PCR_PBKEN_RESET;
  }
}
/**
  * @}
  */

/** @defgroup FSMC_Group4  Interrupts and flags management functions
 *  @brief    Interrupts and flags management functions
 *
@verbatim   
 ===============================================================================
             ##### Interrupts and flags management functions #####
 ===============================================================================   

@endverbatim
  * @{
  */

/**
  * @brief  Enables or disables the specified FSMC interrupts.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  *            @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
  * @param  FSMC_IT: specifies the FSMC interrupt sources to be enabled or disabled.
  *          This parameter can be any combination of the following values:
  *            @arg FSMC_IT_RisingEdge: Rising edge detection interrupt. 
  *            @arg FSMC_IT_Level: Level edge detection interrupt.
  *            @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
  * @param  NewState: new state of the specified FSMC interrupts.
  *          This parameter can be: ENABLE or DISABLE.
  * @retval None
  */
void FSMC_ITConfig(uint32_t FSMC_Bank, uint32_t FSMC_IT, FunctionalState NewState)
{
  assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
  assert_param(IS_FSMC_IT(FSMC_IT));	
  assert_param(IS_FUNCTIONAL_STATE(NewState));
  
  if (NewState != DISABLE)
  {
    /* Enable the selected FSMC_Bank2 interrupts */
    if(FSMC_Bank == FSMC_Bank2_NAND)
    {
      FSMC_Bank2->SR2 |= FSMC_IT;
    }
    /* Enable the selected FSMC_Bank3 interrupts */
    else if (FSMC_Bank == FSMC_Bank3_NAND)
    {
      FSMC_Bank3->SR3 |= FSMC_IT;
    }
    /* Enable the selected FSMC_Bank4 interrupts */
    else
    {
      FSMC_Bank4->SR4 |= FSMC_IT;    
    }
  }
  else
  {
    /* Disable the selected FSMC_Bank2 interrupts */
    if(FSMC_Bank == FSMC_Bank2_NAND)
    {
      
      FSMC_Bank2->SR2 &= (uint32_t)~FSMC_IT;
    }
    /* Disable the selected FSMC_Bank3 interrupts */
    else if (FSMC_Bank == FSMC_Bank3_NAND)
    {
      FSMC_Bank3->SR3 &= (uint32_t)~FSMC_IT;
    }
    /* Disable the selected FSMC_Bank4 interrupts */
    else
    {
      FSMC_Bank4->SR4 &= (uint32_t)~FSMC_IT;    
    }
  }
}

/**
  * @brief  Checks whether the specified FSMC flag is set or not.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  *            @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
  * @param  FSMC_FLAG: specifies the flag to check.
  *          This parameter can be one of the following values:
  *            @arg FSMC_FLAG_RisingEdge: Rising edge detection Flag.
  *            @arg FSMC_FLAG_Level: Level detection Flag.
  *            @arg FSMC_FLAG_FallingEdge: Falling edge detection Flag.
  *            @arg FSMC_FLAG_FEMPT: Fifo empty Flag. 
  * @retval The new state of FSMC_FLAG (SET or RESET).
  */
FlagStatus FSMC_GetFlagStatus(uint32_t FSMC_Bank, uint32_t FSMC_FLAG)
{
  FlagStatus bitstatus = RESET;
  uint32_t tmpsr = 0x00000000;
  
  /* Check the parameters */
  assert_param(IS_FSMC_GETFLAG_BANK(FSMC_Bank));
  assert_param(IS_FSMC_GET_FLAG(FSMC_FLAG));
  
  if(FSMC_Bank == FSMC_Bank2_NAND)
  {
    tmpsr = FSMC_Bank2->SR2;
  }  
  else if(FSMC_Bank == FSMC_Bank3_NAND)
  {
    tmpsr = FSMC_Bank3->SR3;
  }
  /* FSMC_Bank4_PCCARD*/
  else
  {
    tmpsr = FSMC_Bank4->SR4;
  } 
  
  /* Get the flag status */
  if ((tmpsr & FSMC_FLAG) != (uint16_t)RESET )
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  /* Return the flag status */
  return bitstatus;
}

/**
  * @brief  Clears the FSMC's pending flags.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  *            @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
  * @param  FSMC_FLAG: specifies the flag to clear.
  *          This parameter can be any combination of the following values:
  *            @arg FSMC_FLAG_RisingEdge: Rising edge detection Flag.
  *            @arg FSMC_FLAG_Level: Level detection Flag.
  *            @arg FSMC_FLAG_FallingEdge: Falling edge detection Flag.
  * @retval None
  */
void FSMC_ClearFlag(uint32_t FSMC_Bank, uint32_t FSMC_FLAG)
{
 /* Check the parameters */
  assert_param(IS_FSMC_GETFLAG_BANK(FSMC_Bank));
  assert_param(IS_FSMC_CLEAR_FLAG(FSMC_FLAG)) ;
    
  if(FSMC_Bank == FSMC_Bank2_NAND)
  {
    FSMC_Bank2->SR2 &= ~FSMC_FLAG; 
  }  
  else if(FSMC_Bank == FSMC_Bank3_NAND)
  {
    FSMC_Bank3->SR3 &= ~FSMC_FLAG;
  }
  /* FSMC_Bank4_PCCARD*/
  else
  {
    FSMC_Bank4->SR4 &= ~FSMC_FLAG;
  }
}

/**
  * @brief  Checks whether the specified FSMC interrupt has occurred or not.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  *            @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
  * @param  FSMC_IT: specifies the FSMC interrupt source to check.
  *          This parameter can be one of the following values:
  *            @arg FSMC_IT_RisingEdge: Rising edge detection interrupt. 
  *            @arg FSMC_IT_Level: Level edge detection interrupt.
  *            @arg FSMC_IT_FallingEdge: Falling edge detection interrupt. 
  * @retval The new state of FSMC_IT (SET or RESET).
  */
ITStatus FSMC_GetITStatus(uint32_t FSMC_Bank, uint32_t FSMC_IT)
{
  ITStatus bitstatus = RESET;
  uint32_t tmpsr = 0x0, itstatus = 0x0, itenable = 0x0; 
  
  /* Check the parameters */
  assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
  assert_param(IS_FSMC_GET_IT(FSMC_IT));
  
  if(FSMC_Bank == FSMC_Bank2_NAND)
  {
    tmpsr = FSMC_Bank2->SR2;
  }  
  else if(FSMC_Bank == FSMC_Bank3_NAND)
  {
    tmpsr = FSMC_Bank3->SR3;
  }
  /* FSMC_Bank4_PCCARD*/
  else
  {
    tmpsr = FSMC_Bank4->SR4;
  } 
  
  itstatus = tmpsr & FSMC_IT;
  
  itenable = tmpsr & (FSMC_IT >> 3);
  if ((itstatus != (uint32_t)RESET)  && (itenable != (uint32_t)RESET))
  {
    bitstatus = SET;
  }
  else
  {
    bitstatus = RESET;
  }
  return bitstatus; 
}

/**
  * @brief  Clears the FSMC's interrupt pending bits.
  * @param  FSMC_Bank: specifies the FSMC Bank to be used
  *          This parameter can be one of the following values:
  *            @arg FSMC_Bank2_NAND: FSMC Bank2 NAND 
  *            @arg FSMC_Bank3_NAND: FSMC Bank3 NAND
  *            @arg FSMC_Bank4_PCCARD: FSMC Bank4 PCCARD
  * @param  FSMC_IT: specifies the interrupt pending bit to clear.
  *          This parameter can be any combination of the following values:
  *            @arg FSMC_IT_RisingEdge: Rising edge detection interrupt. 
  *            @arg FSMC_IT_Level: Level edge detection interrupt.
  *            @arg FSMC_IT_FallingEdge: Falling edge detection interrupt.
  * @retval None
  */
void FSMC_ClearITPendingBit(uint32_t FSMC_Bank, uint32_t FSMC_IT)
{
  /* Check the parameters */
  assert_param(IS_FSMC_IT_BANK(FSMC_Bank));
  assert_param(IS_FSMC_IT(FSMC_IT));
    
  if(FSMC_Bank == FSMC_Bank2_NAND)
  {
    FSMC_Bank2->SR2 &= ~(FSMC_IT >> 3); 
  }  
  else if(FSMC_Bank == FSMC_Bank3_NAND)
  {
    FSMC_Bank3->SR3 &= ~(FSMC_IT >> 3);
  }
  /* FSMC_Bank4_PCCARD*/
  else
  {
    FSMC_Bank4->SR4 &= ~(FSMC_IT >> 3);
  }
}
#endif

/**
  * @}
  */ 

/**
  * @}
  */ 

/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/