shithub: sox

ref: 1c77988e51578e126596a307dc61a1e1338e47ea
dir: /src/flanger.c/

View raw version
/*
 * August 24, 1998
 * Copyright (C) 1998 Juergen Mueller And Sundry Contributors
 * This source code is freely redistributable and may be used for
 * any purpose.  This copyright notice must be maintained. 
 * Juergen Mueller And Sundry Contributors are not responsible for 
 * the consequences of using this software.
 */

/*
 *      Flanger effect.
 * 
 * Flow diagram scheme:
 *
 *                                                 * gain-in  ___
 * ibuff -----+--------------------------------------------->|   |
 *            |      _______                                 |   |
 *            |     |       |                      * decay   |   |
 *            +---->| delay |------------------------------->| + |
 *                  |_______|                                |   |
 *                     /|\                                   |   |
 *                      |                                    |___|
 *                      |                                      | 
 *              +---------------+      +------------------+    | * gain-out
 *              | Delay control |<-----| modulation speed |    |
 *              +---------------+      +------------------+    +----->obuff
 *
 *
 * The delay is controled by a sine or triangle modulation.
 *
 * Usage: 
 *   flanger gain-in gain-out delay decay speed [ -s | -t ]
 *
 * Where:
 *   gain-in, decay :  0.0 ... 1.0      volume
 *   gain-out :  0.0 ...      volume
 *   delay :  0.0 ... 5.0 msec
 *   speed :  0.1 ... 2.0 Hz       modulation
 *   -s : modulation by sine (default)
 *   -t : modulation by triangle
 *
 * Note:
 *   when decay is close to 1.0, the samples may begin clipping or the output
 *   can saturate! 
 *
 * Hint:
 *   1 / out-gain > gain-in * ( 1 + decay )
 *
*/

/*
 * Sound Tools flanger effect file.
 */

#include <stdlib.h> /* Harmless, and prototypes atof() etc. --dgc */
#include <math.h>
#include <string.h>
#include "st_i.h"

static st_effect_t st_flanger_effect;

#define MOD_SINE        0
#define MOD_TRIANGLE    1

/* Private data for SKEL file */
typedef struct flangerstuff {
        int     modulation;
        int     counter;                        
        int     phase;
        double  *flangerbuf;
        float   in_gain, out_gain;
        float   delay, decay;
        float   speed;
        st_size_t length;
        int     *lookup_tab;
        st_size_t maxsamples, fade_out;
} *flanger_t;

/* Private data for SKEL file */

/*
 * Process options
 */
int st_flanger_getopts(eff_t effp, int n, char **argv) 
{
        flanger_t flanger = (flanger_t) effp->priv;

        if (!((n == 5) || (n == 6)))
        {
            st_fail(st_flanger_effect.usage);
            return (ST_EOF);
        }

        sscanf(argv[0], "%f", &flanger->in_gain);
        sscanf(argv[1], "%f", &flanger->out_gain);
        sscanf(argv[2], "%f", &flanger->delay);
        sscanf(argv[3], "%f", &flanger->decay);
        sscanf(argv[4], "%f", &flanger->speed);
        flanger->modulation = MOD_SINE;
        if ( n == 6 ) {
                if ( !strcmp(argv[5], "-s"))
                        flanger->modulation = MOD_SINE;
                else if ( ! strcmp(argv[5], "-t"))
                        flanger->modulation = MOD_TRIANGLE;
                else
                {
                        st_fail(st_flanger_effect.usage);
                        return (ST_EOF);
                }
        }
        return (ST_SUCCESS);
}

/*
 * Prepare for processing.
 */
int st_flanger_start(eff_t effp)
{
        flanger_t flanger = (flanger_t) effp->priv;
        unsigned int i;

        flanger->maxsamples = flanger->delay * effp->ininfo.rate / 1000.0;

        if ( flanger->in_gain < 0.0 )
        {
            st_fail("flanger: gain-in must be positive!");
            return (ST_EOF);
        }
        if ( flanger->in_gain > 1.0 )
        {
            st_fail("flanger: gain-in must be less than 1.0!");
            return (ST_EOF);
        }
        if ( flanger->out_gain < 0.0 )
        {
            st_fail("flanger: gain-out must be positive!");
            return (ST_EOF);
        }
        if ( flanger->delay < 0.0 )
        {
            st_fail("flanger: delay must be positive!");
            return (ST_EOF);
        }
        if ( flanger->delay > 5.0 )
        {
            st_fail("flanger: delay must be less than 5.0 msec!");
            return (ST_EOF);
        }
        if ( flanger->speed < 0.1 )
        {
            st_fail("flanger: speed must be more than 0.1 Hz!");
            return (ST_EOF);
        }
        if ( flanger->speed > 2.0 )
        {
            st_fail("flanger: speed must be less than 2.0 Hz!");
            return (ST_EOF);
        }
        if ( flanger->decay < 0.0 )
        {
            st_fail("flanger: decay must be positive!" );
            return (ST_EOF);
        }
        if ( flanger->decay > 1.0 )
        {
            st_fail("flanger: decay must be less that 1.0!" );
            return (ST_EOF);
        }
        /* Be nice and check the hint with warning, if... */
        if ( flanger->in_gain * ( 1.0 + flanger->decay ) > 1.0 / flanger->out_gain )
                st_warn("flanger: warning >>> gain-out can cause saturation or clipping of output <<<");

        flanger->length = effp->ininfo.rate / flanger->speed;

        if (! (flanger->flangerbuf = 
                (double *) malloc(sizeof (double) * flanger->maxsamples)))
        {
                st_fail("flanger: Cannot malloc %d bytes!", 
                        sizeof(double) * flanger->maxsamples);
                return (ST_EOF);
        }
        for ( i = 0; i < flanger->maxsamples; i++ )
                flanger->flangerbuf[i] = 0.0;
        if (! (flanger->lookup_tab = 
                (int *) malloc(sizeof (int) * flanger->length)))
        {
                st_fail("flanger: Cannot malloc %d bytes!", 
                        sizeof(int) * flanger->length);
                return(ST_EOF);
        }

        if ( flanger->modulation == MOD_SINE )
                st_sine(flanger->lookup_tab, flanger->length, 
                        flanger->maxsamples - 1,
                        flanger->maxsamples - 1);
        else
                st_triangle(flanger->lookup_tab, flanger->length, 
                        (flanger->maxsamples - 1) * 2, 
                        flanger->maxsamples - 1);
        flanger->counter = 0;
        flanger->phase = 0;
        flanger->fade_out = flanger->maxsamples;
        return (ST_SUCCESS);
}

/*
 * Processed signed long samples from ibuf to obuf.
 * Return number of samples processed.
 */
int st_flanger_flow(eff_t effp, st_sample_t *ibuf, st_sample_t *obuf, 
                    st_size_t *isamp, st_size_t *osamp)
{
        flanger_t flanger = (flanger_t) effp->priv;
        int len, done;
        
        double d_in, d_out;
        st_sample_t out;

        len = ((*isamp > *osamp) ? *osamp : *isamp);
        for(done = 0; done < len; done++) {
                /* Store delays as 24-bit signed longs */
                d_in = (double) *ibuf++ / 256;
                /* Compute output first */
                d_out = d_in * flanger->in_gain;
                d_out += flanger->flangerbuf[(flanger->maxsamples + 
        flanger->counter - flanger->lookup_tab[flanger->phase]) % 
        flanger->maxsamples] * flanger->decay;
                /* Adjust the output volume and size to 24 bit */
                d_out = d_out * flanger->out_gain;
                out = ST_EFF_24BIT_CLIP_COUNT((st_sample_t) d_out);
                *obuf++ = out * 256;
                /* Mix decay of delay and input */
                flanger->flangerbuf[flanger->counter] = d_in;
                flanger->counter = 
                        ( flanger->counter + 1 ) % flanger->maxsamples;
                flanger->phase  = ( flanger->phase + 1 ) % flanger->length;
        }
        /* processed all samples */
        return (ST_SUCCESS);
}

/*
 * Drain out reverb lines. 
 */
int st_flanger_drain(eff_t effp, st_sample_t *obuf, st_size_t *osamp)
{
        flanger_t flanger = (flanger_t) effp->priv;
        st_size_t done;
        
        double d_in, d_out;
        st_sample_t out;

        done = 0;
        while ( ( done < *osamp ) && ( done < flanger->fade_out ) ) {
                d_in = 0;
                d_out = 0;
                /* Compute output first */
                d_out += flanger->flangerbuf[(flanger->maxsamples + 
        flanger->counter - flanger->lookup_tab[flanger->phase]) % 
        flanger->maxsamples] * flanger->decay;
                /* Adjust the output volume and size to 24 bit */
                d_out = d_out * flanger->out_gain;
                out = ST_EFF_24BIT_CLIP_COUNT((st_sample_t) d_out);
                *obuf++ = out * 256;
                /* Mix decay of delay and input */
                flanger->flangerbuf[flanger->counter] = d_in;
                flanger->counter = 
                        ( flanger->counter + 1 ) % flanger->maxsamples;
                flanger->phase  = ( flanger->phase + 1 ) % flanger->length;
                done++;
                flanger->fade_out--;
        }
        /* samples playd, it remains */
        *osamp = done;
        return (ST_SUCCESS);
}

/*
 * Clean up flanger effect.
 */
int st_flanger_stop(eff_t effp)
{
        flanger_t flanger = (flanger_t) effp->priv;

        free((char *) flanger->flangerbuf);
        flanger->flangerbuf = (double *) -1;   /* guaranteed core dump */
        free((char *) flanger->lookup_tab);
        flanger->lookup_tab = (int *) -1;   /* guaranteed core dump */
        return (ST_SUCCESS);
}

static st_effect_t st_flanger_effect = {
  "flanger",
  "Usage: flanger gain-in gain-out delay decay speed [ -s | -t ]",
  0,
  st_flanger_getopts,
  st_flanger_start,
  st_flanger_flow,
  st_flanger_drain,
  st_flanger_stop
};

const st_effect_t *st_flanger_effect_fn(void)
{
    return &st_flanger_effect;
}