ref: b5f7aadc6009f79c62fcb2ed96a34a9ce5ddb49f
dir: /src/effects_i.c/
/* Implements a libSoX internal interface for implementing effects. * All public functions & data are prefixed with lsx_ . * * (c) 2005-8 Chris Bagwell and SoX contributors * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifdef NDEBUG /* Enable assert always. */ #undef NDEBUG /* Must undef above assert.h or other that might include it. */ #endif #include "sox_i.h" #include <assert.h> #include <string.h> #undef lsx_fail #define lsx_fail sox_globals.subsystem=effp->handler.name,lsx_fail int lsx_usage(sox_effect_t * effp) { if (effp->handler.usage) lsx_fail("usage: %s", effp->handler.usage); else lsx_fail("this effect takes no parameters"); return SOX_EOF; } char * lsx_usage_lines(char * * usage, char const * const * lines, size_t n) { if (!*usage) { size_t i, len; for (len = i = 0; i < n; len += strlen(lines[i++]) + 1); *usage = lsx_malloc(len); strcpy(*usage, lines[0]); for (i = 1; i < n; ++i) { strcat(*usage, "\n"); strcat(*usage, lines[i]); } } return *usage; } /* here for linear interp. might be useful for other things */ unsigned lsx_gcd(unsigned a, unsigned b) { if (b == 0) return a; else return lsx_gcd(b, a % b); } unsigned lsx_lcm(unsigned a, unsigned b) { /* parenthesize this way to avoid unsigned overflow in product term */ return a * (b / lsx_gcd(a, b)); } /* Numerical Recipes cubic spline */ void lsx_prepare_spline3(double const * x, double const * y, int n, double start_1d, double end_1d, double * y_2d) { double p, qn, sig, un, * u = lsx_malloc((n - 1) * sizeof(*u)); int i; if (start_1d == HUGE_VAL) y_2d[0] = u[0] = 0; /* Start with natural spline or */ else { /* set the start first derivative */ y_2d[0] = -.5; u[0] = (3 / (x[1] - x[0])) * ((y[1] - y[0]) / (x[1] - x[0]) - start_1d); } for (i = 1; i < n - 1; ++i) { sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]); p = sig * y_2d[i - 1] + 2; y_2d[i] = (sig - 1) / p; u[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) - (y[i] - y[i - 1]) / (x[i] - x[i - 1]); u[i] = (6 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p; } if (end_1d == HUGE_VAL) qn = un = 0; /* End with natural spline or */ else { /* set the end first derivative */ qn = .5; un = 3 / (x[n - 1] - x[n - 2]) * (end_1d - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2])); } y_2d[n - 1] = (un - qn * u[n - 2]) / (qn * y_2d[n - 2] + 1); for (i = n - 2; i >= 0; --i) y_2d[i] = y_2d[i] * y_2d[i + 1] + u[i]; free(u); } double lsx_spline3(double const * x, double const * y, double const * y_2d, int n, double x1) { int t, i[2] = {0, 0}; double d, a, b; for (i[1] = n - 1; i[1] - i[0] > 1; t = (i[1] + i[0]) >> 1, i[x[t] > x1] = t); d = x[i[1]] - x[i[0]]; assert(d != 0); a = (x[i[1]] - x1) / d; b = (x1 - x[i[0]]) / d; return a * y[i[0]] + b * y[i[1]] + ((a * a * a - a) * y_2d[i[0]] + (b * b * b - b) * y_2d[i[1]]) * d * d / 6; } lsx_enum_item const lsx_wave_enum[] = { LSX_ENUM_ITEM(SOX_WAVE_,SINE) LSX_ENUM_ITEM(SOX_WAVE_,TRIANGLE) {0, 0}}; void lsx_generate_wave_table( lsx_wave_t wave_type, sox_data_t data_type, void *table, size_t table_size, double min, double max, double phase) { uint32_t t; uint32_t phase_offset = phase / M_PI / 2 * table_size + 0.5; for (t = 0; t < table_size; t++) { uint32_t point = (t + phase_offset) % table_size; double d; switch (wave_type) { case SOX_WAVE_SINE: d = (sin((double)point / table_size * 2 * M_PI) + 1) / 2; break; case SOX_WAVE_TRIANGLE: d = (double)point * 2 / table_size; switch (4 * point / table_size) { case 0: d = d + 0.5; break; case 1: case 2: d = 1.5 - d; break; case 3: d = d - 1.5; break; } break; default: /* Oops! FIXME */ d = 0.0; /* Make sure we have a value */ break; } d = d * (max - min) + min; switch (data_type) { case SOX_FLOAT: { float *fp = (float *)table; *fp++ = (float)d; table = fp; continue; } case SOX_DOUBLE: { double *dp = (double *)table; *dp++ = d; table = dp; continue; } default: break; } d += d < 0? -0.5 : +0.5; switch (data_type) { case SOX_SHORT: { short *sp = table; *sp++ = (short)d; table = sp; continue; } case SOX_INT: { int *ip = table; *ip++ = (int)d; table = ip; continue; } default: break; } } } /* * lsx_parsesamples * * Parse a string for # of samples. If string ends with a 's' * then the string is interpreted as a user calculated # of samples. * If string contains ':' or '.' or if it ends with a 't' then its * treated as an amount of time. This is converted into seconds and * fraction of seconds and then use the sample rate to calculate * # of samples. * Returns NULL on error, pointer to next char to parse otherwise. */ char const * lsx_parsesamples(sox_rate_t rate, const char *str0, size_t *samples, int def) { int i, found_samples = 0, found_time = 0; char const * end; char const * pos; sox_bool found_colon, found_dot; char * str = (char *)str0; for (;*str == ' '; ++str); for (end = str; *end && strchr("0123456789:.ets", *end); ++end); if (end == str) return NULL; pos = strchr(str, ':'); found_colon = pos && pos < end; pos = strchr(str, '.'); found_dot = pos && pos < end; if (found_colon || found_dot || *(end-1) == 't') found_time = 1; else if (*(end-1) == 's') found_samples = 1; if (found_time || (def == 't' && !found_samples)) { for (*samples = 0, i = 0; *str != '.' && i < 3; ++i) { char * last_str = str; long part = strtol(str, &str, 10); if (!i && str == last_str) return NULL; *samples += rate * part; if (i < 2) { if (*str != ':') break; ++str; *samples *= 60; } } if (*str == '.') { char * last_str = str; double part = strtod(str, &str); if (str == last_str) return NULL; *samples += rate * part + .5; } return *str == 't'? str + 1 : str; } { char * last_str = str; double part = strtod(str, &str); if (str == last_str) return NULL; *samples = part + .5; return *str == 's'? str + 1 : str; } } #if 0 #define TEST(st, samp, len) \ str = st; \ next = lsx_parsesamples(10000, str, &samples, 't'); \ assert(samples == samp && next == str + len); int main(int argc, char * * argv) { char const * str, * next; size_t samples; TEST("0" , 0, 1) TEST("1" , 10000, 1) TEST("0s" , 0, 2) TEST("0s,", 0, 2) TEST("0s/", 0, 2) TEST("0s@", 0, 2) TEST("0t" , 0, 2) TEST("0t,", 0, 2) TEST("0t/", 0, 2) TEST("0t@", 0, 2) TEST("1s" , 1, 2) TEST("1s,", 1, 2) TEST("1s/", 1, 2) TEST("1s@", 1, 2) TEST(" 01s" , 1, 4) TEST("1e6s" , 1000000, 4) TEST("1t" , 10000, 2) TEST("1t,", 10000, 2) TEST("1t/", 10000, 2) TEST("1t@", 10000, 2) TEST("1.1t" , 11000, 4) TEST("1.1t,", 11000, 4) TEST("1.1t/", 11000, 4) TEST("1.1t@", 11000, 4) TEST("1e6t" , 10000, 1) TEST(".0", 0, 2) TEST("0.0", 0, 3) TEST("0:0.0", 0, 5) TEST("0:0:0.0", 0, 7) TEST(".1", 1000, 2) TEST(".10", 1000, 3) TEST("0.1", 1000, 3) TEST("1.1", 11000, 3) TEST("1:1.1", 611000, 5) TEST("1:1:1.1", 36611000, 7) TEST("1:1", 610000, 3) TEST("1:01", 610000, 4) TEST("1:1:1", 36610000, 5) TEST("1:", 600000, 2) TEST("1::", 36000000, 3) TEST("0.444444", 4444, 8) TEST("0.555555", 5556, 8) assert(!lsx_parsesamples(10000, "x", &samples, 't')); return 0; } #endif /* a note is given as an int, * 0 => 440 Hz = A * >0 => number of half notes 'up', * <0 => number of half notes down, * example 12 => A of next octave, 880Hz * * calculated by freq = 440Hz * 2**(note/12) */ static double calc_note_freq(double note) { return 440.0 * pow(2.0, note / 12.0); } /* Read string 'text' and convert to frequency. * 'text' can be a positive number which is the frequency in Hz. * If 'text' starts with a hash '%' and a following number the corresponding * note is calculated. * Return -1 on error. */ double lsx_parse_frequency(char const * text, char * * end_ptr) { double result; if (*text == '%') { result = strtod(text + 1, end_ptr); if (*end_ptr == text + 1) return -1; return calc_note_freq(result); } result = strtod(text, end_ptr); if (end_ptr) { if (*end_ptr == text) return -1; if (**end_ptr == 'k') { result *= 1000; ++*end_ptr; } } return result < 0 ? -1 : result; } double lsx_bessel_I_0(double x) { double term = 1, sum = 1, last_sum, x2 = x / 2; int i = 1; do { double y = x2 / i++; last_sum = sum, sum += term *= y * y; } while (sum != last_sum); return sum; } int lsx_set_dft_length(int num_taps) /* Set to 4 x nearest power of 2 */ { int result, n = num_taps; for (result = 8; n > 2; result <<= 1, n >>= 1); result = range_limit(result, 4096, 131072); assert(num_taps * 2 < result); return result; } #include "fft4g.h" int * lsx_fft_br; double * lsx_fft_sc; static void update_fft_cache(int len) { static int n; if (!len) { free(lsx_fft_br); free(lsx_fft_sc); lsx_fft_sc = NULL; lsx_fft_br = NULL; n = 0; return; } if (len > n) { int old_n = n; n = len; lsx_fft_br = lsx_realloc(lsx_fft_br, dft_br_len(n) * sizeof(*lsx_fft_br)); lsx_fft_sc = lsx_realloc(lsx_fft_sc, dft_sc_len(n) * sizeof(*lsx_fft_sc)); if (!old_n) lsx_fft_br[0] = 0; } } static sox_bool is_power_of_2(int x) { return !(x < 2 || (x & (x - 1))); } void lsx_safe_rdft(int len, int type, double * d) { assert(is_power_of_2(len)); update_fft_cache(len); lsx_rdft(len, type, d, lsx_fft_br, lsx_fft_sc); } void lsx_safe_cdft(int len, int type, double * d) { assert(is_power_of_2(len)); update_fft_cache(len); lsx_cdft(len, type, d, lsx_fft_br, lsx_fft_sc); } void lsx_power_spectrum(int n, double const * in, double * out) { int i; double * work = lsx_memdup(in, n * sizeof(*work)); lsx_safe_rdft(n, 1, work); out[0] = sqr(work[0]); for (i = 2; i < n; i += 2) out[i >> 1] = sqr(work[i]) + sqr(work[i + 1]); out[i >> 1] = sqr(work[1]); free(work); } void lsx_power_spectrum_f(int n, float const * in, float * out) { int i; double * work = lsx_malloc(n * sizeof(*work)); for (i = 0; i< n; ++i) work[i] = in[i]; lsx_safe_rdft(n, 1, work); out[0] = sqr(work[0]); for (i = 2; i < n; i += 2) out[i >> 1] = sqr(work[i]) + sqr(work[i + 1]); out[i >> 1] = sqr(work[1]); free(work); } void lsx_apply_hann_f(float h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .5 - .5 * cos(x); } } void lsx_apply_hann(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .5 - .5 * cos(x); } } void lsx_apply_hamming(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .53836 - .46164 * cos(x); } } void lsx_apply_bartlett(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { h[i] *= 2. / m * (m / 2. - fabs(i - m / 2.)); } } void lsx_apply_blackman(double h[], const int num_points, double alpha) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= (1 - alpha) *.5 - .5 * cos(x) + alpha * .5 * cos(2 * x); } } void lsx_apply_blackman_nutall(double h[], const int num_points) { int i, m = num_points - 1; for (i = 0; i < num_points; ++i) { double x = 2 * M_PI * i / m; h[i] *= .3635819 - .4891775 * cos(x) + .1365995 * cos(2 * x) - .0106411 * cos(3 * x); } } double lsx_kaiser_beta(double att) { if (att > 100 ) return .1117 * att - 1.11; if (att > 50 ) return .1102 * (att - 8.7); if (att > 20.96) return .58417 * pow(att -20.96, .4) + .07886 * (att - 20.96); return 0; } void lsx_apply_kaiser(double h[], const int num_points, double beta) { int i, m = num_points - 1; for (i = 0; i <= m; ++i) { double x = 2. * i / m - 1; h[i] *= lsx_bessel_I_0(beta * sqrt(1 - x * x)) / lsx_bessel_I_0(beta); } }