ref: 89f56e2cec3a5c82fd524f02799e81a79ad5f429
dir: /src/synth.c/
/* * synth - Synthesizer Effect. * * Written by Carsten Borchardt Jan 2001 * Version 0.1 * * This source code is freely redistributable and may be used for * any purpose. This copyright notice must be maintained. * The authors are not responsible for * the consequences of using this software. */ #include <signal.h> #include <string.h> #include <limits.h> #include <math.h> #include <ctype.h> #include "st_i.h" #define USSTR ""\ "Usage:synth [length] type mix [freq[-freq2]] [off] [ph] [p1] [p2] [p3]\n"\ " <length> length in sec or hh:mm:ss.frac, 0=inputlength, default=0\n"\ " <type> is sine, square, triangle, sawtooth, trapetz, exp,\n"\ " whitenoise, pinknoise, brownnoise, default=sine\n"\ " <mix> is create, mix, amod, default=create\n"\ " <freq> frequency at beginning in Hz, not used for noise..\n"\ " <freq2> frequency at end in Hz, not used for noise..\n"\ " <freq/2> can be given as %%n, where 'n' is the number of\n"\ " half notes in respect to A (440Hz)\n"\ " <off> Bias (DC-offset) of signal in percent, default=0\n"\ " <ph> phase shift 0..100 shift phase 0..2*Pi, not used for noise..\n"\ " <p1> square: Ton/Toff, triangle+trapetz: rising slope time (0..100)\n"\ " <p2> trapetz: ON time (0..100)\n"\ " <p3> trapetz: falling slope position (0..100)" #define PCOUNT 5 #define SYNTH_SINE 0 #define SYNTH_SQUARE 1 #define SYNTH_SAWTOOTH 2 #define SYNTH_TRIANGLE 3 #define SYNTH_TRAPETZ 4 #define SYNTH_WHITENOISE 5 #define SYNTH_PINKNOISE 6 #define SYNTH_BROWNNOISE 7 #define SYNTH_VOICENOISE 8 #define SYNTH_EXP 9 #define SYNTH_CREATE 0x000 #define SYNTH_MIX 0x100 #define SYNTH_AMOD 0x200 #define SYNTH_FMOD 0x400 /* do not ask me for the colored noise, i copied the * algorithm somewhere... */ #define BROWNNOISE_FAC (500.0/32768.0) #define PINKNOISE_FAC (5000.0/32768.0) #define LOG_10_20 0.1151292546497022842009e0 /*#define TIMERES 1000*/ #define MAXCHAN 4 /****************************************************************************** * start of pink noise generator stuff * algorithm stolen from: * Author: Phil Burk, http://www.softsynth.com */ /* Calculate pseudo-random 32 bit number based on linear congruential method. */ static unsigned long GenerateRandomNumber( void ) { static unsigned long randSeed = 22222; /* Change this for different random sequences. */ randSeed = (randSeed * 196314165) + 907633515; return randSeed; } #define PINK_MAX_RANDOM_ROWS (30) #define PINK_RANDOM_BITS (24) #define PINK_RANDOM_SHIFT ((sizeof(long)*8)-PINK_RANDOM_BITS) typedef struct{ long pink_Rows[PINK_MAX_RANDOM_ROWS]; long pink_RunningSum; /* Used to optimize summing of generators. */ int pink_Index; /* Incremented each sample. */ int pink_IndexMask; /* Index wrapped by ANDing with this mask. */ float pink_Scalar; /* Used to scale within range of -1.0 to +1.0 */ } PinkNoise; /* Setup PinkNoise structure for N rows of generators. */ void InitializePinkNoise( PinkNoise *pink, int numRows ) { int i; long pmax; pink->pink_Index = 0; pink->pink_IndexMask = (1<<numRows) - 1; /* Calculate maximum possible signed random value. Extra 1 for white noise always added. */ pmax = (numRows + 1) * (1<<(PINK_RANDOM_BITS-1)); pink->pink_Scalar = 1.0f / pmax; /* Initialize rows. */ for( i=0; i<numRows; i++ ) pink->pink_Rows[i] = 0; pink->pink_RunningSum = 0; } /* Generate Pink noise values between -1.0 and +1.0 */ float GeneratePinkNoise( PinkNoise *pink ) { long newRandom; long sum; float output; /* Increment and mask index. */ pink->pink_Index = (pink->pink_Index + 1) & pink->pink_IndexMask; /* If index is zero, don't update any random values. */ if( pink->pink_Index != 0 ) { /* Determine how many trailing zeros in PinkIndex. */ /* This algorithm will hang if n==0 so test first. */ int numZeros = 0; int n = pink->pink_Index; while( (n & 1) == 0 ) { n = n >> 1; numZeros++; } /* Replace the indexed ROWS random value. * Subtract and add back to RunningSum instead of adding all the random * values together. Only one changes each time. */ pink->pink_RunningSum -= pink->pink_Rows[numZeros]; newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT; pink->pink_RunningSum += newRandom; pink->pink_Rows[numZeros] = newRandom; } /* Add extra white noise value. */ newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT; sum = pink->pink_RunningSum + newRandom; /* Scale to range of -1.0 to 0.9999. */ output = pink->pink_Scalar * sum; return output; } /**************** end of pink noise stuff */ /* Private data for the synthesizer */ typedef struct synthstuff { /* options */ char *length_str; int type[MAXCHAN]; int mix[MAXCHAN]; double freq[MAXCHAN]; double freq2[MAXCHAN]; double par[MAXCHAN][5]; /* internal stuff */ LONG max; ULONG samples_done; int rate; ULONG length; /* length in number of samples */ double h[MAXCHAN]; /* store values necessary for creation */ PinkNoise pinkn[MAXCHAN]; } *synth_t; /* a note is given as an int, * 0 => 440 Hz = A * >0 => number of half notes 'up', * <0 => number of half notes down, * example 12 => A of next octave, 880Hz * * calculated by freq = 440Hz * 2**(note/12) */ static double calc_note_freq(double note){ return (440.0 * pow(2,note/12.0)); } /* read string 's' and convert to frequency * 's' can be a positive number which is the frequency in Hz * if 's' starts with a hash '%' and a following number the corresponding * note is calculated * return -1 on error */ static double StringToFreq(char *s, char **h){ double f; if(*s=='%'){ f = strtod(s+1,h); if ( *h == s+1 ){ /* error*/ return -1.0; } f=calc_note_freq(f); }else{ f=strtod(s,h); if(*h==s){ return -1.0; } } if( f < 0.0 ) return -1.0; return f; } static void parmcopy(synth_t sy, int s, int d){ int i; sy->freq[d]=sy->freq[s]; sy->freq2[d]=sy->freq2[s]; sy->type[d]=sy->type[s]; sy->mix[d]=sy->mix[s]; for(i=0;i<PCOUNT;i++){ sy->par[d][i]=sy->par[s][i]; } } /* * Process options * * Don't do initialization now. * The 'info' fields are not yet filled in. */ int st_synth_getopts(eff_t effp, int n, char **argv) { int argn; char *usstr=USSTR; char *hlp; int i; int c; synth_t synth = (synth_t) effp->priv; /* set default parameters */ synth->length = 0; /* use length of input file */ synth->length_str = 0; synth->max = LONG_MAX; for(c=0;c<MAXCHAN;c++){ synth->freq[c] = 440.0; synth->freq2[c] = 440.0; synth->type[c]=SYNTH_SINE; synth->mix[c] = SYNTH_CREATE; for(i=0;i<PCOUNT;i++) synth->par[c][i]= -1.0; synth->par[c][0]= 0.0; /* offset */ synth->par[c][1]= 0.0; /* phase */; } argn=0; if ( n<0){ st_fail(usstr); return(ST_EOF); } if(n==0){ /* no arg, use default*/ return(ST_SUCCESS); } /* read length if given ( if first par starts with digit )*/ if( isdigit((int)argv[argn][0])) { synth->length_str = malloc(strlen(argv[argn])+1); if (!synth->length_str) { st_fail("Could not allocate memeory"); return(ST_EOF); } strcpy(synth->length_str,argv[argn]); /* Do a dummy parse of to see if it will fail */ if (st_parsesamples(0, synth->length_str, &synth->length, 't') != ST_SUCCESS) { st_fail(usstr); return (ST_EOF); } argn++; } /* for one or more channel */ /* type [mix] [f1[-f2]] [p0] [p1] [p2] [p3] [p4] */ for(c=0;c<MAXCHAN;c++){ if(n > argn){ /* next par must be type */ if( strcasecmp(argv[argn],"sine")==0){ synth->type[c]=SYNTH_SINE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"square")==0){ synth->type[c]=SYNTH_SQUARE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"sawtooth")==0){ synth->type[c]=SYNTH_SAWTOOTH; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"triangle")==0){ synth->type[c]=SYNTH_TRIANGLE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"exp")==0){ synth->type[c]=SYNTH_EXP; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"trapetz")==0){ synth->type[c]=SYNTH_TRAPETZ; argn++; }else if( strcasecmp(argv[argn],"whitenoise")==0){ synth->type[c]=SYNTH_WHITENOISE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"noise")==0){ synth->type[c]=SYNTH_WHITENOISE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"pinknoise")==0){ synth->type[c]=SYNTH_PINKNOISE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"brownnoise")==0){ synth->type[c]=SYNTH_BROWNNOISE; argn++; /* 1 */ }else if( strcasecmp(argv[argn],"voicenoise")==0){ synth->type[c]=SYNTH_VOICENOISE; argn++; /* 1 */ }else{ /* type not given, error */ st_warn("synth: no type given"); st_fail(usstr); return(ST_EOF); } if(n > argn){ /* maybe there is a mix-type in next arg */ if(strcasecmp(argv[argn],"create")==0){ synth->mix[c]=SYNTH_CREATE; argn++; }else if(strcasecmp(argv[argn],"mix")==0){ synth->mix[c]=SYNTH_MIX; argn++; }else if(strcasecmp(argv[argn],"amod")==0){ synth->mix[c]=SYNTH_AMOD; argn++; }else if(strcasecmp(argv[argn],"fmod")==0){ synth->mix[c]=SYNTH_FMOD; argn++; } if(n > argn){ /* read frequency's if given */ synth->freq[c]= StringToFreq(argv[argn],&hlp); synth->freq2[c] = synth->freq[c]; if(synth->freq[c] < 0.0){ st_warn("synth: illegal freq"); st_fail(usstr); return(ST_EOF); } if(*hlp=='-') { /* freq2 given ! */ char *hlp2; synth->freq2[c]=StringToFreq(hlp+1,&hlp2); if(synth->freq2[c] < 0.0){ st_warn("synth: illegal freq2"); st_fail(usstr); return(ST_EOF); } } argn++; i=0; /* read rest of parameters */ while(n > argn){ if( ! isdigit((int)argv[argn][0]) ){ /* not a digit, must be type of next channel */ break; } if( i >= PCOUNT) { st_warn("synth: too many parameters"); st_fail(usstr); return(ST_EOF); } synth->par[c][i]=strtod(argv[argn],&hlp); if(hlp==argv[argn]){ /* error in number */ st_warn("synth: parameter error"); st_fail(usstr); return(ST_EOF); } i++; argn++; }/* .. while */ if(n > argn){ /* got here by 'break', scan parms for next chan */ }else{ break; } } } } /* if n > argn */ }/* for .. */ /* make some intelligent parameter initialization for channels * where no parameters were given * * - of only parms for one channel were given, copy to ther channels * - if parm for 2 channels were given, copy to channel 1->3, 2->4 * - if parm for 3 channels were given, copy 2->4 */ if(c == 0 || c >= MAXCHAN){ for(c=1;c<MAXCHAN;c++) parmcopy(synth,0,c); }else if(c == 1){ parmcopy(synth,0,2); parmcopy(synth,1,3); }else if(c == 2){ parmcopy(synth,1,3); } return (ST_SUCCESS); } /* * Prepare processing. * Do all initializations. */ int st_synth_start(eff_t effp) { int i; int c; synth_t synth = (synth_t) effp->priv; char *usstr=USSTR; if (synth->length_str) { if (st_parsesamples(effp->ininfo.rate, synth->length_str, &synth->length, 't') != ST_SUCCESS) { st_fail(usstr); return(ST_EOF); } } synth->samples_done=0; synth->rate = effp->ininfo.rate; for(i=0;i< MAXCHAN; i++){ synth->h[i]=0.0; } /* parameter adjustment for all channels */ for(c=0;c<MAXCHAN;c++){ /* adjust parameter 0 - 100% to 0..1 */ for(i=0;i<PCOUNT;i++){ synth->par[c][i] /= 100.0; } /* give parameters nice defaults for the different 'type' */ switch(synth->type[c]){ case SYNTH_SINE: break; case SYNTH_SQUARE: /* p2 is pulse width */ if(synth->par[c][2] < 0.0){ synth->par[c][2] = 0.5; /* default to 50% duty cycle */ } break; case SYNTH_TRIANGLE: /* p2 is position of maximum*/ if(synth->par[c][2] < 0.0){ /* default : 0 */ synth->par[c][2]=0.5; } break; case SYNTH_SAWTOOTH: /* no parameters, use TRIANGLE to create no-default-sawtooth */ break; case SYNTH_TRAPETZ: /* p2 is length of rising slope, * p3 position where falling slope begins * p4 position of end of falling slope */ if(synth->par[c][2] < 0.0 ){ synth->par[c][2]= 0.1; synth->par[c][3]= 0.5; synth->par[c][4]= 0.6; }else if(synth->par[c][3] < 0.0){ /* try a symetric waveform */ if(synth->par[c][2] <= 0.5){ synth->par[c][3] = (1.0-2.0*synth->par[c][2])/2.0; synth->par[c][4] = synth->par[c][3] + synth->par[c][2]; }else{ /* symetric is not possible, fall back to asymetrical * triangle */ synth->par[c][3]=synth->par[c][2]; synth->par[c][4]=1.0; } }else if(synth->par[c][4] < 0.0){ /* simple falling slope to the end */ synth->par[c][4]=1.0; } break; case SYNTH_PINKNOISE: /* Initialize pink noise signals with different numbers of rows. */ InitializePinkNoise( &(synth->pinkn[c]),10+2*c); break; default: break; } } return (ST_SUCCESS); } static LONG do_synth(LONG iv, synth_t synth, int c){ LONG ov=iv; double r=0.0; /* -1 .. +1 */ double f; double om; double sd; double move; double t,dt ; if(synth->length<=0){ /* there is no way to change the freq. without knowing the length * use startfreq all the time ... */ f = synth->freq[c]; }else{ f = synth->freq[c] * exp( (log(synth->freq2[c])-log(synth->freq[c]))* synth->samples_done/synth->length ); } om = 1.0 / f; /* periodendauer inn sec */ t = synth->samples_done / (double)synth->rate; /* zeit seit start in sec */ dt = t - synth->h[c]; /* seit seitdem letzte periode um war. */ if( dt < om){ /* wir sind noch in der periode.. */ }else{ /* schon in naechste periode */ synth->h[c]+=om; dt=t-synth->h[c]; } sd= dt/om; /* position in der aktuellen periode; 0<= sd < 1*/ sd = fmod(sd+synth->par[c][1],1.0); /* phase einbauen */ switch(synth->type[c]){ case SYNTH_SINE: r = sin(2.0 * M_PI * sd); break; case SYNTH_SQUARE: /* |_______ | +1 * | | | * |_______|__________| 0 * | | | * | |__________| -1 * | | * 0 p2 1 */ if(sd < synth->par[c][2]){ r = -1.0; }else{ r = +1.0; } break; case SYNTH_SAWTOOTH: /* | __| +1 * | __/ | * |_______/_____| 0 * | __/ | * |_/ | -1 * | | * 0 1 */ r = -1.0 + 2.0 * sd; break; case SYNTH_TRIANGLE: /* | _ | +1 * | / \ | * |__/___\__| 0 * | / \ | * |/ \| -1 * | | * 0 p2 1 */ if( sd < synth->par[c][2]){ /* in rising Part of period */ r = -1.0 + 2.0 * sd / synth->par[c][2]; }else{ /* falling part */ r = 1.0 - 2.0 * (sd-synth->par[c][2])/(1-synth->par[c][2]); } break; case SYNTH_TRAPETZ: /* | ______ |+1 * | / \ | * |__/________\___________| 0 * | / \ | * |/ \_________|-1 * | | * 0 p2 p3 p4 1 */ if( sd < synth->par[c][2]){ /* in rising part of period */ r = -1.0 + 2.0 * sd / synth->par[c][2]; }else if( sd < synth->par[c][3]){ /* in constant Part of period */ r=1.0; }else if( sd < synth->par[c][4] ){ /* falling part */ r = 1.0 - 2.0 * (sd - synth->par[c][3])/(synth->par[c][4]-synth->par[c][3]); }else{ r = -1.0; } break; case SYNTH_EXP: /* | | | +1 * | | | | * | _| |_ | 0 * | __- -__ | * |____--- ---____ | f(p3) * | | * 0 p2 1 */ move=exp( - synth->par[c][3] * LOG_10_20 * 100.0 ); /* 0 .. 1 */ if ( sd < synth->par[c][2] ) { r = move * exp(sd * log(1.0/move)/synth->par[c][2]); }else{ r = move * exp( (1-sd)*log(1.0/move)/ (1.0-synth->par[c][2])); } /* r in 0 .. 1 */ r = r * 2.0 - 1.0; /* -1 .. +1 */ break; case SYNTH_WHITENOISE: r= 2.0* rand()/(double)RAND_MAX - 1.0; break; case SYNTH_PINKNOISE: r = GeneratePinkNoise( &(synth->pinkn[c]) ); break; case SYNTH_BROWNNOISE: /* no idea if this algorithm is good enough.. */ move = 2.0* rand()/(double)RAND_MAX - 1.0; move *= BROWNNOISE_FAC; synth->h[c] += move; if( fabs(synth->h[c]) > 1.0 ){ synth->h[c] -= 2.0*move; } r=synth->h[c]; break; default: st_warn("synth: internal error 1"); break; } /* add offset, but prevent clipping */ om = fabs(synth->par[c][0]); if( om <= 1.0 ){ r *= 1.0 - om; /* reduce amp, prevent clipping */ r += om; } switch(synth->mix[c]){ case SYNTH_CREATE: ov = synth->max * r; break; case SYNTH_MIX: ov = iv/2 + r*synth->max/2; break; case SYNTH_AMOD: ov = (LONG)(0.5*(r+1.0)*(double)iv); break; case SYNTH_FMOD: ov = iv * r ; break; default: st_fail("synth: internel error 2"); break; } return ov; } /* * Processed signed long samples from ibuf to obuf. */ int st_synth_flow(eff_t effp, st_sample_t *ibuf, st_sample_t *obuf, st_size_t *isamp, st_size_t *osamp) { synth_t synth = (synth_t) effp->priv; int len; /* number of input samples */ int done; int c; int chan=effp->ininfo.channels; if(chan > MAXCHAN ){ st_fail("synth: can not operate with more than %d channels",MAXCHAN); return(ST_EOF); } len = ((*isamp > *osamp) ? *osamp : *isamp) / chan; for(done = 0; done < len ; done++){ for(c=0;c<chan;c++){ /* each channel is independent, but the algorithm is the same */ obuf[c] = do_synth(ibuf[c],synth,c); } ibuf+=chan; obuf+=chan; synth->samples_done++; if(synth->length > 0 ){ if( synth->samples_done > synth->length){ /* break 'nul' file fileter when enough samples * are produced. the actual number of samples * will be a little bigger, depends on when the * signal gets to the plugin */ raise(SIGINT); /* only once */ *osamp = done*chan; break; } } } return (ST_SUCCESS); } /* * Drain out remaining samples if the effect generates any. */ int st_synth_drain(eff_t effp, st_sample_t *obuf, st_size_t *osamp) { *osamp = 0; return (ST_SUCCESS); } /* * Do anything required when you stop reading samples. * (free allocated memory, etc.) */ int st_synth_stop(eff_t effp) { /* nothing to do */ return (ST_SUCCESS); } /*-------------------------------------------------------------- end of file */