ref: 4a4ea33edbca5972a1ed8933cc3512c7302fa67a
dir: /src/au.c/
/* * Copyright 1991, 1992, 1993 Guido van Rossum And Sundry Contributors. * This source code is freely redistributable and may be used for * any purpose. This copyright notice must be maintained. * Guido van Rossum And Sundry Contributors are not responsible for * the consequences of using this software. * * October 7, 1998 - cbagwell@sprynet.com * G.723 was using incorrect # of bits. Corrected to 3 and 5 bits. * * libSoX Sun format with header (SunOS 4.1; see /usr/demo/SOUND). * NeXT uses this format also, but has more format codes defined. * DEC uses a slight variation and swaps bytes. * We support only the common formats, plus * CCITT G.721 (32 kbit/s) and G.723 (24/40 kbit/s), * courtesy of Sun's public domain implementation. * Output is always in big-endian (Sun/NeXT) order. */ #include "sox_i.h" #include "g72x.h" #include <string.h> /* Magic numbers used in Sun and NeXT audio files */ #define SUN_MAGIC 0x2e736e64 /* Really '.snd' */ #define SUN_INV_MAGIC 0x646e732e /* '.snd' reversed bytes */ #define DEC_MAGIC 0x2e736400 /* Really '\0ds.' (for DEC) */ #define DEC_INV_MAGIC 0x0064732e /* '\0ds.' reversed bytes */ #define SUN_HDRSIZE 24 /* Size of minimal header */ #define SUN_UNSPEC ~0u /* Unspecified data size (this is legal) */ typedef enum { Unspecified, Mulaw_8, Linear_8, Linear_16, Linear_24, Linear_32, Float, Double, Indirect, Nested, Dsp_core, Dsp_data_8, Dsp_data_16, Dsp_data_24, Dsp_data_32, Unknown, Display, Mulaw_squelch, Emphasized, Compressed, Compressed_emphasized, Dsp_commands, Dsp_commands_samples, Adpcm_g721, Adpcm_g722, Adpcm_g723_3, Adpcm_g723_5, Alaw_8, Unknown_other} sun_encoding_t; static char const * const str[] = { "Unspecified", "8-bit mu-law", "8-bit signed linear", "16-bit signed linear", "24-bit signed linear", "32-bit signed linear", "Floating-point", "Double precision float", "Fragmented sampled data", "Unknown", "DSP program", "8-bit fixed-point", "16-bit fixed-point", "24-bit fixed-point", "32-bit fixed-point", "Unknown", "Non-audio data", "Mu-law squelch", "16-bit linear with emphasis", "16-bit linear with compression", "16-bit linear with emphasis and compression", "Music Kit DSP commands", "Music Kit DSP samples", "4-bit G.721 ADPCM", "G.722 ADPCM", "3-bit G.723 ADPCM", "5-bit G.723 ADPCM", "8-bit a-law", "Unknown"}; static sun_encoding_t sun_enc(unsigned size, sox_encoding_t sox_enc) { sun_encoding_t result = Unspecified; if (sox_enc == SOX_ENCODING_ULAW && size == 8) result = Mulaw_8; else if (sox_enc == SOX_ENCODING_ALAW && size == 8) result = Alaw_8; else if (sox_enc == SOX_ENCODING_SIGN2 && size == 8) result = Linear_8; else if (sox_enc == SOX_ENCODING_SIGN2 && size == 16) result = Linear_16; else if (sox_enc == SOX_ENCODING_SIGN2 && size == 24) result = Linear_24; else if (sox_enc == SOX_ENCODING_SIGN2 && size == 32) result = Linear_32; else if (sox_enc == SOX_ENCODING_FLOAT && size == 32) result = Float; else if (sox_enc == SOX_ENCODING_FLOAT && size == 64) result = Double; return result; } static int sox_enc( uint32_t sun_encoding, sox_encoding_t * encoding, unsigned * size) { switch (sun_encoding) { case Mulaw_8 : *encoding = SOX_ENCODING_ULAW ; *size = 8; break; case Alaw_8 : *encoding = SOX_ENCODING_ALAW ; *size = 8; break; case Linear_8 : *encoding = SOX_ENCODING_SIGN2; *size = 8; break; case Linear_16 : *encoding = SOX_ENCODING_SIGN2; *size = 16; break; case Linear_24 : *encoding = SOX_ENCODING_SIGN2; *size = 24; break; case Linear_32 : *encoding = SOX_ENCODING_SIGN2; *size = 32; break; case Float : *encoding = SOX_ENCODING_FLOAT; *size = 32; break; case Double : *encoding = SOX_ENCODING_FLOAT; *size = 64; break; /* Sun encodings that SoX can read, but not write: */ case Adpcm_g721 : *encoding = SOX_ENCODING_G721 ; *size = 4; break; case Adpcm_g723_3: *encoding = SOX_ENCODING_G723 ; *size = 3; break; case Adpcm_g723_5: *encoding = SOX_ENCODING_G723 ; *size = 5; break; default: sox_debug("encoding: 0x%x", sun_encoding); return SOX_EOF; } return SOX_SUCCESS; } typedef struct { /* For G72x decoding: */ struct g72x_state state; int (*dec_routine)(int i, int out_coding, struct g72x_state *state_ptr); unsigned int in_buffer; int in_bits; } priv_t; /* * Unpack input codes and pass them back as bytes. * Returns 1 if there is residual input, returns -1 if eof, else returns 0. * (Adapted from Sun's decode.c.) */ static int unpack_input(sox_format_t * ft, unsigned char *code) { priv_t * p = (priv_t * ) ft->priv; unsigned char in_byte; if (p->in_bits < (int)ft->encoding.bits_per_sample) { if (sox_readb(ft, &in_byte) == SOX_EOF) { *code = 0; return -1; } p->in_buffer |= (in_byte << p->in_bits); p->in_bits += 8; } *code = p->in_buffer & ((1 << ft->encoding.bits_per_sample) - 1); p->in_buffer >>= ft->encoding.bits_per_sample; p->in_bits -= ft->encoding.bits_per_sample; return p->in_bits > 0; } static sox_size_t dec_read(sox_format_t *ft, sox_sample_t *buf, sox_size_t samp) { priv_t * p = (priv_t *)ft->priv; unsigned char code; sox_size_t done; for (done = 0; samp > 0 && unpack_input(ft, &code) >= 0; ++done, --samp) *buf++ = SOX_SIGNED_16BIT_TO_SAMPLE( (*p->dec_routine)(code, AUDIO_ENCODING_LINEAR, &p->state),); return done; } static int startread(sox_format_t * ft) { priv_t * p = (priv_t * ) ft->priv; uint32_t magic; /* These 6 uint32_t variables represent a Sun sound */ uint32_t hdr_size; /* header on disk. The numbers are written as */ uint32_t data_size; /* big-endians. Any extra bytes (totalling */ uint32_t sun_encoding; /* hdr_size - 24) are an "info" field of */ uint32_t sample_rate; /* unspecified nature, usually a string. By */ uint32_t channels; /* convention the header size is a multiple of 4. */ unsigned bits_per_sample; sox_encoding_t sox_encoding; sox_readdw(ft, &magic); if (magic == DEC_INV_MAGIC) { sox_debug("Found inverted DEC magic word."); /* Inverted headers are not standard. Code was probably * left over from pre-standardize period of testing for * endianess. Its not hurting though. */ ft->encoding.reverse_bytes = SOX_IS_BIGENDIAN; } else if (magic == SUN_INV_MAGIC) { sox_debug("Found inverted Sun/NeXT magic word."); ft->encoding.reverse_bytes = SOX_IS_BIGENDIAN; } else if (magic == SUN_MAGIC) { sox_debug("Found Sun/NeXT magic word"); ft->encoding.reverse_bytes = SOX_IS_LITTLEENDIAN; } else if (magic == DEC_MAGIC) { sox_debug("Found DEC magic word"); ft->encoding.reverse_bytes = SOX_IS_LITTLEENDIAN; } else { sox_fail_errno(ft,SOX_EHDR,"Did not detect valid Sun/NeXT/DEC magic number in header."); return SOX_EOF; } sox_readdw(ft, &hdr_size); if (hdr_size < SUN_HDRSIZE) { sox_fail_errno(ft, SOX_EHDR, "Sun/NeXT header size too small."); return SOX_EOF; } sox_readdw(ft, &data_size); /* Can be SUN_UNSPEC */ sox_readdw(ft, &sun_encoding); sox_readdw(ft, &sample_rate); sox_readdw(ft, &channels); if (sox_enc(sun_encoding, &sox_encoding, &bits_per_sample) == SOX_EOF) { int n = min(sun_encoding, Unknown_other); sox_fail_errno(ft, SOX_EFMT, "unsupported encoding `%s' (%u)", str[n], sun_encoding); return SOX_EOF; } switch (sun_encoding) { case Adpcm_g721 : p->dec_routine = g721_decoder ; break; case Adpcm_g723_3: p->dec_routine = g723_24_decoder; break; case Adpcm_g723_5: p->dec_routine = g723_40_decoder; break; } if (p->dec_routine) { g72x_init_state(&p->state); ft->handler.seek = NULL; ft->handler.read = dec_read; } hdr_size -= SUN_HDRSIZE; /* # bytes already read */ if (hdr_size > 0) { char * buf = xcalloc(1, hdr_size + 1); /* +1 ensures null-terminated */ if (sox_readbuf(ft, buf, hdr_size) != hdr_size) { sox_fail_errno(ft, SOX_EOF, "Unexpected EOF in Sun/NeXT header info."); free(buf); return SOX_EOF; } append_comments(&ft->comments, buf); free(buf); } if (data_size == SUN_UNSPEC) data_size = 0; /* SoX uses 0 for unspecified */ return sox_check_read_params( ft, channels, (sox_rate_t)sample_rate, sox_encoding, bits_per_sample, div_bits(data_size, bits_per_sample)); } static int write_header(sox_format_t * ft) { char *comment = cat_comments(ft->comments); size_t len = strlen(comment) + 1; /* Write out null-terminated */ size_t info_len = max(4, (len + 3) & ~3u); /* Minimum & multiple of 4 bytes */ size_t size = ft->olength? ft->olength : ft->length; sox_bool error = sox_false ||sox_writedw(ft, SUN_MAGIC) ||sox_writedw(ft, SUN_HDRSIZE + info_len) ||sox_writedw(ft, size? size*(ft->encoding.bits_per_sample >> 3) : SUN_UNSPEC) ||sox_writedw(ft, sun_enc(ft->encoding.bits_per_sample,ft->encoding.encoding)) ||sox_writedw(ft, (unsigned)(ft->signal.rate + .5)) ||sox_writedw(ft, ft->signal.channels) ||sox_writebuf(ft, comment, len) != len ||sox_padbytes(ft, info_len - len); free(comment); return error? SOX_EOF: SOX_SUCCESS; } SOX_FORMAT_HANDLER(au) { static char const * const names[] = {"au", "snd", NULL}; static unsigned const write_encodings[] = { SOX_ENCODING_ULAW, 8, 0, SOX_ENCODING_ALAW, 8, 0, SOX_ENCODING_SIGN2, 8, 16, 24, 32, 0, SOX_ENCODING_FLOAT, 32, 64, 0, 0}; static sox_format_handler_t const handler = { names, SOX_FILE_BIG_END | SOX_FILE_REWIND, startread, sox_rawread, NULL, write_header, sox_rawwrite, NULL, sox_rawseek, write_encodings, NULL }; return &handler; }