ref: b5b352d94fed60194d3e19b6e95136e16fa444e3
dir: /msvc9/Readme.txt/
This directory includes hand-crafted project files for building SoX under MSVC9. The project files may be replaced by expanding CMAKE support in the future, but for now, this is the easiest way to build SoX with MS Visual C++. The resulting sox.exe has support for all SoX features except magic, ffmpeg, and pulseaudio. LAME (libmp3lame.dll or lame_enc.dll), MAD (libmad.dll or cygmad-0.dll), libsndfile (libsndfile-1.dll) and AMR support (libamrnb-3.dll, libamrwb-3.dll) are loaded at runtime if they are available. How to build: 1. Check out the SoX git code into a directory named sox. 2. Extract the source code for the other libraries next to the sox directory. Remove the version numbers from the directory names. The following versions were tested and successfully built: -- flac-1.2.1.tar.gz extracted into directory flac -- lame-398.4.tar.gz extracted into directory lame -- libid3tag-0.15.1b.tar.gz extracted into directory libid3tag -- libmad-0.15.1b.tar.gz extracted into directory libmad -- libogg-1.2.2.tar.gz extracted into directory libogg -- libpng-1.5.1.tar.gz extracted into directory libpng -- libsndfile-1.0.23.tar.gz extracted into directory libsndfile -- libvorbis-1.3.2.tar.gz extracted into directory libvorbis -- speex-1.2rc1.tar.gz extracted into directory speex -- wavpack-4.60.1.tar.bz2 extracted into directory wavpack -- zlib-1.2.5.tar.gz extracted into directory zlib 3. Open the sox\msvc9\SoX.sln solution. 4. If any of the above libraries are not available or not wanted, adjust the corresponding settings in the soxconfig.h file (in the LibSoX project inside the Config Files folder) and remove the corresponding project from the solution. 5. Build the solution. 6. The resulting executable files will be in sox\msvc9\Debug or sox\msvc9\Release. The resulting sox.exe will dynamically link to libmp3lame.dll, libmad.dll, libsndfile-1.dll, libamrnb-3.dll, and libamrwb-3.dll if they are available, but will run without them (though the corresponding features will be unavailable if they are not present). Points to note: - The libsndfile-1.0.20.tar.gz package does not include the sndfile.h header file. Normally, before compiling libsndfile, you would create sndfile.h (either by processing it via autoconf, by downloading a copy, or by renaming sndfile.h.in). However, this SoX solution includes its own version of sndfile.h, so you should not create a sndfile.h under the libsndfile folder. To repeat: you should extract a clean copy of libsndfile-1.0.20.tar.gz, and should not add, process, or rename any files. - The solution includes an experimental effect called speexdsp that uses the speex DSP library. This does not yet enable any support for the speex file format or speex codec. The speexdsp effect is simply an experimental effect to make use of the automatic gain control and noise filtering components that are part of the speex codec package. Support for the speex codec may be added later. - The included projects do not enable SSE2. You can enable this in the project properties under Configuration Properties, C/C++, Code Generation, Enable Enhanced Instruction Set. Note that some editions of Visual Studio might not include Enhanced Instruction Set support. - The included projects set the floating-point model to "fast". This means that the compiler is free to optimize floating-point operations. For example, the compiler might optimize the expression (14.0 * x / 7.0) into (x * 2.0). In addition, the compiler is allowed to leave expression results in floating-point registers to store temporary values instead of rounding each intermediate result to a 32-bit or 64-bit value. In some cases, these optimizations can change the results of floating-point calculations. If you need more precise results, you can change this optimization setting can be changed to one of the other values. The "precise" setting avoids any optimization that might change the result (preserves the order of all operations) but keeps optimizations that might give more accurate results (such as using more precision than necessary for intermediate values if doing so results in faster code). The "strict" setting avoids any optimization that might change the result in any way contrary to the C/C++ standard and rounds every intermediate result to the requested precision according to standard floating-point rounding rules. You can change this setting in the project properties under Configuration Properties, C/C++, Code Generation, Floating Point Model.