ref: 080b6c7cb5a24ae80477e441b75ba6f3bdfc2cab
dir: /src/FFT.c/
/* * * FFT.c * * Based on FFT.cpp from Audacity, which contained the following text: * * This file contains a few FFT routines, including a real-FFT * routine that is almost twice as fast as a normal complex FFT, * and a power spectrum routine when you know you don't care * about phase information. * * Some of this code was based on a free implementation of an FFT * by Don Cross, available on the web at: * * http://www.intersrv.com/~dcross/fft.html * * The basic algorithm for his code was based on Numerican Recipes * in Fortran. I optimized his code further by reducing array * accesses, caching the bit reversal table, and eliminating * float-to-double conversions, and I added the routines to * calculate a real FFT and a real power spectrum. * * This file is now part of SoX, and is copyright Ian Turner and others. * * SoX is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Foobar is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with SoX; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <stdlib.h> #include <stdio.h> #include <math.h> #include <assert.h> #include "FFT.h" int **gFFTBitTable = NULL; const int MaxFastBits = 16; /* Declare Static functions */ static int IsPowerOfTwo(int x); static int NumberOfBitsNeeded(int PowerOfTwo); static int ReverseBits(int index, int NumBits); static void InitFFT(); int IsPowerOfTwo(int x) { if (x < 2) return 0; return !(x & (x-1)); /* Thanks to 'byang' for this cute trick! */ } int NumberOfBitsNeeded(int PowerOfTwo) { int i; if (PowerOfTwo < 2) { fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo); exit(1); } for (i = 0;; i++) if (PowerOfTwo & (1 << i)) return i; } int ReverseBits(int index, int NumBits) { int i, rev; for (i = rev = 0; i < NumBits; i++) { rev = (rev << 1) | (index & 1); index >>= 1; } return rev; } /* This function allocates about 250k (actually (2**16)-2 ints) which is never * freed, to use as a lookup table for bit-reversal. The good news is that * we bascially need this until the very end, so the fact that it's not freed * is OK. */ void InitFFT() { int len, b; gFFTBitTable = (int**)calloc(MaxFastBits, sizeof(*gFFTBitTable)); len = 2; for (b = 1; b <= MaxFastBits; b++) { int i; gFFTBitTable[b - 1] = (int*)calloc(len, sizeof(**gFFTBitTable)); for (i = 0; i < len; i++) { gFFTBitTable[b - 1][i] = ReverseBits(i, b); } len <<= 1; } } #define FastReverseBits(i, NumBits) \ (NumBits <= MaxFastBits) ? gFFTBitTable[NumBits - 1][i] : ReverseBits(i, NumBits) /* * Complex Fast Fourier Transform */ void FFT(int NumSamples, int InverseTransform, float *RealIn, float *ImagIn, float *RealOut, float *ImagOut) { int NumBits; /* Number of bits needed to store indices */ int i, j, k, n; int BlockSize, BlockEnd; double angle_numerator = 2.0 * M_PI; float tr, ti; /* temp real, temp imaginary */ if (!IsPowerOfTwo(NumSamples)) { fprintf(stderr, "%d is not a power of two\n", NumSamples); exit(1); } if (!gFFTBitTable) InitFFT(); if (InverseTransform) angle_numerator = -angle_numerator; NumBits = NumberOfBitsNeeded(NumSamples); /* ** Do simultaneous data copy and bit-reversal ordering into outputs... */ for (i = 0; i < NumSamples; i++) { j = FastReverseBits(i, NumBits); RealOut[j] = RealIn[i]; ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i]; } /* ** Do the FFT itself... */ BlockEnd = 1; for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) { double delta_angle = angle_numerator / (double) BlockSize; float sm2 = sin(-2 * delta_angle); float sm1 = sin(-delta_angle); float cm2 = cos(-2 * delta_angle); float cm1 = cos(-delta_angle); float w = 2 * cm1; float ar0, ar1, ar2, ai0, ai1, ai2; for (i = 0; i < NumSamples; i += BlockSize) { ar2 = cm2; ar1 = cm1; ai2 = sm2; ai1 = sm1; for (j = i, n = 0; n < BlockEnd; j++, n++) { ar0 = w * ar1 - ar2; ar2 = ar1; ar1 = ar0; ai0 = w * ai1 - ai2; ai2 = ai1; ai1 = ai0; k = j + BlockEnd; tr = ar0 * RealOut[k] - ai0 * ImagOut[k]; ti = ar0 * ImagOut[k] + ai0 * RealOut[k]; RealOut[k] = RealOut[j] - tr; ImagOut[k] = ImagOut[j] - ti; RealOut[j] += tr; ImagOut[j] += ti; } } BlockEnd = BlockSize; } /* ** Need to normalize if inverse transform... */ if (InverseTransform) { float denom = (float) NumSamples; for (i = 0; i < NumSamples; i++) { RealOut[i] /= denom; ImagOut[i] /= denom; } } } /* * Real Fast Fourier Transform * * This function was based on the code in Numerical Recipes for C. * In Num. Rec., the inner loop is based on a single 1-based array * of interleaved real and imaginary numbers. Because we have two * separate zero-based arrays, our indices are quite different. * Here is the correspondence between Num. Rec. indices and our indices: * * i1 <-> real[i] * i2 <-> imag[i] * i3 <-> real[n/2-i] * i4 <-> imag[n/2-i] */ void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut) { int Half = NumSamples / 2; int i; float theta = M_PI / Half; float wtemp = (float) sin(0.5 * theta); float wpr = -2.0 * wtemp * wtemp; float wpi = (float) sin(theta); float wr = 1.0 + wpr; float wi = wpi; int i3; float h1r, h1i, h2r, h2i; float *tmpReal = (float*)calloc(Half, sizeof(float)); float *tmpImag = (float*)calloc(Half, sizeof(float)); for (i = 0; i < Half; i++) { tmpReal[i] = RealIn[2 * i]; tmpImag[i] = RealIn[2 * i + 1]; } FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); for (i = 1; i < Half / 2; i++) { i3 = Half - i; h1r = 0.5 * (RealOut[i] + RealOut[i3]); h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); h2i = -0.5 * (RealOut[i] - RealOut[i3]); RealOut[i] = h1r + wr * h2r - wi * h2i; ImagOut[i] = h1i + wr * h2i + wi * h2r; RealOut[i3] = h1r - wr * h2r + wi * h2i; ImagOut[i3] = -h1i + wr * h2i + wi * h2r; wr = (wtemp = wr) * wpr - wi * wpi + wr; wi = wi * wpr + wtemp * wpi + wi; } RealOut[0] = (h1r = RealOut[0]) + ImagOut[0]; ImagOut[0] = h1r - ImagOut[0]; free(tmpReal); free(tmpImag); } /* * PowerSpectrum * * This function computes the same as RealFFT, above, but * adds the squares of the real and imaginary part of each * coefficient, extracting the power and throwing away the * phase. * * For speed, it does not call RealFFT, but duplicates some * of its code. */ void PowerSpectrum(int NumSamples, float *In, float *Out) { int Half, i, i3; float theta, wtemp, wpr, wpi, wr, wi; float h1r, h1i, h2r, h2i, rt, it; float *tmpReal; float *tmpImag; float *RealOut; float *ImagOut; Half = NumSamples / 2; theta = M_PI / Half; tmpReal = (float*)calloc(Half, sizeof(float)); tmpImag = (float*)calloc(Half, sizeof(float)); RealOut = (float*)calloc(Half, sizeof(float)); ImagOut = (float*)calloc(Half, sizeof(float)); for (i = 0; i < Half; i++) { tmpReal[i] = In[2 * i]; tmpImag[i] = In[2 * i + 1]; } FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut); wtemp = (float) sin(0.5 * theta); wpr = -2.0 * wtemp * wtemp; wpi = (float) sin(theta); wr = 1.0 + wpr; wi = wpi; for (i = 1; i < Half / 2; i++) { i3 = Half - i; h1r = 0.5 * (RealOut[i] + RealOut[i3]); h1i = 0.5 * (ImagOut[i] - ImagOut[i3]); h2r = 0.5 * (ImagOut[i] + ImagOut[i3]); h2i = -0.5 * (RealOut[i] - RealOut[i3]); rt = h1r + wr * h2r - wi * h2i; it = h1i + wr * h2i + wi * h2r; Out[i] = rt * rt + it * it; rt = h1r - wr * h2r + wi * h2i; it = -h1i + wr * h2i + wi * h2r; Out[i3] = rt * rt + it * it; wr = (wtemp = wr) * wpr - wi * wpi + wr; wi = wi * wpr + wtemp * wpi + wi; } rt = (h1r = RealOut[0]) + ImagOut[0]; it = h1r - ImagOut[0]; Out[0] = rt * rt + it * it; rt = RealOut[Half / 2]; it = ImagOut[Half / 2]; Out[Half / 2] = rt * rt + it * it; free(tmpReal); free(tmpImag); free(RealOut); free(ImagOut); } /* * Windowing Functions */ void WindowFunc(windowfunc_t whichFunction, int NumSamples, float *in) { int i; switch (whichFunction) { case BARTLETT: for (i = 0; i < NumSamples / 2; i++) { in[i] *= (i / (float) (NumSamples / 2)); in[i + (NumSamples / 2)] *= (1.0 - (i / (float) (NumSamples / 2))); } break; case HAMMING: for (i = 0; i < NumSamples; i++) in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1)); break; case HANNING: for (i = 0; i < NumSamples; i++) in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1)); break; case RECTANGULAR: break; } }