ref: b99e78af51ae0964fdb8f0fc2795c20e2f6c237c
dir: /src/g723_16.c/
/* * This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use. Users may copy or modify this source code without * charge. * * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun source code is provided with no support and without any obligation on * the part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ /* 16kbps version created, used 24kbps code and changing as little as possible. * G.726 specs are available from ITU's gopher or WWW site (http://www.itu.ch) * If any errors are found, please contact me at mrand@tamu.edu * -Marc Randolph */ /* * g723_16.c * * Description: * * g723_16_encoder(), g723_16_decoder() * * These routines comprise an implementation of the CCITT G.726 16 Kbps * ADPCM coding algorithm. Essentially, this implementation is identical to * the bit level description except for a few deviations which take advantage * of workstation attributes, such as hardware 2's complement arithmetic. * */ #include "st_i.h" #include "g711.h" #include "g72x.h" /* * Maps G.723_16 code word to reconstructed scale factor normalized log * magnitude values. Comes from Table 11/G.726 */ static short _dqlntab[4] = { 116, 365, 365, 116}; /* Maps G.723_16 code word to log of scale factor multiplier. * * _witab[4] is actually {-22 , 439, 439, -22}, but FILTD wants it * as WI << 5 (multiplied by 32), so we'll do that here */ static short _witab[4] = {-704, 14048, 14048, -704}; /* * Maps G.723_16 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ /* Comes from FUNCTF */ static short _fitab[4] = {0, 0xE00, 0xE00, 0}; /* Comes from quantizer decision level tables (Table 7/G.726) */ static short qtab_723_16[1] = {261}; /* * g723_16_encoder() * * Encodes a linear PCM, A-law or u-law input sample and returns its 2-bit code. * Returns -1 if invalid input coding value. */ int g723_16_encoder( int sl, int in_coding, struct g72x_state *state_ptr) { short sei, sezi, se, sez; /* ACCUM */ short d; /* SUBTA */ short y; /* MIX */ short sr; /* ADDB */ short dqsez; /* ADDC */ short dq, i; switch (in_coding) { /* linearize input sample to 14-bit PCM */ case AUDIO_ENCODING_ALAW: sl = st_alaw2linear16(sl) >> 2; break; case AUDIO_ENCODING_ULAW: sl = st_ulaw2linear16(sl) >> 2; break; case AUDIO_ENCODING_LINEAR: sl >>= 2; /* sl of 14-bit dynamic range */ break; default: return (-1); } sezi = predictor_zero(state_ptr); sez = sezi >> 1; sei = sezi + predictor_pole(state_ptr); se = sei >> 1; /* se = estimated signal */ d = sl - se; /* d = estimation diff. */ /* quantize prediction difference d */ y = step_size(state_ptr); /* quantizer step size */ i = quantize(d, y, qtab_723_16, 1); /* i = ADPCM code */ /* Since quantize() only produces a three level output * (1, 2, or 3), we must create the fourth one on our own */ if (i == 3) /* i code for the zero region */ if ((d & 0x8000) == 0) /* If d > 0, i=3 isn't right... */ i = 0; dq = reconstruct(i & 2, _dqlntab[i], y); /* quantized diff. */ sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */ dqsez = sr + sez - se; /* pole prediction diff. */ update(2, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); return (i); } /* * g723_16_decoder() * * Decodes a 2-bit CCITT G.723_16 ADPCM code and returns * the resulting 16-bit linear PCM, A-law or u-law sample value. * -1 is returned if the output coding is unknown. */ int g723_16_decoder( int i, int out_coding, struct g72x_state *state_ptr) { short sezi, sei, sez, se; /* ACCUM */ short y; /* MIX */ short sr; /* ADDB */ short dq; short dqsez; i &= 0x03; /* mask to get proper bits */ sezi = predictor_zero(state_ptr); sez = sezi >> 1; sei = sezi + predictor_pole(state_ptr); se = sei >> 1; /* se = estimated signal */ y = step_size(state_ptr); /* adaptive quantizer step size */ dq = reconstruct(i & 0x02, _dqlntab[i], y); /* unquantize pred diff */ sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */ dqsez = sr - se + sez; /* pole prediction diff. */ update(2, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); switch (out_coding) { case AUDIO_ENCODING_ALAW: return (tandem_adjust_alaw(sr, se, y, i, 2, qtab_723_16)); case AUDIO_ENCODING_ULAW: return (tandem_adjust_ulaw(sr, se, y, i, 2, qtab_723_16)); case AUDIO_ENCODING_LINEAR: return (sr << 2); /* sr was of 14-bit dynamic range */ default: return (-1); } }