shithub: sox

ref: 07ffaa5404928806c2d3e0f3ac41c016baf73f11
dir: /amr-wb/az_isp.c/

View raw version
/*-----------------------------------------------------------------------*
 *                         Az_isp.C                                      *
 *-----------------------------------------------------------------------*
 * Compute the ISPs from  the LPC coefficients  (order=M)                *
 *-----------------------------------------------------------------------*
 *                                                                       *
 * The ISPs are the roots of the two polynomials F1(z) and F2(z)         *
 * defined as                                                            *
 *               F1(z) = A(z) + z^-m A(z^-1)                             *
 *  and          F2(z) = A(z) - z^-m A(z^-1)                             *
 *                                                                       *
 * For a even order m=2n, F1(z) has M/2 conjugate roots on the unit      *
 * circle and F2(z) has M/2-1 conjugate roots on the unit circle in      *
 * addition to two roots at 0 and pi.                                    *
 *                                                                       *
 * For a 16th order LP analysis, F1(z) and F2(z) can be written as       *
 *                                                                       *
 *   F1(z) = (1 + a[M])   PRODUCT  (1 - 2 cos(w_i) z^-1 + z^-2 )         *
 *                        i=0,2,4,6,8,10,12,14                           *
 *                                                                       *
 *   F2(z) = (1 - a[M]) (1 - z^-2) PRODUCT (1 - 2 cos(w_i) z^-1 + z^-2 ) *
 *                                 i=1,3,5,7,9,11,13                     *
 *                                                                       *
 * The ISPs are the M-1 frequencies w_i, i=0...M-2 plus the last         *
 * predictor coefficient a[M].                                           *
 *-----------------------------------------------------------------------*/

#include "typedef.h"
#include "basic_op.h"
#include "oper_32b.h"
#include "stdio.h"
#include "count.h"

#include "grid100.tab"

#define M   16
#define NC  (M/2)

/* local function */
static Word16 Chebps2(Word16 x, Word16 f[], Word16 n);

void Az_isp(
     Word16 a[],                           /* (i) Q12 : predictor coefficients                 */
     Word16 isp[],                         /* (o) Q15 : Immittance spectral pairs              */
     Word16 old_isp[]                      /* (i)     : old isp[] (in case not found M roots)  */
)
{
    Word16 i, j, nf, ip, order;
    Word16 xlow, ylow, xhigh, yhigh, xmid, ymid, xint;
    Word16 x, y, sign, exp;
    Word16 *coef;
    Word16 f1[NC + 1], f2[NC];
    Word32 t0;

    /*-------------------------------------------------------------*
     * find the sum and diff polynomials F1(z) and F2(z)           *
     *      F1(z) = [A(z) + z^M A(z^-1)]                           *
     *      F2(z) = [A(z) - z^M A(z^-1)]/(1-z^-2)                  *
     *                                                             *
     * for (i=0; i<NC; i++)                                        *
     * {                                                           *
     *   f1[i] = a[i] + a[M-i];                                    *
     *   f2[i] = a[i] - a[M-i];                                    *
     * }                                                           *
     * f1[NC] = 2.0*a[NC];                                         *
     *                                                             *
     * for (i=2; i<NC; i++)            Divide by (1-z^-2)          *
     *   f2[i] += f2[i-2];                                         *
     *-------------------------------------------------------------*/

    for (i = 0; i < NC; i++)
    {
        t0 = L_mult(a[i], 16384);
        f1[i] = round(L_mac(t0, a[M - i], 16384));      move16();  /* =(a[i]+a[M-i])/2 */
        f2[i] = round(L_msu(t0, a[M - i], 16384));      move16();  /* =(a[i]-a[M-i])/2 */
    }
    f1[NC] = a[NC];                        move16();

    for (i = 2; i < NC; i++)               /* Divide by (1-z^-2) */
        f2[i] = add(f2[i], f2[i - 2]);     move16();

    /*---------------------------------------------------------------------*
     * Find the ISPs (roots of F1(z) and F2(z) ) using the                 *
     * Chebyshev polynomial evaluation.                                    *
     * The roots of F1(z) and F2(z) are alternatively searched.            *
     * We start by finding the first root of F1(z) then we switch          *
     * to F2(z) then back to F1(z) and so on until all roots are found.    *
     *                                                                     *
     *  - Evaluate Chebyshev pol. at grid points and check for sign change.*
     *  - If sign change track the root by subdividing the interval        *
     *    2 times and ckecking sign change.                                *
     *---------------------------------------------------------------------*/

    nf = 0;                                move16();  /* number of found frequencies */
    ip = 0;                                move16();  /* indicator for f1 or f2      */

    coef = f1;                             move16();
    order = NC;                            move16();

    xlow = grid[0];                        move16();
    ylow = Chebps2(xlow, coef, order);

    j = 0;
    test();test();
    while ((nf < M - 1) && (j < GRID_POINTS))
    {
        j = add(j, 1);
        xhigh = xlow;                      move16();
        yhigh = ylow;                      move16();
        xlow = grid[j];                    move16();
        ylow = Chebps2(xlow, coef, order);

        test();
        if (L_mult(ylow, yhigh) <= (Word32) 0)
        {
            /* divide 2 times the interval */

            for (i = 0; i < 2; i++)
            {
                xmid = add(shr(xlow, 1), shr(xhigh, 1));        /* xmid = (xlow + xhigh)/2 */

                ymid = Chebps2(xmid, coef, order);

                test();
                if (L_mult(ylow, ymid) <= (Word32) 0)
                {
                    yhigh = ymid;          move16();
                    xhigh = xmid;          move16();
                } else
                {
                    ylow = ymid;           move16();
                    xlow = xmid;           move16();
                }
            }

            /*-------------------------------------------------------------*
             * Linear interpolation                                        *
             *    xint = xlow - ylow*(xhigh-xlow)/(yhigh-ylow);            *
             *-------------------------------------------------------------*/

            x = sub(xhigh, xlow);
            y = sub(yhigh, ylow);

            test();
            if (y == 0)
            {
                xint = xlow;               move16();
            } else
            {
                sign = y;                  move16();
                y = abs_s(y);
                exp = norm_s(y);
                y = shl(y, exp);
                y = div_s((Word16) 16383, y);
                t0 = L_mult(x, y);
                t0 = L_shr(t0, sub(20, exp));
                y = extract_l(t0);         /* y= (xhigh-xlow)/(yhigh-ylow) in Q11 */

                test();
                if (sign < 0)
                    y = negate(y);

                t0 = L_mult(ylow, y);      /* result in Q26 */
                t0 = L_shr(t0, 11);        /* result in Q15 */
                xint = sub(xlow, extract_l(t0));        /* xint = xlow - ylow*y */
            }

            isp[nf] = xint;                move16();
            xlow = xint;                   move16();
            nf++;                          move16();

            test();
            if (ip == 0)
            {
                ip = 1;                    move16();
                coef = f2;                 move16();
                order = NC - 1;            move16();
            } else
            {
                ip = 0;                    move16();
                coef = f1;                 move16();
                order = NC;                move16();
            }
            ylow = Chebps2(xlow, coef, order);
        }
        test();test();
    }

    /* Check if M-1 roots found */

    test();
    if (sub(nf, M - 1) < 0)
    {
        for (i = 0; i < M; i++)
        {
            isp[i] = old_isp[i];           move16();
        }
    } else
    {
        isp[M - 1] = shl(a[M], 3);         move16();  /* From Q12 to Q15 with saturation */
    }

    return;
}


/*--------------------------------------------------------------*
 * function  Chebps2:                                           *
 *           ~~~~~~~                                            *
 *    Evaluates the Chebishev polynomial series                 *
 *--------------------------------------------------------------*
 *                                                              *
 *  The polynomial order is                                     *
 *     n = M/2   (M is the prediction order)                    *
 *  The polynomial is given by                                  *
 *    C(x) = f(0)T_n(x) + f(1)T_n-1(x) + ... +f(n-1)T_1(x) + f(n)/2 *
 * Arguments:                                                   *
 *  x:     input value of evaluation; x = cos(frequency) in Q15 *
 *  f[]:   coefficients of the pol.                      in Q11 *
 *  n:     order of the pol.                                    *
 *                                                              *
 * The value of C(x) is returned. (Satured to +-1.99 in Q14)    *
 *                                                              *
 *--------------------------------------------------------------*/

static Word16 Chebps2(Word16 x, Word16 f[], Word16 n)
{
    Word16 i, cheb;
    Word16 b0_h, b0_l, b1_h, b1_l, b2_h, b2_l;
    Word32 t0;

    /* Note: All computation are done in Q24. */

    t0 = L_mult(f[0], 4096);
    L_Extract(t0, &b2_h, &b2_l);           /* b2 = f[0] in Q24 DPF */

    t0 = Mpy_32_16(b2_h, b2_l, x);         /* t0 = 2.0*x*b2        */
    t0 = L_shl(t0, 1);
    t0 = L_mac(t0, f[1], 4096);            /* + f[1] in Q24        */
    L_Extract(t0, &b1_h, &b1_l);           /* b1 = 2*x*b2 + f[1]   */

    for (i = 2; i < n; i++)
    {
        t0 = Mpy_32_16(b1_h, b1_l, x);     /* t0 = 2.0*x*b1              */

        t0 = L_mac(t0, b2_h, -16384);
        t0 = L_mac(t0, f[i], 2048);
        t0 = L_shl(t0, 1);
        t0 = L_msu(t0, b2_l, 1);           /* t0 = 2.0*x*b1 - b2 + f[i]; */

        L_Extract(t0, &b0_h, &b0_l);       /* b0 = 2.0*x*b1 - b2 + f[i]; */

        b2_l = b1_l;                       move16();  /* b2 = b1; */
        b2_h = b1_h;                       move16();
        b1_l = b0_l;                       move16();  /* b1 = b0; */
        b1_h = b0_h;                       move16();
    }

    t0 = Mpy_32_16(b1_h, b1_l, x);         /* t0 = x*b1;              */
    t0 = L_mac(t0, b2_h, (Word16) - 32768);/* t0 = x*b1 - b2          */
    t0 = L_msu(t0, b2_l, 1);
    t0 = L_mac(t0, f[n], 2048);            /* t0 = x*b1 - b2 + f[i]/2 */

    t0 = L_shl(t0, 6);                     /* Q24 to Q30 with saturation */

    cheb = extract_h(t0);                  /* Result in Q14              */

    test();
    if (sub(cheb, -32768) == 0)
    {
        cheb = -32767;                     /* to avoid saturation in Az_isp */
        move16();
    }
    return (cheb);
}