ref: 52f4fa02202cf66929e44e454b548b4532aceea4
dir: /src/rate.c/
/* Effect: change sample rate Copyright (c) 2008 robs@users.sourceforge.net
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at
* your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Based upon the techniques described in `The Quest For The Perfect Resampler'
* by Laurent De Soras; http://ldesoras.free.fr/doc/articles/resampler-en.pdf */
#ifdef NDEBUG /* Enable assert always. */
#undef NDEBUG /* Must undef above assert.h or other that might include it. */
#endif
#include "sox_i.h"
#include "fft4g.h"
#define FIFO_SIZE_T int
#include "fifo.h"
#include <assert.h>
#include <string.h>
#define calloc lsx_calloc
#define malloc lsx_malloc
#define raw_coef_t double
#define sample_t double
#define TO_SOX SOX_FLOAT_64BIT_TO_SAMPLE
#define FROM_SOX SOX_SAMPLE_TO_FLOAT_64BIT
#define coef(coef_p, interp_order, fir_len, phase_num, coef_interp_num, fir_coef_num) coef_p[(fir_len) * ((interp_order) + 1) * (phase_num) + ((interp_order) + 1) * (fir_coef_num) + (interp_order - coef_interp_num)]
static sample_t * prepare_coefs(raw_coef_t const * coefs, int num_coefs,
int num_phases, int interp_order, int multiplier)
{
int i, j, length = num_coefs * num_phases;
sample_t * result = malloc(length * (interp_order + 1) * sizeof(*result));
double fm1 = coefs[0], f1 = 0, f2 = 0;
for (i = num_coefs - 1; i >= 0; --i)
for (j = num_phases - 1; j >= 0; --j) {
double f0 = fm1, b = 0, c = 0, d = 0; /* = 0 to kill compiler warning */
int pos = i * num_phases + j - 1;
fm1 = (pos ? coefs[pos - 1] : 0) * multiplier;
switch (interp_order) {
case 1: b = f1 - f0; break;
case 2: b = f1 - (.5 * (f2+f0) - f1) - f0; c = .5 * (f2+f0) - f1; break;
case 3: c=.5*(f1+fm1)-f0;d=(1/6.)*(f2-f1+fm1-f0-4*c);b=f1-f0-d-c; break;
default: if (interp_order) assert(0);
}
#define coef_coef(x) \
coef(result, interp_order, num_coefs, j, x, num_coefs - 1 - i)
coef_coef(0) = f0;
if (interp_order > 0) coef_coef(1) = b;
if (interp_order > 1) coef_coef(2) = c;
if (interp_order > 2) coef_coef(3) = d;
#undef coef_coef
f2 = f1, f1 = f0;
}
return result;
}
typedef struct {
int dft_length, num_taps;
sample_t * coefs;
} half_band_t; /* Note: not half-band as in symmetric about Fn/2 (Fs/4) */
typedef struct { /* Data that are shared between channels and filters */
sample_t * poly_fir_coefs;
half_band_t half_band[2]; /* [0]: halve; [1]: down/up: halve/double */
sample_t * sin_cos_table; /* For Ooura fft */
int * bit_rev_table; /* ditto */
} rate_shared_t;
struct stage;
typedef void (* stage_fn_t)(struct stage * input, fifo_t * output);
typedef struct stage {
rate_shared_t * shared;
fifo_t fifo;
int pre; /* Number of past samples to store */
int pre_post; /* pre + number of future samples to store */
int preload; /* Number of zero samples to pre-load the fifo */
int which; /* Which of the 2 half-band filters to use */
stage_fn_t fn;
/* For poly_fir & spline: */
union { /* 32bit.32bit fixed point arithmetic */
#if defined(WORDS_BIGENDIAN)
struct {int32_t integer; uint32_t fraction;} parts;
#else
struct {uint32_t fraction; int32_t integer;} parts;
#endif
int64_t all;
#define MULT32 (65536. * 65536.)
} at, step;
int divisor; /* For step: > 1 for rational; 1 otherwise */
double out_in_ratio;
} stage_t;
#define stage_occupancy(s) max(0, fifo_occupancy(&(s)->fifo) - (s)->pre_post)
#define stage_read_p(s) ((sample_t *)fifo_read_ptr(&(s)->fifo) + (s)->pre)
static void cubic_spline(stage_t * p, fifo_t * output_fifo)
{
int i, num_in = stage_occupancy(p), max_num_out = 1 + num_in*p->out_in_ratio;
sample_t const * input = stage_read_p(p);
sample_t * output = fifo_reserve(output_fifo, max_num_out);
for (i = 0; p->at.parts.integer < num_in; ++i, p->at.all += p->step.all) {
sample_t const * s = input + p->at.parts.integer;
sample_t x = p->at.parts.fraction * (1 / MULT32);
sample_t b = .5*(s[1]+s[-1])-*s, a = (1/6.)*(s[2]-s[1]+s[-1]-*s-4*b);
sample_t c = s[1]-*s-a-b;
output[i] = ((a*x + b)*x + c)*x + *s;
}
assert(max_num_out - i >= 0);
fifo_trim_by(output_fifo, max_num_out - i);
fifo_read(&p->fifo, p->at.parts.integer, NULL);
p->at.parts.integer = 0;
}
static void half_sample(stage_t * p, fifo_t * output_fifo)
{
sample_t * output;
int i, j, num_in = max(0, fifo_occupancy(&p->fifo));
rate_shared_t const * s = p->shared;
half_band_t const * f = &s->half_band[p->which];
int const overlap = f->num_taps - 1;
while (num_in >= f->dft_length) {
sample_t const * input = fifo_read_ptr(&p->fifo);
fifo_read(&p->fifo, f->dft_length - overlap, NULL);
num_in -= f->dft_length - overlap;
output = fifo_reserve(output_fifo, f->dft_length);
fifo_trim_by(output_fifo, (f->dft_length + overlap) >> 1);
memcpy(output, input, f->dft_length * sizeof(*output));
rdft(f->dft_length, 1, output, s->bit_rev_table, s->sin_cos_table);
output[0] *= f->coefs[0];
output[1] *= f->coefs[1];
for (i = 2; i < f->dft_length; i += 2) {
sample_t tmp = output[i];
output[i ] = f->coefs[i ] * tmp - f->coefs[i+1] * output[i+1];
output[i+1] = f->coefs[i+1] * tmp + f->coefs[i ] * output[i+1];
}
rdft(f->dft_length, -1, output, s->bit_rev_table, s->sin_cos_table);
for (j = 1, i = 2; i < f->dft_length - overlap; ++j, i += 2)
output[j] = output[i];
}
}
static void double_sample(stage_t * p, fifo_t * output_fifo)
{
sample_t * output;
int i, j, num_in = max(0, fifo_occupancy(&p->fifo));
rate_shared_t const * s = p->shared;
half_band_t const * f = &s->half_band[1];
int const overlap = f->num_taps - 1;
while (num_in > f->dft_length >> 1) {
sample_t const * input = fifo_read_ptr(&p->fifo);
fifo_read(&p->fifo, (f->dft_length - overlap) >> 1, NULL);
num_in -= (f->dft_length - overlap) >> 1;
output = fifo_reserve(output_fifo, f->dft_length);
fifo_trim_by(output_fifo, overlap);
for (j = i = 0; i < f->dft_length; ++j, i += 2)
output[i] = input[j], output[i+1] = 0;
rdft(f->dft_length, 1, output, s->bit_rev_table, s->sin_cos_table);
output[0] *= f->coefs[0];
output[1] *= f->coefs[1];
for (i = 2; i < f->dft_length; i += 2) {
sample_t tmp = output[i];
output[i ] = f->coefs[i ] * tmp - f->coefs[i+1] * output[i+1];
output[i+1] = f->coefs[i+1] * tmp + f->coefs[i ] * output[i+1];
}
rdft(f->dft_length, -1, output, s->bit_rev_table, s->sin_cos_table);
}
}
static double * make_lpf(int num_taps, double Fc, double beta, double scale)
{
double * h = malloc(num_taps * sizeof(*h)), sum = 0;
int i, m = num_taps - 1;
assert(Fc >= 0 && Fc <= 1);
for (i = 0; i <= m / 2; ++i) {
double x = M_PI * (i - .5 * m), y = 2. * i / m - 1;
h[i] = x? sin(Fc * x) / x : Fc;
sum += h[i] *= bessel_I_0(beta * sqrt(1 - y * y));
if (m - i != i)
sum += h[m - i] = h[i];
}
for (i = 0; i < num_taps; ++i) h[i] *= scale / sum;
return h;
}
static double * design_lpf(
double Fp, /* End of pass-band; ~= 0.01dB point */
double Fc, /* Start of stop-band */
double Fn, /* Nyquist freq; e.g. 0.5, 1, PI */
double att, /* Stop-band attenuation in dB */
int * num_taps, /* (Single phase.) 0: value will be estimated */
int k) /* Number of phases; 0 for single-phase */
{
double tr_bw, beta;
Fp /= Fn, Fc /= Fn; /* Normalise to Fn = 1 */
tr_bw = .5869 * (Fc - Fp); /* Transition band-width: 6dB to stop points */
if (*num_taps == 0) { /* TODO this could be cleaner, esp. for k != 0 */
double n160 = (.0425* att - 1.4) / tr_bw; /* Half order for att = 160 */
int n = n160 * (16.556 / (att - 39.6) + .8625) + .5; /* For att [80,160) */
*num_taps = k? 2 * n : 2 * (n + (n & 1)) + 1; /* =1 %4 (0 phase 1/2 band) */
}
assert(att >= 80);
beta = att < 100 ? .1102 * (att - 8.7) : .1117 * att - 1.11;
if (k)
*num_taps = *num_taps * k - 1;
else k = 1;
return make_lpf(*num_taps, (Fc - tr_bw) / k, beta, (double)k);
}
static int set_dft_length(int num_taps) /* Set to 4 x nearest power of 2 */
{
int result, n = num_taps;
for (result = 8; n > 2; result <<= 1, n >>= 1);
result = range_limit(result, 4096, 131072);
assert(num_taps * 2 < result);
return result;
}
static void half_band_filter_init(rate_shared_t * p, unsigned which,
int num_taps, sample_t const h[], double Fp, double atten, int multiplier)
{
half_band_t * f = &p->half_band[which];
int dft_length, i;
if (f->num_taps)
return;
if (h) {
dft_length = set_dft_length(num_taps);
f->coefs = calloc(dft_length, sizeof(*f->coefs));
for (i = 0; i < num_taps; ++i)
f->coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)]
= h[abs(num_taps / 2 - i)] / dft_length * 2 * multiplier;
}
else {
double * h = design_lpf(Fp, 1., 2., atten, &num_taps, 0);
dft_length = set_dft_length(num_taps);
f->coefs = calloc(dft_length, sizeof(*f->coefs));
for (i = 0; i < num_taps; ++i)
f->coefs[(i + dft_length - num_taps + 1) & (dft_length - 1)]
= h[i] / dft_length * 2 * multiplier;
free(h);
}
assert(num_taps & 1);
f->num_taps = num_taps;
f->dft_length = dft_length;
sox_debug("fir_len=%i dft_length=%i Fp=%g atten=%g mult=%i",
num_taps, dft_length, Fp, atten, multiplier);
if (!p->bit_rev_table) {
p->bit_rev_table = calloc(dft_br_len(dft_length),sizeof(*p->bit_rev_table));
p->sin_cos_table = calloc(dft_sc_len(dft_length),sizeof(*p->sin_cos_table));
}
rdft(dft_length, 1, f->coefs, p->bit_rev_table, p->sin_cos_table);
}
#include "rate_filters.h"
typedef struct {
double factor;
size_t samples_in, samples_out;
int level, input_stage_num, output_stage_num;
sox_bool upsample;
stage_t * stages;
} rate_t;
#define pre_stage p->stages[-1]
#define last_stage p->stages[p->level]
#define post_stage p->stages[p->level + 1]
typedef enum {Default = -1, Quick, Low, Medium, High, Very, Ultra} quality_t;
static void rate_init(rate_t * p, rate_shared_t * shared, double factor, quality_t quality, int interp_order)
{
int i, mult, divisor = 1;
assert(factor > 0);
p->factor = factor;
if (quality < Quick || quality > Ultra)
quality = High;
if (quality != Quick) {
const int max_divisor = 2048; /* Keep coef table size ~< 500kb */
const double epsilon = 4 / MULT32; /* Scaled to half this at max_divisor */
p->upsample = p->factor < 1;
for (i = factor, p->level = 0; i >>= 1; ++p->level); /* log base 2 */
factor /= 1 << (p->level + !p->upsample);
for (i = 2; i <= max_divisor && divisor == 1; ++i) {
double try_d = factor * i;
int try = try_d + .5;
if (fabs(try - try_d) < try * epsilon * (1 - (.5 / max_divisor) * i)) {
if (try == i) /* Rounded to 1:1? */
factor = 1, divisor = 2, p->upsample = sox_false;
else factor = try, divisor = i;
}
}
}
p->stages = (stage_t *)calloc((size_t)p->level + 4, sizeof(*p->stages)) + 1;
for (i = -1; i <= p->level + 1; ++i) p->stages[i].shared = shared;
last_stage.step.all = factor * MULT32 + .5;
last_stage.out_in_ratio = MULT32 * divisor / last_stage.step.all;
if (divisor != 1)
assert(!last_stage.step.parts.fraction);
else if (quality != Quick)
assert(!last_stage.step.parts.integer);
sox_debug("i/o=%g; %.9g:%i @ level %i", p->factor, factor, divisor, p->level);
mult = 1 + p->upsample; /* Compensate for zero-stuffing in double_sample */
p->input_stage_num = -p->upsample;
p->output_stage_num = p->level;
if (quality == Quick) {
++p->output_stage_num;
last_stage.fn = cubic_spline;
last_stage.pre_post = max(3, last_stage.step.parts.integer);
last_stage.preload = last_stage.pre = 1;
}
else if (last_stage.out_in_ratio != 2 || (p->upsample && quality == Low)) {
poly_fir_t const * f;
poly_fir1_t const * f1;
int n = 4 * p->upsample + range_limit(quality, Medium, Very) - Medium;
if (interp_order < 0)
interp_order = quality > High;
interp_order = divisor == 1? 1 + interp_order : 0;
last_stage.divisor = divisor;
p->output_stage_num += 2;
if (p->upsample && quality == Low)
mult = 1, ++p->input_stage_num, --p->output_stage_num, --n;
f = &poly_firs[n];
f1 = &f->interp[interp_order];
if (!last_stage.shared->poly_fir_coefs) {
int num_taps = 0, phases = divisor == 1? (1 << f1->phase_bits) : divisor;
raw_coef_t * coefs =
design_lpf(f->pass, f->stop, 1., f->att, &num_taps, phases);
assert(num_taps == f->num_coefs * phases - 1);
last_stage.shared->poly_fir_coefs =
prepare_coefs(coefs, f->num_coefs, phases, interp_order, mult);
sox_debug("fir_len=%i phases=%i coef_interp=%i mult=%i size=%s",
f->num_coefs, phases, interp_order, mult,
sigfigs3((num_taps + 1) * (interp_order + 1) * sizeof(sample_t)));
free(coefs);
}
last_stage.fn = f1->fn;
last_stage.pre_post = f->num_coefs - 1;
last_stage.pre = 0;
last_stage.preload = last_stage.pre_post >> 1;
mult = 1;
}
if (quality > Low) {
typedef struct {int len; sample_t const * h; double bw, a;} filter_t;
static filter_t const filters[] = {
{2 * array_length(half_fir_coefs_low) - 1, half_fir_coefs_low, 0,0},
{0, NULL, .986, 110}, {0, NULL, .986, 125},
{0, NULL, .986, 165}, {0, NULL, .996, 165},
};
filter_t const * f = &filters[quality - Low];
assert((size_t)(quality - Low) < array_length(filters));
half_band_filter_init(shared, p->upsample, f->len, f->h, f->bw, f->a, mult);
if (p->upsample) {
pre_stage.fn = double_sample; /* Finish off setting up pre-stage */
pre_stage .preload = shared->half_band[1].num_taps >> 2;
/* Start setting up post-stage; TODO don't use dft for short filters */
if ((1 - p->factor) / (1 - f->bw) > 2)
half_band_filter_init(shared, 0, 0, NULL, max(p->factor, .64), f->a, 1);
else shared->half_band[0] = shared->half_band[1];
}
else if (p->level > 0 && p->output_stage_num > p->level) {
double pass = f->bw * divisor / factor / 2;
if ((1 - pass) / (1 - f->bw) > 2)
half_band_filter_init(shared, 1, 0, NULL, max(pass, .64), f->a, 1);
}
post_stage.fn = half_sample;
post_stage.preload = shared->half_band[0].num_taps >> 1;
}
else if (quality == Low && !p->upsample) { /* dft is slower here, so */
post_stage.fn = half_sample_low; /* use normal convolution */
post_stage.pre_post = 2 * (array_length(half_fir_coefs_low) - 1);
post_stage.preload = post_stage.pre = post_stage.pre_post >> 1;
}
if (p->level > 0) {
stage_t * s = & p->stages[p->level - 1];
if (shared->half_band[1].num_taps) {
s->fn = half_sample;
s->preload = shared->half_band[1].num_taps >> 1;
s->which = 1;
}
else *s = post_stage;
}
for (i = p->input_stage_num; i <= p->output_stage_num; ++i) {
stage_t * s = &p->stages[i];
if (i >= 0 && i < p->level - 1) {
s->fn = half_sample_25;
s->pre_post = 2 * (array_length(half_fir_coefs_25) - 1);
s->preload = s->pre = s->pre_post >> 1;
}
fifo_create(&s->fifo, sizeof(sample_t));
memset(fifo_reserve(&s->fifo, s->preload), 0, sizeof(sample_t)*s->preload);
if (i < p->output_stage_num)
sox_debug("stage=%-3ipre_post=%-3ipre=%-3ipreload=%i",
i, s->pre_post, s->pre, s->preload);
}
}
static void rate_process(rate_t * p)
{
stage_t * stage = p->stages + p->input_stage_num;
int i;
for (i = p->input_stage_num; i < p->output_stage_num; ++i, ++stage)
stage->fn(stage, &(stage+1)->fifo);
}
static sample_t * rate_input(rate_t * p, sample_t const * samples, size_t n)
{
p->samples_in += n;
return fifo_write(&p->stages[p->input_stage_num].fifo, (int)n, samples);
}
static sample_t const * rate_output(rate_t * p, sample_t * samples, size_t * n)
{
fifo_t * fifo = &p->stages[p->output_stage_num].fifo;
p->samples_out += *n = min(*n, (size_t)fifo_occupancy(fifo));
return fifo_read(fifo, (int)*n, samples);
}
static void rate_flush(rate_t * p)
{
fifo_t * fifo = &p->stages[p->output_stage_num].fifo;
size_t samples_out = p->samples_in / p->factor + .5;
size_t remaining = samples_out - p->samples_out;
sample_t * buff = calloc(1024, sizeof(*buff));
if ((int)remaining > 0) {
while ((size_t)fifo_occupancy(fifo) < remaining) {
rate_input(p, buff, 1024);
rate_process(p);
}
fifo_trim_to(fifo, (int)remaining);
p->samples_in = 0;
}
free(buff);
}
static void rate_close(rate_t * p)
{
rate_shared_t * shared = p->stages[0].shared;
int i;
for (i = p->input_stage_num; i <= p->output_stage_num; ++i)
fifo_delete(&p->stages[i].fifo);
free(shared->bit_rev_table);
free(shared->sin_cos_table);
free(shared->half_band[0].coefs);
if (shared->half_band[1].coefs != shared->half_band[0].coefs)
free(shared->half_band[1].coefs);
free(shared->poly_fir_coefs);
memset(shared, 0, sizeof(*shared));
free(p->stages - 1);
}
/*------------------------------- SoX Wrapper --------------------------------*/
typedef struct {
sox_rate_t out_rate;
int quality, coef_interp;
rate_t rate;
rate_shared_t shared, * shared_ptr;
} priv_t;
static int create(sox_effect_t * effp, int argc, char **argv)
{
priv_t * p = (priv_t *) effp->priv;
char dummy, * found_at, * bws = "-qlmhvu", * nums = "123";
p->quality = p->coef_interp = -1;
p->shared_ptr = &p->shared;
while (argc && strchr(bws, *argv[0])) {
char c, * q = *argv[0] == '-'? *argv + 1 : *argv;
while ((c = *q++)) {
if ((found_at = strchr(bws+1, c))) p->quality = found_at - bws -1;
else if ((found_at = strchr(nums, c))) p->coef_interp = found_at - nums;
else return lsx_usage(effp);
}
argc--; argv++;
}
if (argc) {
if (sscanf(*argv, "%lf %c", &p->out_rate, &dummy) != 1 || p->out_rate <= 0)
return lsx_usage(effp);
argc--; argv++;
}
return argc? lsx_usage(effp) : SOX_SUCCESS;
}
static int start(sox_effect_t * effp)
{
priv_t * p = (priv_t *) effp->priv;
double out_rate = p->out_rate != 0 ? p->out_rate : effp->out_signal.rate;
if (effp->in_signal.rate == out_rate)
return SOX_EFF_NULL;
effp->out_signal.channels = effp->in_signal.channels;
effp->out_signal.rate = out_rate;
rate_init(&p->rate, p->shared_ptr, effp->in_signal.rate / out_rate, p->quality, p->coef_interp);
return SOX_SUCCESS;
}
static int flow(sox_effect_t * effp, const sox_sample_t * ibuf,
sox_sample_t * obuf, sox_size_t * isamp, sox_size_t * osamp)
{
priv_t * p = (priv_t *)effp->priv;
sox_size_t i;
size_t odone = *osamp; /* See comment in tempo.c */
sample_t const * s = rate_output(&p->rate, NULL, &odone);
for (i = 0; i < odone; ++i) *obuf++ = TO_SOX(*s++, effp->clips);
if (*isamp && odone < *osamp) {
sample_t * t = rate_input(&p->rate, NULL, *isamp);
for (i = *isamp; i; --i) *t++ = FROM_SOX(*ibuf++, effp->clips);
rate_process(&p->rate);
}
else *isamp = 0;
*osamp = odone;
return SOX_SUCCESS;
}
static int drain(sox_effect_t * effp, sox_sample_t * obuf, sox_size_t * osamp)
{
priv_t * p = (priv_t *)effp->priv;
static sox_size_t isamp = 0;
rate_flush(&p->rate);
return flow(effp, 0, obuf, &isamp, osamp);
}
static int stop(sox_effect_t * effp)
{
priv_t * p = (priv_t *) effp->priv;
rate_close(&p->rate);
return SOX_SUCCESS;
}
sox_effect_handler_t const * sox_rate_effect_fn(void)
{
static sox_effect_handler_t handler = {
"rate", "[-q|-l|-m|-h|-v]\n"
" Quality BW % Rej dB Typical Use\n"
" -q quick & dirty n/a ~30 @ Fs/4 playback on ancient hardware\n"
" -l low 80 100 playback on old hardware\n"
" -m medium 99 100 audio playback\n"
" -h high 99 120 16-bit mastering (use with dither)\n"
" -v very high 99 150 24-bit mastering"
, SOX_EFF_RATE, create, start, flow, drain, stop, NULL, sizeof(priv_t)
};
return &handler;
}