ref: 063709c92e8bafe467d384f564afbdc6b66eb39a
dir: /codec/decoder/core/src/mv_pred.cpp/
/*!
* \copy
* Copyright (c) 2009-2013, Cisco Systems
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* \file mv_pred.c
*
* \brief Get MV predictor and update motion vector of mb cache
*
* \date 05/22/2009 Created
*
*************************************************************************************
*/
#include "mv_pred.h"
#include "ls_defines.h"
#include "mb_cache.h"
namespace WelsDec {
//basic iMVs prediction unit for iMVs partition width (4, 2, 1)
void_t PredMv(int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int32_t iPartWidth, int8_t iRef, int16_t iMVP[2])
{
const uint8_t kuiLeftIdx = g_kuiCache30ScanIdx[iPartIdx] - 1;
const uint8_t kuiTopIdx = g_kuiCache30ScanIdx[iPartIdx] - 6;
const uint8_t kuiRightTopIdx= kuiTopIdx + iPartWidth;
const uint8_t kuiLeftTopIdx = kuiTopIdx - 1;
const int8_t kiLeftRef = iRefIndex[0][kuiLeftIdx];
const int8_t kiTopRef = iRefIndex[0][ kuiTopIdx];
const int8_t kiRightTopRef = iRefIndex[0][kuiRightTopIdx];
const int8_t kiLeftTopRef = iRefIndex[0][ kuiLeftTopIdx];
int8_t iDiagonalRef = kiRightTopRef;
int8_t iMatchRef = 0;
int16_t iAMV[2], iBMV[2], iCMV[2];
*(int32_t*)iAMV = INTD32(iMotionVector[0][ kuiLeftIdx]);
*(int32_t*)iBMV = INTD32(iMotionVector[0][ kuiTopIdx]);
*(int32_t*)iCMV = INTD32(iMotionVector[0][kuiRightTopIdx]);
if (REF_NOT_AVAIL == iDiagonalRef)
{
iDiagonalRef = kiLeftTopRef;
*(int32_t*)iCMV = INTD32(iMotionVector[0][kuiLeftTopIdx]);
}
iMatchRef = (iRef == kiLeftRef) + (iRef == kiTopRef) + (iRef == iDiagonalRef);
if (REF_NOT_AVAIL == kiTopRef && REF_NOT_AVAIL == iDiagonalRef && kiLeftRef >= REF_NOT_IN_LIST)
{
ST32(iMVP, LD32(iAMV));
return;
}
if (1 == iMatchRef)
{
if (iRef == kiLeftRef)
{
ST32(iMVP, LD32(iAMV));
}
else if (iRef == kiTopRef)
{
ST32(iMVP, LD32(iBMV));
}
else
{
ST32(iMVP, LD32(iCMV));
}
}
else
{
iMVP[0] = WelsMedian(iAMV[0], iBMV[0], iCMV[0]);
iMVP[1] = WelsMedian(iAMV[1], iBMV[1], iCMV[1]);
}
}
void_t PredInter8x16Mv(int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVP[2])
{
if (0 == iPartIdx)
{
const int8_t kiLeftRef = iRefIndex[0][6];
if (iRef == kiLeftRef)
{
ST32( iMVP, LD32(&iMotionVector[0][6][0]) );
return;
}
}
else // 1 == iPartIdx
{
int8_t iDiagonalRef = iRefIndex[0][5]; //top-right
int8_t index = 5;
if (REF_NOT_AVAIL == iDiagonalRef)
{
iDiagonalRef = iRefIndex[0][2]; //top-left for 8*8 block(index 1)
index = 2;
}
if (iRef == iDiagonalRef)
{
ST32( iMVP, LD32(&iMotionVector[0][index][0]) );
return;
}
}
PredMv(iMotionVector, iRefIndex, iPartIdx, 2, iRef, iMVP);
}
void_t PredInter16x8Mv(int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVP[2])
{
if (0 == iPartIdx)
{
const int8_t kiTopRef = iRefIndex[0][1];
if (iRef == kiTopRef)
{
ST32(iMVP, LD32(&iMotionVector[0][1][0]));
return;
}
}
else // 8 == iPartIdx
{
const int8_t kiLeftRef = iRefIndex[0][18];
if (iRef == kiLeftRef)
{
ST32(iMVP, LD32(&iMotionVector[0][18][0]));
return;
}
}
PredMv(iMotionVector, iRefIndex, iPartIdx, 4, iRef, iMVP);
}
//update iMVs and iRefIndex cache for current MB, only for P_16*16 (SKIP inclusive)
/* can be further optimized */
void_t UpdateP16x16MotionInfo( PDqLayer pCurDqLayer, int8_t iRef, int16_t iMVs[2])
{
const int16_t kiRef2 = (iRef << 8) | iRef;
const int32_t kiMV32 = LD32(iMVs);
int32_t i;
int32_t iMbXy = pCurDqLayer->iMbXyIndex;
for (i = 0; i < 16; i+=4)
{
//mb
const uint8_t kuiScan4Idx = g_kuiScan4[i];
const uint8_t kuiScan4IdxPlus4= 4 + kuiScan4Idx;
ST16( &pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4Idx ], kiRef2 );
ST16( &pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4IdxPlus4], kiRef2 );
ST32( pCurDqLayer->pMv[0][iMbXy][ kuiScan4Idx ], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][1+kuiScan4Idx ], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][ kuiScan4IdxPlus4], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][1+kuiScan4IdxPlus4], kiMV32 );
}
}
//update iRefIndex and iMVs of Mb, only for P16x8
/*need further optimization, mb_cache not work */
void_t UpdateP16x8MotionInfo(PDqLayer pCurDqLayer, int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVs[2])
{
const int16_t kiRef2 = (iRef << 8) | iRef;
const int32_t kiMV32 = LD32(iMVs);
int32_t i;
int32_t iMbXy = pCurDqLayer->iMbXyIndex;
for (i = 0; i < 2; i++, iPartIdx+=4)
{
const uint8_t kuiScan4Idx = g_kuiScan4[iPartIdx];
const uint8_t kuiScan4IdxPlus4 = 4 + kuiScan4Idx;
const uint8_t kuiCacheIdx = g_kuiCache30ScanIdx[iPartIdx];
const uint8_t kuiCacheIdxPlus6 = 6 + kuiCacheIdx;
//mb
ST16( &pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4Idx ], kiRef2 );
ST16( &pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4IdxPlus4], kiRef2 );
ST32( pCurDqLayer->pMv[0][iMbXy][ kuiScan4Idx ], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][1+kuiScan4Idx ], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][ kuiScan4IdxPlus4], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][1+kuiScan4IdxPlus4], kiMV32 );
//cache
ST16( &iRefIndex[0][kuiCacheIdx ], kiRef2 );
ST16( &iRefIndex[0][kuiCacheIdxPlus6], kiRef2 );
ST32( iMotionVector[0][ kuiCacheIdx ], kiMV32 );
ST32( iMotionVector[0][1+kuiCacheIdx ], kiMV32 );
ST32( iMotionVector[0][ kuiCacheIdxPlus6], kiMV32 );
ST32( iMotionVector[0][1+kuiCacheIdxPlus6], kiMV32 );
}
}
//update iRefIndex and iMVs of both Mb and Mb_cache, only for P8x16
void_t UpdateP8x16MotionInfo(PDqLayer pCurDqLayer, int16_t iMotionVector[LIST_A][30][MV_A], int8_t iRefIndex[LIST_A][30],
int32_t iPartIdx, int8_t iRef, int16_t iMVs[2])
{
const int16_t kiRef2 = (iRef << 8) | iRef;
const int32_t kiMV32 = LD32(iMVs);
int32_t i;
int32_t iMbXy = pCurDqLayer->iMbXyIndex;
for (i = 0; i < 2; i++, iPartIdx+=8)
{
const uint8_t kuiScan4Idx = g_kuiScan4[iPartIdx];
const uint8_t kuiCacheIdx = g_kuiCache30ScanIdx[iPartIdx];
const uint8_t kuiScan4IdxPlus4= 4 + kuiScan4Idx;
const uint8_t kuiCacheIdxPlus6= 6 + kuiCacheIdx;
//mb
ST16( &pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4Idx ], kiRef2 );
ST16( &pCurDqLayer->pRefIndex[0][iMbXy][kuiScan4IdxPlus4], kiRef2 );
ST32( pCurDqLayer->pMv[0][iMbXy][ kuiScan4Idx ], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][1+kuiScan4Idx ], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][ kuiScan4IdxPlus4], kiMV32 );
ST32( pCurDqLayer->pMv[0][iMbXy][1+kuiScan4IdxPlus4], kiMV32 );
//cache
ST16( &iRefIndex[0][kuiCacheIdx ], kiRef2 );
ST16( &iRefIndex[0][kuiCacheIdxPlus6], kiRef2 );
ST32( iMotionVector[0][ kuiCacheIdx ], kiMV32 );
ST32( iMotionVector[0][1+kuiCacheIdx ], kiMV32 );
ST32( iMotionVector[0][ kuiCacheIdxPlus6], kiMV32 );
ST32( iMotionVector[0][1+kuiCacheIdxPlus6], kiMV32 );
}
}
} // namespace WelsDec