ref: 7e6e33818acc4623d440ed1d6371760cf84d6ad3
dir: /src/resample.c/
/* * libSoX rate change effect file. * Spiffy rate changer using Smith & Wesson Bandwidth-Limited Interpolation. * The algorithm is described in "Bandlimited Interpolation - * Introduction and Algorithm" by Julian O. Smith III. * Available on ccrma-ftp.stanford.edu as * pub/BandlimitedInterpolation.eps.Z or similar. * * The latest stand alone version of this algorithm can be found * at ftp://ccrma-ftp.stanford.edu/pub/NeXT/ * under the name of resample-version.number.tar.Z * * * FILE: resample.h * BY: Julius Smith (at CCRMA, Stanford U) * C BY: translated from SAIL to C by Christopher Lee Fraley * (cf0v@andrew.cmu.edu) * DATE: 7-JUN-88 * VERS: 2.0 (17-JUN-88, 3:00pm) * * July 5, 1991 * Copyright 1991 Lance Norskog And Sundry Contributors * This source code is freely redistributable and may be used for * any purpose. This copyright notice must be maintained. * Lance Norskog And Sundry Contributors are not responsible for * the consequences of using this software. * * This source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * Fixed bug: roll off frequency was wrong, too high by 2 when upsampling, * too low by 2 when downsampling. * Andreas Wilde, 12. Feb. 1999, andreas@eakaw2.et.tu-dresden.de * * October 29, 1999 * Various changes, bugfixes(?), increased precision, by Stan Brooks. */ #include "sox_i.h" #include <math.h> #include <stdlib.h> #include <string.h> /* Conversion constants */ #define Lc 7 #define Nc (1<<Lc) #define La 16 #define Na (1<<La) #define Lp (Lc+La) #define Np (1<<Lp) #define Amask (Na-1) #define Pmask (Np-1) #define MAXNWING (80<<Lc) /* Description of constants: * * Nc - is the number of look-up values available for the lowpass filter * between the beginning of its impulse response and the "cutoff time" * of the filter. The cutoff time is defined as the reciprocal of the * lowpass-filter cut off frequence in Hz. For example, if the * lowpass filter were a sinc function, Nc would be the index of the * impulse-response lookup-table corresponding to the first zero- * crossing of the sinc function. (The inverse first zero-crossing * time of a sinc function equals its nominal cutoff frequency in Hz.) * Nc must be a power of 2 due to the details of the current * implementation. The default value of 128 is sufficiently high that * using linear interpolation to fill in between the table entries * gives approximately 16-bit precision, and quadratic interpolation * gives about 23-bit (float) precision in filter coefficients. * * Lc - is log base 2 of Nc. * * La - is the number of bits devoted to linear interpolation of the * filter coefficients. * * Lp - is La + Lc, the number of bits to the right of the binary point * in the integer "time" variable. To the left of the point, it indexes * the input array (X), and to the right, it is interpreted as a number * between 0 and 1 sample of the input X. The default value of 23 is * about right. There is a constraint that the filter window must be * "addressable" in a int32_t, more precisely, if Nmult is the number * of sinc zero-crossings in the right wing of the filter window, then * (Nwing<<Lp) must be expressible in 31 bits. * */ #define ISCALE 0x10000 /* largest factor for which exact-coefficients upsampling will be used */ #define NQMAX 511 #define BUFFSIZE 8192 /*16384*/ /* Total I/O buffer size */ /* Private data for Lerp via LCM file */ typedef struct resamplestuff { double Factor; /* Factor = Fout/Fin sample rates */ double rolloff; /* roll-off frequency */ double beta; /* passband/stopband tuning magic */ int quadr; /* non-zero to use qprodUD quadratic interpolation */ long Nmult; long Nwing; long Nq; double *Imp; /* impulse [Nwing+1] Filter coefficients */ double Time; /* Current time/pos in input sample */ long dhb; long a,b; /* gcd-reduced input,output rates */ long t; /* Current time/pos for exact-coeff's method */ long Xh; /* number of past/future samples needed by filter */ long Xoff; /* Xh plus some room for creep */ long Xread; /* X[Xread] is start-position to enter new samples */ long Xp; /* X[Xp] is position to start filter application */ unsigned long Xsize,Ysize; /* size (doubles) of X[],Y[] */ double *X, *Y; /* I/O buffers */ } *resample_t; static void LpFilter(double c[], long N, double frq, double Beta, long Num); /* makeFilter is used by filter.c */ int makeFilter(double Imp[], long Nwing, double Froll, double Beta, long Num, int Normalize); static long SrcUD(resample_t r, long Nx); static long SrcEX(resample_t r, long Nx); /* * Process options */ static int getopts(sox_effect_t * effp, int n, char **argv) { resample_t r = (resample_t) effp->priv; /* These defaults are conservative with respect to aliasing. */ r->rolloff = 0.80; r->beta = 16; /* anything <=2 means Nutall window */ r->quadr = 0; r->Nmult = 45; if (n >= 1) { if (!strcmp(argv[0], "-qs")) { r->quadr = 1; n--; argv++; } else if (!strcmp(argv[0], "-q")) { r->rolloff = 0.875; r->quadr = 1; r->Nmult = 75; n--; argv++; } else if (!strcmp(argv[0], "-ql")) { r->rolloff = 0.94; r->quadr = 1; r->Nmult = 149; n--; argv++; } } if ((n >= 1) && (sscanf(argv[0], "%lf", &r->rolloff) != 1)) { return sox_usage(effp); } else if ((r->rolloff <= 0.01) || (r->rolloff >= 1.0)) { sox_fail("rolloff factor (%f) no good, should be 0.01<x<1.0", r->rolloff); return(SOX_EOF); } if ((n >= 2) && !sscanf(argv[1], "%lf", &r->beta)) { return sox_usage(effp); } else if (r->beta <= 2.0) { r->beta = 0; sox_debug("opts: Nuttall window, cutoff %f", r->rolloff); } else sox_debug("opts: Kaiser window, cutoff %f, beta %f", r->rolloff, r->beta); return (SOX_SUCCESS); } /* * Prepare processing. */ static int start(sox_effect_t * effp) { resample_t r = (resample_t) effp->priv; long Xoff, gcdrate; int i; if (effp->in_signal.rate == effp->out_signal.rate) return SOX_EFF_NULL; effp->out_signal.channels = effp->in_signal.channels; r->Factor = effp->out_signal.rate / effp->in_signal.rate; gcdrate = sox_gcd((long) effp->in_signal.rate, (long) effp->out_signal.rate); r->a = effp->in_signal.rate / gcdrate; r->b = effp->out_signal.rate / gcdrate; if (r->a <= r->b && r->b <= NQMAX) { r->quadr = -1; /* exact coeffs */ r->Nq = r->b; /* max(r->a,r->b) */ } else r->Nq = Nc; /* for now */ /* Nwing: # of filter coeffs in right wing */ r->Nwing = r->Nq * (r->Nmult / 2 + 1) + 1; r->Imp = (double *) xmalloc(sizeof(double) * (r->Nwing + 2)) + 1; /* need Imp[-1] and Imp[Nwing] for quadratic interpolation */ /* returns error # <=0, or adjusted wing-len > 0 */ i = makeFilter(r->Imp, r->Nwing, r->rolloff, r->beta, r->Nq, 1); if (i <= 0) { sox_fail("Unable to make filter"); return (SOX_EOF); } sox_debug("Nmult: %ld, Nwing: %ld, Nq: %ld", r->Nmult, r->Nwing, r->Nq); if (r->quadr < 0) { /* exact coeff's method */ r->Xh = r->Nwing / r->b; sox_debug("rate ratio %ld:%ld, coeff interpolation not needed", r->a, r->b); } else { r->dhb = Np; /* Fixed-point Filter sampling-time-increment */ if (r->Factor < 1.0) r->dhb = r->Factor * Np + 0.5; r->Xh = (r->Nwing << La) / r->dhb; /* (Xh * dhb)>>La is max index into Imp[] */ } /* reach of LP filter wings + some creeping room */ Xoff = r->Xh + 10; r->Xoff = Xoff; /* Current "now"-sample pointer for input to filter */ r->Xp = Xoff; /* Position in input array to read into */ r->Xread = Xoff; /* Current-time pointer for converter */ r->Time = Xoff; if (r->quadr < 0) { /* exact coeff's method */ r->t = Xoff * r->Nq; } i = BUFFSIZE - 2 * Xoff; if (i < r->Factor + 1.0 / r->Factor) { /* Check input buffer size */ sox_fail("Factor is too small or large for BUFFSIZE"); return (SOX_EOF); } r->Xsize = 2 * Xoff + i / (1.0 + r->Factor); r->Ysize = BUFFSIZE - r->Xsize; sox_debug("Xsize %li, Ysize %li, Xoff %li", r->Xsize, r->Ysize, r->Xoff); r->X = (double *) xmalloc(sizeof(double) * (BUFFSIZE)); r->Y = r->X + r->Xsize; /* Need Xoff zeros at beginning of sample */ for (i = 0; i < Xoff; i++) r->X[i] = 0; return (SOX_SUCCESS); } /* * Processed signed long samples from ibuf to obuf. * Return number of samples processed. */ static int flow(sox_effect_t * effp, const sox_sample_t *ibuf, sox_sample_t *obuf, sox_size_t *isamp, sox_size_t *osamp) { resample_t r = (resample_t) effp->priv; long i, last, Nout, Nx, Nproc; sox_debug_more("Xp %li, Xread %li, isamp %d, ",r->Xp, r->Xread,*isamp); /* constrain amount we actually process */ Nproc = r->Xsize - r->Xp; i = (r->Ysize < *osamp)? r->Ysize : *osamp; if (Nproc * r->Factor >= i) Nproc = i / r->Factor; Nx = Nproc - r->Xread; /* space for right-wing future-data */ if (Nx <= 0) { sox_fail("Can not handle this sample rate change. Nx not positive: %li", Nx); return (SOX_EOF); } if ((unsigned long)Nx > *isamp) Nx = *isamp; sox_debug_more("Nx %li",Nx); if (ibuf == NULL) { for(i = r->Xread; i < Nx + r->Xread ; i++) r->X[i] = 0; } else { for(i = r->Xread; i < Nx + r->Xread ; i++) r->X[i] = (double)(*ibuf++)/ISCALE; } last = i; Nproc = last - r->Xoff - r->Xp; if (Nproc <= 0) { /* fill in starting here next time */ r->Xread = last; /* leave *isamp alone, we consumed it */ *osamp = 0; return (SOX_SUCCESS); } if (r->quadr < 0) { /* exact coeff's method */ long creep; Nout = SrcEX(r, Nproc); sox_debug_more("Nproc %li --> %li",Nproc,Nout); /* Move converter Nproc samples back in time */ r->t -= Nproc * r->b; /* Advance by number of samples processed */ r->Xp += Nproc; /* Calc time accumulation in Time */ creep = r->t/r->b - r->Xoff; if (creep) { r->t -= creep * r->b; /* Remove time accumulation */ r->Xp += creep; /* and add it to read pointer */ sox_debug_more("Nproc %ld, creep %ld",Nproc,creep); } } else { /* approx coeff's method */ long creep; Nout = SrcUD(r, Nproc); sox_debug_more("Nproc %li --> %li",Nproc,Nout); /* Move converter Nproc samples back in time */ r->Time -= Nproc; /* Advance by number of samples processed */ r->Xp += Nproc; /* Calc time accumulation in Time */ creep = r->Time - r->Xoff; if (creep) { r->Time -= creep; /* Remove time accumulation */ r->Xp += creep; /* and add it to read pointer */ sox_debug_more("Nproc %ld, creep %ld",Nproc,creep); } } { long i,k; /* Copy back portion of input signal that must be re-used */ k = r->Xp - r->Xoff; sox_debug_more("k %li, last %li",k,last); for (i=0; i<last - k; i++) r->X[i] = r->X[i+k]; /* Pos in input buff to read new data into */ r->Xread = i; r->Xp = r->Xoff; for(i=0; i < Nout; i++) { double ftemp = r->Y[i] * ISCALE; SOX_SAMPLE_CLIP_COUNT(ftemp, effp->clips); *obuf++ = ftemp; } *isamp = Nx; *osamp = Nout; } return (SOX_SUCCESS); } /* * Process tail of input samples. */ static int drain(sox_effect_t * effp, sox_sample_t *obuf, sox_size_t *osamp) { resample_t r = (resample_t) effp->priv; long isamp_res, osamp_res; sox_sample_t *Obuf; int rc; sox_debug("Xoff %li <--- DRAIN",r->Xoff); /* stuff end with Xoff zeros */ isamp_res = r->Xoff; osamp_res = *osamp; Obuf = obuf; while (isamp_res>0 && osamp_res>0) { sox_sample_t Isamp, Osamp; Isamp = isamp_res; Osamp = osamp_res; rc = flow(effp, NULL, Obuf, (sox_size_t *)&Isamp, (sox_size_t *)&Osamp); if (rc) return rc; sox_debug("DRAIN isamp,osamp (%li,%li) -> (%d,%d)", isamp_res,osamp_res,Isamp,Osamp); Obuf += Osamp; osamp_res -= Osamp; isamp_res -= Isamp; } *osamp -= osamp_res; sox_debug("DRAIN osamp %d", *osamp); if (isamp_res) sox_warn("drain overran obuf by %li", isamp_res); /* FIXME: This is very picky. IF obuf is not big enough to * drain remaining samples, they will be lost. */ return (SOX_EOF); } /* * Do anything required when you stop reading samples. * Don't close input file! */ static int stop(sox_effect_t * effp) { resample_t r = (resample_t) effp->priv; free(r->Imp - 1); free(r->X); /* free(r->Y); Y is in same block starting at X */ return (SOX_SUCCESS); } /* over 90% of CPU time spent in this iprodUD() function */ /* quadratic interpolation */ static double qprodUD(const double Imp[], const double *Xp, long Inc, double T0, long dhb, long ct) { const double f = 1.0/(1<<La); double v; long Ho; Ho = T0 * dhb; Ho += (ct-1)*dhb; /* so double sum starts with smallest coef's */ Xp += (ct-1)*Inc; v = 0; do { double coef; long Hoh; Hoh = Ho>>La; coef = Imp[Hoh]; { double dm,dp,t; dm = coef - Imp[Hoh-1]; dp = Imp[Hoh+1] - coef; t =(Ho & Amask) * f; coef += ((dp-dm)*t + (dp+dm))*t*0.5; } /* filter coef, lower La bits by quadratic interpolation */ v += coef * *Xp; /* sum coeff * input sample */ Xp -= Inc; /* Input signal step. NO CHECK ON ARRAY BOUNDS */ Ho -= dhb; /* IR step */ } while(--ct); return v; } /* linear interpolation */ static double iprodUD(const double Imp[], const double *Xp, long Inc, double T0, long dhb, long ct) { const double f = 1.0/(1<<La); double v; long Ho; Ho = T0 * dhb; Ho += (ct-1)*dhb; /* so double sum starts with smallest coef's */ Xp += (ct-1)*Inc; v = 0; do { double coef; long Hoh; Hoh = Ho>>La; /* if (Hoh >= End) break; */ coef = Imp[Hoh] + (Imp[Hoh+1]-Imp[Hoh]) * (Ho & Amask) * f; /* filter coef, lower La bits by linear interpolation */ v += coef * *Xp; /* sum coeff * input sample */ Xp -= Inc; /* Input signal step. NO CHECK ON ARRAY BOUNDS */ Ho -= dhb; /* IR step */ } while(--ct); return v; } /* From resample:filters.c */ /* Sampling rate conversion subroutine */ static long SrcUD(resample_t r, long Nx) { double *Ystart, *Y; double Factor; double dt; /* Step through input signal */ double time; double (*prodUD)(const double[], const double *, long, double, long, long); int n; prodUD = (r->quadr)? qprodUD:iprodUD; /* quadratic or linear interp */ Factor = r->Factor; time = r->Time; dt = 1.0/Factor; /* Output sampling period */ sox_debug_more("Factor %f, dt %f, ",Factor,dt); sox_debug_more("Time %f, ",r->Time); /* (Xh * dhb)>>La is max index into Imp[] */ sox_debug_more("ct=%.2f %li",(double)r->Nwing*Na/r->dhb, r->Xh); sox_debug_more("ct=%ld, T=%.6f, dhb=%6f, dt=%.6f", r->Xh, time-floor(time),(double)r->dhb/Na,dt); Ystart = Y = r->Y; n = (int)ceil((double)Nx/dt); while(n--) { double *Xp; double v; double T; T = time-floor(time); /* fractional part of Time */ Xp = r->X + (long)time; /* Ptr to current input sample */ /* Past inner product: */ v = (*prodUD)(r->Imp, Xp, -1, T, r->dhb, r->Xh); /* needs Np*Nmult in 31 bits */ /* Future inner product: */ v += (*prodUD)(r->Imp, Xp+1, 1, (1.0-T), r->dhb, r->Xh); /* prefer even total */ if (Factor < 1) v *= Factor; *Y++ = v; /* Deposit output */ time += dt; /* Move to next sample by time increment */ } r->Time = time; sox_debug_more("Time %f",r->Time); return (Y - Ystart); /* Return the number of output samples */ } /* exact coeff's */ static double prodEX(const double Imp[], const double *Xp, long Inc, long T0, long dhb, long ct) { double v; const double *Cp; Cp = Imp + (ct-1)*dhb + T0; /* so double sum starts with smallest coef's */ Xp += (ct-1)*Inc; v = 0; do { v += *Cp * *Xp; /* sum coeff * input sample */ Cp -= dhb; /* IR step */ Xp -= Inc; /* Input signal step. */ } while(--ct); return v; } static long SrcEX(resample_t r, long Nx) { double *Ystart, *Y; double Factor; long a,b; long time; int n; Factor = r->Factor; time = r->t; a = r->a; b = r->b; Ystart = Y = r->Y; n = (Nx*b + (a-1))/a; while(n--) { double *Xp; double v; long T; T = time % b; /* fractional part of Time */ Xp = r->X + (time/b); /* Ptr to current input sample */ /* Past inner product: */ v = prodEX(r->Imp, Xp, -1, T, b, r->Xh); /* Future inner product: */ v += prodEX(r->Imp, Xp+1, 1, b-T, b, r->Xh); if (Factor < 1) v *= Factor; *Y++ = v; /* Deposit output */ time += a; /* Move to next sample by time increment */ } r->t = time; return (Y - Ystart); /* Return the number of output samples */ } int makeFilter(double Imp[], long Nwing, double Froll, double Beta, long Num, int Normalize) { double *ImpR; long Mwing, i; if (Nwing > MAXNWING) /* Check for valid parameters */ return(-1); if ((Froll<=0) || (Froll>1)) return(-2); /* it does help accuracy a bit to have the window stop at * a zero-crossing of the sinc function */ Mwing = floor((double)Nwing/(Num/Froll))*(Num/Froll) +0.5; if (Mwing==0) return(-4); ImpR = (double *) xmalloc(sizeof(double) * Mwing); /* Design a Nuttall or Kaiser windowed Sinc low-pass filter */ LpFilter(ImpR, Mwing, Froll, Beta, Num); if (Normalize) { /* 'correct' the DC gain of the lowpass filter */ long Dh; double DCgain; DCgain = 0; Dh = Num; /* Filter sampling period for factors>=1 */ for (i=Dh; i<Mwing; i+=Dh) DCgain += ImpR[i]; DCgain = 2*DCgain + ImpR[0]; /* DC gain of real coefficients */ sox_debug("DCgain err=%.12f",DCgain-1.0); DCgain = 1.0/DCgain; for (i=0; i<Mwing; i++) Imp[i] = ImpR[i]*DCgain; } else { for (i=0; i<Mwing; i++) Imp[i] = ImpR[i]; } free(ImpR); for (i=Mwing; i<=Nwing; i++) Imp[i] = 0; /* Imp[Mwing] and Imp[-1] needed for quadratic interpolation */ Imp[-1] = Imp[1]; return(Mwing); } /* LpFilter() * * reference: "Digital Filters, 2nd edition" * R.W. Hamming, pp. 178-179 * * Izero() computes the 0th order modified bessel function of the first kind. * (Needed to compute Kaiser window). * * LpFilter() computes the coeffs of a Kaiser-windowed low pass filter with * the following characteristics: * * c[] = array in which to store computed coeffs * frq = roll-off frequency of filter * N = Half the window length in number of coeffs * Beta = parameter of Kaiser window * Num = number of coeffs before 1/frq * * Beta trades the rejection of the lowpass filter against the transition * width from passband to stopband. Larger Beta means a slower * transition and greater stopband rejection. See Rabiner and Gold * (Theory and Application of DSP) under Kaiser windows for more about * Beta. The following table from Rabiner and Gold gives some feel * for the effect of Beta: * * All ripples in dB, width of transition band = D*N where N = window length * * BETA D PB RIP SB RIP * 2.120 1.50 +-0.27 -30 * 3.384 2.23 0.0864 -40 * 4.538 2.93 0.0274 -50 * 5.658 3.62 0.00868 -60 * 6.764 4.32 0.00275 -70 * 7.865 5.0 0.000868 -80 * 8.960 5.7 0.000275 -90 * 10.056 6.4 0.000087 -100 */ #define IzeroEPSILON 1E-21 /* Max error acceptable in Izero */ static double Izero(double x) { double sum, u, halfx, temp; long n; sum = u = n = 1; halfx = x/2.0; do { temp = halfx/(double)n; n += 1; temp *= temp; u *= temp; sum += u; } while (u >= IzeroEPSILON*sum); return(sum); } static void LpFilter(double *c, long N, double frq, double Beta, long Num) { long i; /* Calculate filter coeffs: */ c[0] = frq; for (i=1; i<N; i++) { double x = M_PI*(double)i/(double)(Num); c[i] = sin(x*frq)/x; } if (Beta>2) { /* Apply Kaiser window to filter coeffs: */ double IBeta = 1.0/Izero(Beta); for (i=1; i<N; i++) { double x = (double)i / (double)(N); c[i] *= Izero(Beta*sqrt(1.0-x*x)) * IBeta; } } else { /* Apply Nuttall window: */ for(i = 0; i < N; i++) { double x = M_PI*i / N; c[i] *= 0.36335819 + 0.4891775*cos(x) + 0.1365995*cos(2*x) + 0.0106411*cos(3*x); } } } const sox_effect_handler_t *sox_resample_effect_fn(void) { static sox_effect_handler_t handler = { "resample", "[ -qs | -q | -ql ] [ rolloff [ beta ] ]", SOX_EFF_RATE, getopts, start, flow, drain, stop, NULL }; return &handler; }