ref: abec85c63ad421d738ff8010d8d2f4bcecf2027e
dir: /lpc10/vparms.c/
/* * Revision 1.1 1996/08/19 22:30:04 jaf * Initial revision * */ /* -- translated by f2c (version 19951025). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" extern int vparms_(integer *vwin, real *inbuf, real *lpbuf, integer *buflim, integer *half, real *dither, integer *mintau, integer *zc, integer *lbe, integer *fbe, real *qs, real *rc1, real *ar_b__, real *ar_f__); /* Table of constant values */ static real c_b2 = 1.f; /* ********************************************************************* */ /* VPARMS Version 50 */ /* * Revision 1.1 1996/08/19 22:30:04 jaf * Initial revision * */ /* Revision 1.6 1996/03/29 18:01:16 jaf */ /* Added some more comments about the range of INBUF and LPBUF that can */ /* be read. Note that it is possible for index VWIN(2)+1 to be read from */ /* INBUF, which might be outside of its defined range, although that will */ /* require more careful checking. */ /* Revision 1.5 1996/03/19 00:02:02 jaf */ /* I just noticed that the argument DITHER is modified inside of this */ /* subroutine. Comments were added explaining the possible final values. */ /* Revision 1.4 1996/03/18 22:22:59 jaf */ /* Finishing the job I said I did with the last check-in comments. */ /* Revision 1.3 1996/03/18 22:22:17 jaf */ /* Just added a few comments about which array indices of the arguments */ /* are used, and mentioning that this subroutine has no local state. */ /* Revision 1.2 1996/03/13 15:02:58 jaf */ /* Comments added explaining that none of the local variables of this */ /* subroutine need to be saved from one invocation to the next. */ /* Revision 1.1 1996/02/07 14:50:42 jaf */ /* Initial revision */ /* ********************************************************************* */ /* Calculate voicing parameters: */ /* Input: */ /* VWIN - Voicing window limits */ /* Indices 1 through 2 read. */ /* INBUF - Input speech buffer */ /* Indices START-1 through STOP read, */ /* where START and STOP are defined in the code (only written once). */ /* Note that STOP can be as large as VWIN(2)+1 ! */ /* LPBUF - Low pass filtered speech */ /* Indices START-MINTAU through STOP+MINTAU read, */ /* where START and STOP are defined in the code (only written once). */ /* BUFLIM - Array bounds for INBUF and LPBUF */ /* Indices 1 through 4 read. */ /* HALF - Half frame (1 or 2) */ /* MINTAU - Lag corresponding to minimum AMDF value (pitch estimate) */ /* Input/Output: */ /* DITHER - Zero crossing threshold */ /* The resulting value might be the negation of the input */ /* value. It might always be the same as the input value, */ /* if the DO loop below always executes an even number of times. */ /* Output: (all of them are written on every call) */ /* ZC - Zero crossing rate */ /* LBE - Low band energy (sum of magnitudes - SM) */ /* FBE - Full band energy (SM) */ /* QS - Ratio of 6 dB/oct preemphasized energy to full band energy */ /* RC1 - First reflection coefficient */ /* AR_B - Product of the causal forward and reverse pitch */ /* prediction gains */ /* AR_F - Product of the noncausal forward and reverse pitch */ /* prediction gains */ /* Internal: */ /* OLDSGN - Previous sign of dithered signal */ /* VLEN - Length of voicing window */ /* START - Lower address of current half of voicing window */ /* STOP - Upper address of current half of voicing window */ /* E_0 - Energy of LPF speech (sum of squares - SS) */ /* E_B - Energy of LPF speech backward one pitch period (SS) */ /* E_F - Energy of LPF speech forward one pitch period (SS) */ /* R_B - Autocovariance of LPF speech backward one pitch period */ /* R_F - Autocovariance of LPF speech forward one pitch period */ /* LP_RMS - Energy of LPF speech (sum of magnitudes - SM) */ /* AP_RMS - Energy of all-pass speech (SM) */ /* E_PRE - Energy of 6dB preemphasized speech (SM) */ /* E0AP - Energy of all-pass speech (SS) */ /* This subroutine has no local state. */ /* Subroutine */ int vparms_(integer *vwin, real *inbuf, real *lpbuf, integer *buflim, integer *half, real *dither, integer *mintau, integer *zc, integer *lbe, integer *fbe, real *qs, real *rc1, real *ar_b__, real * ar_f__) { /* System generated locals */ integer inbuf_offset, lpbuf_offset, i__1; real r__1, r__2; /* Builtin functions */ double r_sign(real *, real *); integer i_nint(real *); /* Local variables */ integer vlen, stop, i__; real e_pre__; integer start; real ap_rms__, e_0__, oldsgn, lp_rms__, e_b__, e_f__, r_b__, r_f__, e0ap; /* Arguments */ /* Local variables that need not be saved */ /* Calculate zero crossings (ZC) and several energy and correlation */ /* measures on low band and full band speech. Each measure is taken */ /* over either the first or the second half of the voicing window, */ /* depending on the variable HALF. */ /* Parameter adjustments */ --vwin; --buflim; lpbuf_offset = buflim[3]; lpbuf -= lpbuf_offset; inbuf_offset = buflim[1]; inbuf -= inbuf_offset; /* Function Body */ lp_rms__ = 0.f; ap_rms__ = 0.f; e_pre__ = 0.f; e0ap = 0.f; *rc1 = 0.f; e_0__ = 0.f; e_b__ = 0.f; e_f__ = 0.f; r_f__ = 0.f; r_b__ = 0.f; *zc = 0; vlen = vwin[2] - vwin[1] + 1; start = vwin[1] + (*half - 1) * vlen / 2 + 1; stop = start + vlen / 2 - 1; /* I'll use the symbol HVL in the table below to represent the value */ /* VLEN/2. Note that if VLEN is odd, then HVL should be rounded down, */ /* i.e., HVL = (VLEN-1)/2. */ /* HALF START STOP */ /* 1 VWIN(1)+1 VWIN(1)+HVL */ /* 2 VWIN(1)+HVL+1 VWIN(1)+2*HVL */ /* Note that if VLEN is even and HALF is 2, then STOP will be */ /* VWIN(1)+VLEN = VWIN(2)+1. That could be bad, if that index of INBUF */ /* is undefined. */ r__1 = inbuf[start - 1] - *dither; oldsgn = r_sign(&c_b2, &r__1); i__1 = stop; for (i__ = start; i__ <= i__1; ++i__) { lp_rms__ += (r__1 = lpbuf[i__], abs(r__1)); ap_rms__ += (r__1 = inbuf[i__], abs(r__1)); e_pre__ += (r__1 = inbuf[i__] - inbuf[i__ - 1], abs(r__1)); /* Computing 2nd power */ r__1 = inbuf[i__]; e0ap += r__1 * r__1; *rc1 += inbuf[i__] * inbuf[i__ - 1]; /* Computing 2nd power */ r__1 = lpbuf[i__]; e_0__ += r__1 * r__1; /* Computing 2nd power */ r__1 = lpbuf[i__ - *mintau]; e_b__ += r__1 * r__1; /* Computing 2nd power */ r__1 = lpbuf[i__ + *mintau]; e_f__ += r__1 * r__1; r_f__ += lpbuf[i__] * lpbuf[i__ + *mintau]; r_b__ += lpbuf[i__] * lpbuf[i__ - *mintau]; r__1 = inbuf[i__] + *dither; if (r_sign(&c_b2, &r__1) != oldsgn) { ++(*zc); oldsgn = -oldsgn; } *dither = -(*dither); } /* Normalized short-term autocovariance coefficient at unit sample delay */ *rc1 /= max(e0ap,1.f); /* Ratio of the energy of the first difference signal (6 dB/oct preemphas is)*/ /* to the energy of the full band signal */ /* Computing MAX */ r__1 = ap_rms__ * 2.f; *qs = e_pre__ / max(r__1,1.f); /* aR_b is the product of the forward and reverse prediction gains, */ /* looking backward in time (the causal case). */ *ar_b__ = r_b__ / max(e_b__,1.f) * (r_b__ / max(e_0__,1.f)); /* aR_f is the same as aR_b, but looking forward in time (non causal case ).*/ *ar_f__ = r_f__ / max(e_f__,1.f) * (r_f__ / max(e_0__,1.f)); /* Normalize ZC, LBE, and FBE to old fixed window length of 180. */ /* (The fraction 90/VLEN has a range of .58 to 1) */ r__2 = (real) (*zc << 1); r__1 = r__2 * (90.f / vlen); *zc = i_nint(&r__1); /* Computing MIN */ r__1 = lp_rms__ / 4 * (90.f / vlen); i__1 = i_nint(&r__1); *lbe = min(i__1,32767); /* Computing MIN */ r__1 = ap_rms__ / 4 * (90.f / vlen); i__1 = i_nint(&r__1); *fbe = min(i__1,32767); return 0; } /* vparms_ */