ref: 7df6e780f9631d924d733b92e3cafe8038f72ae6
dir: /amr-wb/q_gain2.c/
/*--------------------------------------------------------------------------* * Q_GAIN2.C * *--------------------------------------------------------------------------* * Quantization of pitch and codebook gains. * * MA prediction is performed on the innovation energy (in dB with mean * * removed). * * An initial predicted gain, g_0, is first determined and the correction * * factor alpha = gain / g_0 is quantized. * * The pitch gain and the correction factor are vector quantized and the * * mean-squared weighted error criterion is used in the quantizer search. * *--------------------------------------------------------------------------*/ #include "typedef.h" #include "basic_op.h" #include "oper_32b.h" #include "math_op.h" #include "count.h" #include "log2.h" #include "acelp.h" #include "q_gain2.tab" #define MEAN_ENER 30 #define RANGE 64 #define PRED_ORDER 4 /* MA prediction coeff ={0.5, 0.4, 0.3, 0.2} in Q13 */ static Word16 pred[PRED_ORDER] = {4096, 3277, 2458, 1638}; void Init_Q_gain2( Word16 * mem /* output :static memory (2 words) */ ) { Word16 i; /* 4nd order quantizer energy predictor (init to -14.0 in Q10) */ for (i = 0; i < PRED_ORDER; i++) { mem[i] = -14336; move16(); /* past_qua_en[i] */ } return; } Word16 Q_gain2( /* Return index of quantization. */ Word16 xn[], /* (i) Q_xn: Target vector. */ Word16 y1[], /* (i) Q_xn: Adaptive codebook. */ Word16 Q_xn, /* (i) : xn and y1 format */ Word16 y2[], /* (i) Q9 : Filtered innovative vector. */ Word16 code[], /* (i) Q9 : Innovative vector. */ Word16 g_coeff[], /* (i) : Correlations <xn y1> <y1 y1> */ /* Compute in G_pitch(). */ Word16 L_subfr, /* (i) : Subframe lenght. */ Word16 nbits, /* (i) : number of bits (6 or 7) */ Word16 * gain_pit, /* (i/o)Q14: Pitch gain. */ Word32 * gain_cod, /* (o) Q16 : Code gain. */ Word16 gp_clip, /* (i) : Gp Clipping flag */ Word16 * mem /* (i/o) : static memory (2 words) */ ) { Word16 i, j, index, *p, min_ind, size; Word16 exp, frac, gcode0, exp_gcode0, e_max, exp_code, qua_ener; Word16 g_pitch, g2_pitch, g_code, g_pit_cod, g2_code, g2_code_lo; Word16 coeff[5], coeff_lo[5], exp_coeff[5]; Word16 exp_max[5]; Word32 L_tmp, dist_min; Word16 *past_qua_en, *t_qua_gain; past_qua_en = mem; move16(); /*-----------------------------------------------------------------* * - Find the initial quantization pitch index * * - Set gains search range * *-----------------------------------------------------------------*/ test(); if (sub(nbits, 6) == 0) { t_qua_gain = t_qua_gain6b; move16(); min_ind = 0; move16(); size = RANGE; move16(); test(); if (sub(gp_clip, 1) == 0) { size = sub(size, 16); /* limit gain pitch to 1.0 */ } } else { t_qua_gain = t_qua_gain7b; move16(); p = t_qua_gain7b + RANGE; move16(); /* pt at 1/4th of table */ j = nb_qua_gain7b - RANGE; move16(); test(); if (sub(gp_clip, 1) == 0) { j = sub(j, 27); /* limit gain pitch to 1.0 */ } min_ind = 0; move16(); g_pitch = *gain_pit; move16(); for (i = 0; i < j; i++, p += 2) { test(); if (sub(g_pitch, *p) > 0) { min_ind = add(min_ind, 1); } } size = RANGE; move16(); } /*------------------------------------------------------------------* * Compute coefficient need for the quantization. * * * * coeff[0] = y1 y1 * * coeff[1] = -2 xn y1 * * coeff[2] = y2 y2 * * coeff[3] = -2 xn y2 * * coeff[4] = 2 y1 y2 * * * * Product <y1 y1> and <xn y1> have been compute in G_pitch() and * * are in vector g_coeff[]. * *------------------------------------------------------------------*/ coeff[0] = g_coeff[0]; move16(); exp_coeff[0] = g_coeff[1]; move16(); coeff[1] = negate(g_coeff[2]); move16(); /* coeff[1] = -2 xn y1 */ exp_coeff[1] = add(g_coeff[3], 1); move16(); /* Compute scalar product <y2[],y2[]> */ move16();move16(); coeff[2] = extract_h(Dot_product12(y2, y2, L_subfr, &exp)); exp_coeff[2] = add(sub(exp, 18), shl(Q_xn, 1)); /* -18 (y2 Q9) */ /* Compute scalar product -2*<xn[],y2[]> */ move16();move16(); coeff[3] = extract_h(L_negate(Dot_product12(xn, y2, L_subfr, &exp))); exp_coeff[3] = add(sub(exp, 9 - 1), Q_xn); /* -9 (y2 Q9), +1 (2 xn y2) */ /* Compute scalar product 2*<y1[],y2[]> */ move16();move16(); coeff[4] = extract_h(Dot_product12(y1, y2, L_subfr, &exp)); exp_coeff[4] = add(sub(exp, 9 - 1), Q_xn); /* -9 (y2 Q9), +1 (2 y1 y2) */ /*-----------------------------------------------------------------* * Find energy of code and compute: * * * * L_tmp = MEAN_ENER - 10log10(energy of code/ L_subfr) * * = MEAN_ENER - 3.0103*log2(energy of code/ L_subfr) * *-----------------------------------------------------------------*/ L_tmp = Dot_product12(code, code, L_subfr, &exp_code); /* exp_code: -18 (code in Q9), -6 (/L_subfr), -31 (L_tmp Q31->Q0) */ exp_code = sub(exp_code, 18 + 6 + 31); Log2(L_tmp, &exp, &frac); exp = add(exp, exp_code); L_tmp = Mpy_32_16(exp, frac, -24660); /* x -3.0103(Q13) -> Q14 */ L_tmp = L_mac(L_tmp, MEAN_ENER, 8192); /* + MEAN_ENER in Q14 */ /*-----------------------------------------------------------------* * Compute gcode0. * * = Sum(i=0,1) pred[i]*past_qua_en[i] + mean_ener - ener_code * *-----------------------------------------------------------------*/ L_tmp = L_shl(L_tmp, 10); /* From Q14 to Q24 */ L_tmp = L_mac(L_tmp, pred[0], past_qua_en[0]); /* Q13*Q10 -> Q24 */ L_tmp = L_mac(L_tmp, pred[1], past_qua_en[1]); /* Q13*Q10 -> Q24 */ L_tmp = L_mac(L_tmp, pred[2], past_qua_en[2]); /* Q13*Q10 -> Q24 */ L_tmp = L_mac(L_tmp, pred[3], past_qua_en[3]); /* Q13*Q10 -> Q24 */ gcode0 = extract_h(L_tmp); /* From Q24 to Q8 */ /*-----------------------------------------------------------------* * gcode0 = pow(10.0, gcode0/20) * * = pow(2, 3.321928*gcode0/20) * * = pow(2, 0.166096*gcode0) * *-----------------------------------------------------------------*/ L_tmp = L_mult(gcode0, 5443); /* *0.166096 in Q15 -> Q24 */ L_tmp = L_shr(L_tmp, 8); /* From Q24 to Q16 */ L_Extract(L_tmp, &exp_gcode0, &frac); /* Extract exponent of gcode0 */ gcode0 = extract_l(Pow2(14, frac)); /* Put 14 as exponent so that */ /* output of Pow2() will be: */ /* 16384 < Pow2() <= 32767 */ exp_gcode0 = sub(exp_gcode0, 14); /*-------------------------------------------------------------------------* * Find the best quantizer * * ~~~~~~~~~~~~~~~~~~~~~~~ * * Before doing the computation we need to aling exponents of coeff[] * * to be sure to have the maximum precision. * * * * In the table the pitch gains are in Q14, the code gains are in Q11 and * * are multiply by gcode0 which have been multiply by 2^exp_gcode0. * * Also when we compute g_pitch*g_pitch, g_code*g_code and g_pitch*g_code * * we divide by 2^15. * * Considering all the scaling above we have: * * * * exp_code = exp_gcode0-11+15 = exp_gcode0+4 * * * * g_pitch*g_pitch = -14-14+15 * * g_pitch = -14 * * g_code*g_code = (2*exp_code)+15 * * g_code = exp_code * * g_pitch*g_code = -14 + exp_code +15 * * * * g_pitch*g_pitch * coeff[0] ;exp_max0 = exp_coeff[0] - 13 * * g_pitch * coeff[1] ;exp_max1 = exp_coeff[1] - 14 * * g_code*g_code * coeff[2] ;exp_max2 = exp_coeff[2] +15+(2*exp_code) * * g_code * coeff[3] ;exp_max3 = exp_coeff[3] + exp_code * * g_pitch*g_code * coeff[4] ;exp_max4 = exp_coeff[4] + 1 + exp_code * *-------------------------------------------------------------------------*/ exp_code = add(exp_gcode0, 4); exp_max[0] = sub(exp_coeff[0], 13); move16(); exp_max[1] = sub(exp_coeff[1], 14); move16(); exp_max[2] = add(exp_coeff[2], add(15, shl(exp_code, 1))); move16(); exp_max[3] = add(exp_coeff[3], exp_code); move16(); exp_max[4] = add(exp_coeff[4], add(1, exp_code)); move16(); /* Find maximum exponant */ e_max = exp_max[0]; move16(); for (i = 1; i < 5; i++) { test(); if (sub(exp_max[i], e_max) > 0) { e_max = exp_max[i]; move16(); } } /* align coeff[] and save in special 32 bit double precision */ for (i = 0; i < 5; i++) { j = add(sub(e_max, exp_max[i]), 2);/* /4 to avoid overflow */ L_tmp = L_deposit_h(coeff[i]); L_tmp = L_shr(L_tmp, j); L_Extract(L_tmp, &coeff[i], &coeff_lo[i]); coeff_lo[i] = shr(coeff_lo[i], 3); move16(); /* lo >> 3 */ } /* Codebook search */ dist_min = MAX_32; move32(); p = &t_qua_gain[shl(min_ind, 1)]; move16(); index = 0; move16(); for (i = 0; i < size; i++) { g_pitch = *p++; move16(); g_code = *p++; move16(); g_code = mult_r(g_code, gcode0); g2_pitch = mult_r(g_pitch, g_pitch); g_pit_cod = mult_r(g_code, g_pitch); L_tmp = L_mult(g_code, g_code); L_Extract(L_tmp, &g2_code, &g2_code_lo); L_tmp = L_mult(coeff[2], g2_code_lo); L_tmp = L_shr(L_tmp, 3); L_tmp = L_mac(L_tmp, coeff_lo[0], g2_pitch); L_tmp = L_mac(L_tmp, coeff_lo[1], g_pitch); L_tmp = L_mac(L_tmp, coeff_lo[2], g2_code); L_tmp = L_mac(L_tmp, coeff_lo[3], g_code); L_tmp = L_mac(L_tmp, coeff_lo[4], g_pit_cod); L_tmp = L_shr(L_tmp, 12); L_tmp = L_mac(L_tmp, coeff[0], g2_pitch); L_tmp = L_mac(L_tmp, coeff[1], g_pitch); L_tmp = L_mac(L_tmp, coeff[2], g2_code); L_tmp = L_mac(L_tmp, coeff[3], g_code); L_tmp = L_mac(L_tmp, coeff[4], g_pit_cod); test(); if (L_sub(L_tmp, dist_min) < (Word32) 0) { dist_min = L_tmp; move32(); index = i; move16(); } } /* Read the quantized gains */ index = add(index, min_ind); p = &t_qua_gain[add(index, index)]; move16(); *gain_pit = *p++; move16(); /* selected pitch gain in Q14 */ g_code = *p++; move16(); /* selected code gain in Q11 */ L_tmp = L_mult(g_code, gcode0); /* Q11*Q0 -> Q12 */ L_tmp = L_shl(L_tmp, add(exp_gcode0, 4)); /* Q12 -> Q16 */ *gain_cod = L_tmp; move16(); /* gain of code in Q16 */ /*---------------------------------------------------* * qua_ener = 20*log10(g_code) * * = 6.0206*log2(g_code) * * = 6.0206*(log2(g_codeQ11) - 11) * *---------------------------------------------------*/ L_tmp = L_deposit_l(g_code); Log2(L_tmp, &exp, &frac); exp = sub(exp, 11); L_tmp = Mpy_32_16(exp, frac, 24660); /* x 6.0206 in Q12 */ qua_ener = extract_l(L_shr(L_tmp, 3)); /* result in Q10 */ /* update table of past quantized energies */ past_qua_en[3] = past_qua_en[2]; move16(); past_qua_en[2] = past_qua_en[1]; move16(); past_qua_en[1] = past_qua_en[0]; move16(); past_qua_en[0] = qua_ener; move16(); return (index); }