ref: c2fda8f3e4f3623d1766d37078fb05d3ef6dbbe8
dir: /src/chorus.c/
/* August 24, 1998 * Copyright (C) 1998 Juergen Mueller And Sundry Contributors * This source code is freely redistributable and may be used for * any purpose. This copyright notice must be maintained. * Juergen Mueller And Sundry Contributors are not responsible for * the consequences of using this software. */ /* * Chorus effect. * * Flow diagram scheme for n delays ( 1 <= n <= MAX_CHORUS ): * * * gain-in ___ * ibuff -----+--------------------------------------------->| | * | _________ | | * | | | * decay 1 | | * +---->| delay 1 |----------------------------->| | * | |_________| | | * | /|\ | | * : | | | * : +-----------------+ +--------------+ | + | * : | Delay control 1 |<--| mod. speed 1 | | | * : +-----------------+ +--------------+ | | * | _________ | | * | | | * decay n | | * +---->| delay n |----------------------------->| | * |_________| | | * /|\ |___| * | | * +-----------------+ +--------------+ | * gain-out * | Delay control n |<--| mod. speed n | | * +-----------------+ +--------------+ +----->obuff * * * The delay i is controled by a sine or triangle modulation i ( 1 <= i <= n). * * Usage: * chorus gain-in gain-out delay-1 decay-1 speed-1 depth-1 -s1|t1 [ * delay-2 decay-2 speed-2 depth-2 -s2|-t2 ... ] * * Where: * gain-in, decay-1 ... decay-n : 0.0 ... 1.0 volume * gain-out : 0.0 ... volume * delay-1 ... delay-n : 20.0 ... 100.0 msec * speed-1 ... speed-n : 0.1 ... 5.0 Hz modulation 1 ... n * depth-1 ... depth-n : 0.0 ... 10.0 msec modulated delay 1 ... n * -s1 ... -sn : modulation by sine 1 ... n * -t1 ... -tn : modulation by triangle 1 ... n * * Note: * when decay is close to 1.0, the samples can begin clipping and the output * can saturate! * * Hint: * 1 / out-gain < gain-in ( 1 + decay-1 + ... + decay-n ) * */ /* * libSoX chorus effect file. */ #include "sox_i.h" #include <stdlib.h> /* Harmless, and prototypes atof() etc. --dgc */ #include <string.h> #define MOD_SINE 0 #define MOD_TRIANGLE 1 #define MAX_CHORUS 7 typedef struct { int num_chorus; int modulation[MAX_CHORUS]; int counter; long phase[MAX_CHORUS]; float *chorusbuf; float in_gain, out_gain; float delay[MAX_CHORUS], decay[MAX_CHORUS]; float speed[MAX_CHORUS], depth[MAX_CHORUS]; long length[MAX_CHORUS]; int *lookup_tab[MAX_CHORUS]; int depth_samples[MAX_CHORUS], samples[MAX_CHORUS]; int maxsamples; unsigned int fade_out; } priv_t; /* * Process options */ static int sox_chorus_getopts(sox_effect_t * effp, int argc, char **argv) { priv_t * chorus = (priv_t *) effp->priv; int i; --argc, ++argv; chorus->num_chorus = 0; i = 0; if ( ( argc < 7 ) || (( argc - 2 ) % 5 ) ) return lsx_usage(effp); sscanf(argv[i++], "%f", &chorus->in_gain); sscanf(argv[i++], "%f", &chorus->out_gain); while ( i < argc ) { if ( chorus->num_chorus > MAX_CHORUS ) { lsx_fail("chorus: to many delays, use less than %i delays", MAX_CHORUS); return (SOX_EOF); } sscanf(argv[i++], "%f", &chorus->delay[chorus->num_chorus]); sscanf(argv[i++], "%f", &chorus->decay[chorus->num_chorus]); sscanf(argv[i++], "%f", &chorus->speed[chorus->num_chorus]); sscanf(argv[i++], "%f", &chorus->depth[chorus->num_chorus]); if ( !strcmp(argv[i], "-s")) chorus->modulation[chorus->num_chorus] = MOD_SINE; else if ( ! strcmp(argv[i], "-t")) chorus->modulation[chorus->num_chorus] = MOD_TRIANGLE; else return lsx_usage(effp); i++; chorus->num_chorus++; } return (SOX_SUCCESS); } /* * Prepare for processing. */ static int sox_chorus_start(sox_effect_t * effp) { priv_t * chorus = (priv_t *) effp->priv; int i; float sum_in_volume; chorus->maxsamples = 0; if ( chorus->in_gain < 0.0 ) { lsx_fail("chorus: gain-in must be positive!"); return (SOX_EOF); } if ( chorus->in_gain > 1.0 ) { lsx_fail("chorus: gain-in must be less than 1.0!"); return (SOX_EOF); } if ( chorus->out_gain < 0.0 ) { lsx_fail("chorus: gain-out must be positive!"); return (SOX_EOF); } for ( i = 0; i < chorus->num_chorus; i++ ) { chorus->samples[i] = (int) ( ( chorus->delay[i] + chorus->depth[i] ) * effp->in_signal.rate / 1000.0); chorus->depth_samples[i] = (int) (chorus->depth[i] * effp->in_signal.rate / 1000.0); if ( chorus->delay[i] < 20.0 ) { lsx_fail("chorus: delay must be more than 20.0 msec!"); return (SOX_EOF); } if ( chorus->delay[i] > 100.0 ) { lsx_fail("chorus: delay must be less than 100.0 msec!"); return (SOX_EOF); } if ( chorus->speed[i] < 0.1 ) { lsx_fail("chorus: speed must be more than 0.1 Hz!"); return (SOX_EOF); } if ( chorus->speed[i] > 5.0 ) { lsx_fail("chorus: speed must be less than 5.0 Hz!"); return (SOX_EOF); } if ( chorus->depth[i] < 0.0 ) { lsx_fail("chorus: delay must be more positive!"); return (SOX_EOF); } if ( chorus->depth[i] > 10.0 ) { lsx_fail("chorus: delay must be less than 10.0 msec!"); return (SOX_EOF); } if ( chorus->decay[i] < 0.0 ) { lsx_fail("chorus: decay must be positive!" ); return (SOX_EOF); } if ( chorus->decay[i] > 1.0 ) { lsx_fail("chorus: decay must be less that 1.0!" ); return (SOX_EOF); } chorus->length[i] = effp->in_signal.rate / chorus->speed[i]; chorus->lookup_tab[i] = lsx_malloc(sizeof (int) * chorus->length[i]); if (chorus->modulation[i] == MOD_SINE) lsx_generate_wave_table(SOX_WAVE_SINE, SOX_INT, chorus->lookup_tab[i], (size_t)chorus->length[i], 0., (double)chorus->depth_samples[i], 0.); else lsx_generate_wave_table(SOX_WAVE_TRIANGLE, SOX_INT, chorus->lookup_tab[i], (size_t)chorus->length[i], (double)(chorus->samples[i] - 1 - 2 * chorus->depth_samples[i]), (double)(chorus->samples[i] - 1), 3 * M_PI_2); chorus->phase[i] = 0; if ( chorus->samples[i] > chorus->maxsamples ) chorus->maxsamples = chorus->samples[i]; } /* Be nice and check the hint with warning, if... */ sum_in_volume = 1.0; for ( i = 0; i < chorus->num_chorus; i++ ) sum_in_volume += chorus->decay[i]; if ( chorus->in_gain * ( sum_in_volume ) > 1.0 / chorus->out_gain ) lsx_warn("chorus: warning >>> gain-out can cause saturation or clipping of output <<<"); chorus->chorusbuf = lsx_malloc(sizeof (float) * chorus->maxsamples); for ( i = 0; i < chorus->maxsamples; i++ ) chorus->chorusbuf[i] = 0.0; chorus->counter = 0; chorus->fade_out = chorus->maxsamples; effp->out_signal.length = SOX_UNKNOWN_LEN; /* TODO: calculate actual length */ return (SOX_SUCCESS); } /* * Processed signed long samples from ibuf to obuf. * Return number of samples processed. */ static int sox_chorus_flow(sox_effect_t * effp, const sox_sample_t *ibuf, sox_sample_t *obuf, size_t *isamp, size_t *osamp) { priv_t * chorus = (priv_t *) effp->priv; int i; float d_in, d_out; sox_sample_t out; size_t len = min(*isamp, *osamp); *isamp = *osamp = len; while (len--) { /* Store delays as 24-bit signed longs */ d_in = (float) *ibuf++ / 256; /* Compute output first */ d_out = d_in * chorus->in_gain; for ( i = 0; i < chorus->num_chorus; i++ ) d_out += chorus->chorusbuf[(chorus->maxsamples + chorus->counter - chorus->lookup_tab[i][chorus->phase[i]]) % chorus->maxsamples] * chorus->decay[i]; /* Adjust the output volume and size to 24 bit */ d_out = d_out * chorus->out_gain; out = SOX_24BIT_CLIP_COUNT((sox_sample_t) d_out, effp->clips); *obuf++ = out * 256; /* Mix decay of delay and input */ chorus->chorusbuf[chorus->counter] = d_in; chorus->counter = ( chorus->counter + 1 ) % chorus->maxsamples; for ( i = 0; i < chorus->num_chorus; i++ ) chorus->phase[i] = ( chorus->phase[i] + 1 ) % chorus->length[i]; } /* processed all samples */ return (SOX_SUCCESS); } /* * Drain out reverb lines. */ static int sox_chorus_drain(sox_effect_t * effp, sox_sample_t *obuf, size_t *osamp) { priv_t * chorus = (priv_t *) effp->priv; size_t done; int i; float d_in, d_out; sox_sample_t out; done = 0; while ( ( done < *osamp ) && ( done < chorus->fade_out ) ) { d_in = 0; d_out = 0; /* Compute output first */ for ( i = 0; i < chorus->num_chorus; i++ ) d_out += chorus->chorusbuf[(chorus->maxsamples + chorus->counter - chorus->lookup_tab[i][chorus->phase[i]]) % chorus->maxsamples] * chorus->decay[i]; /* Adjust the output volume and size to 24 bit */ d_out = d_out * chorus->out_gain; out = SOX_24BIT_CLIP_COUNT((sox_sample_t) d_out, effp->clips); *obuf++ = out * 256; /* Mix decay of delay and input */ chorus->chorusbuf[chorus->counter] = d_in; chorus->counter = ( chorus->counter + 1 ) % chorus->maxsamples; for ( i = 0; i < chorus->num_chorus; i++ ) chorus->phase[i] = ( chorus->phase[i] + 1 ) % chorus->length[i]; done++; chorus->fade_out--; } /* samples played, it remains */ *osamp = done; if (chorus->fade_out == 0) return SOX_EOF; else return SOX_SUCCESS; } /* * Clean up chorus effect. */ static int sox_chorus_stop(sox_effect_t * effp) { priv_t * chorus = (priv_t *) effp->priv; int i; free(chorus->chorusbuf); chorus->chorusbuf = NULL; for ( i = 0; i < chorus->num_chorus; i++ ) { free(chorus->lookup_tab[i]); chorus->lookup_tab[i] = NULL; } return (SOX_SUCCESS); } static sox_effect_handler_t sox_chorus_effect = { "chorus", "gain-in gain-out delay decay speed depth [ -s | -t ]", SOX_EFF_LENGTH | SOX_EFF_GAIN, sox_chorus_getopts, sox_chorus_start, sox_chorus_flow, sox_chorus_drain, sox_chorus_stop, NULL, sizeof(priv_t) }; const sox_effect_handler_t *lsx_chorus_effect_fn(void) { return &sox_chorus_effect; }