ref: c5ec8339bbe78ae56cd99dc43072d9bff0e0fb96
dir: /src/effects_i.c/
/* Implements a libSoX internal interface for implementing effects. * All public functions & data are prefixed with lsx_ . * * (c) 2005-8 Chris Bagwell and SoX contributors * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "sox_i.h" #include <string.h> #undef sox_fail #define sox_fail sox_globals.subsystem=effp->handler.name,sox_fail int lsx_usage(sox_effect_t * effp) { if (effp->handler.usage) sox_fail("usage: %s", effp->handler.usage); else sox_fail("this effect takes no parameters"); return SOX_EOF; } /* here for linear interp. might be useful for other things */ sox_sample_t lsx_gcd(sox_sample_t a, sox_sample_t b) { if (b == 0) return a; else return lsx_gcd(b, a % b); } sox_sample_t lsx_lcm(sox_sample_t a, sox_sample_t b) { /* parenthesize this way to avoid sox_sample_t overflow in product term */ return a * (b / lsx_gcd(a, b)); } enum_item const lsx_wave_enum[] = { ENUM_ITEM(SOX_WAVE_,SINE) ENUM_ITEM(SOX_WAVE_,TRIANGLE) {0, 0}}; void lsx_generate_wave_table( lsx_wave_t wave_type, sox_data_t data_type, void *table, uint32_t table_size, double min, double max, double phase) { uint32_t t; uint32_t phase_offset = phase / M_PI / 2 * table_size + 0.5; for (t = 0; t < table_size; t++) { uint32_t point = (t + phase_offset) % table_size; double d; switch (wave_type) { case SOX_WAVE_SINE: d = (sin((double)point / table_size * 2 * M_PI) + 1) / 2; break; case SOX_WAVE_TRIANGLE: d = (double)point * 2 / table_size; switch (4 * point / table_size) { case 0: d = d + 0.5; break; case 1: case 2: d = 1.5 - d; break; case 3: d = d - 1.5; break; } break; default: /* Oops! FIXME */ d = 0.0; /* Make sure we have a value */ break; } d = d * (max - min) + min; switch (data_type) { case SOX_FLOAT: { float *fp = (float *)table; *fp++ = (float)d; table = fp; continue; } case SOX_DOUBLE: { double *dp = (double *)table; *dp++ = d; table = dp; continue; } default: break; } d += d < 0? -0.5 : +0.5; switch (data_type) { case SOX_SHORT: { short *sp = table; *sp++ = (short)d; table = sp; continue; } case SOX_INT: { int *ip = table; *ip++ = (int)d; table = ip; continue; } default: break; } } } /* * lsx_parsesamples * * Parse a string for # of samples. If string ends with a 's' * then the string is interpreted as a user calculated # of samples. * If string contains ':' or '.' or if it ends with a 't' then its * treated as an amount of time. This is converted into seconds and * fraction of seconds and then use the sample rate to calculate * # of samples. * Returns NULL on error, pointer to next char to parse otherwise. */ char const * lsx_parsesamples(sox_rate_t rate, const char *str, sox_size_t *samples, int def) { int found_samples = 0, found_time = 0; int time = 0; long long_samples; float frac = 0; char const * end; char const * pos; sox_bool found_colon, found_dot; for (end = str; *end && strchr("0123456789:.ts", *end); ++end); if (end == str) return NULL; pos = strchr(str, ':'); found_colon = pos && pos < end; pos = strchr(str, '.'); found_dot = pos && pos < end; if (found_colon || found_dot || *(end-1) == 't') found_time = 1; else if (*(end-1) == 's') found_samples = 1; if (found_time || (def == 't' && !found_samples)) { *samples = 0; while(1) { if (str[0] != '.' && sscanf(str, "%d", &time) != 1) return NULL; *samples += time; while (*str != ':' && *str != '.' && *str != 0) str++; if (*str == '.' || *str == 0) break; /* Skip past ':' */ str++; *samples *= 60; } if (*str == '.') { if (sscanf(str, "%f", &frac) != 1) return NULL; } *samples *= rate; *samples += (rate * frac) + 0.5; return end; } if (found_samples || (def == 's' && !found_time)) { if (sscanf(str, "%ld", &long_samples) != 1) return NULL; *samples = long_samples; return end; } return NULL; } /* a note is given as an int, * 0 => 440 Hz = A * >0 => number of half notes 'up', * <0 => number of half notes down, * example 12 => A of next octave, 880Hz * * calculated by freq = 440Hz * 2**(note/12) */ static double calc_note_freq(double note) { return 440.0 * pow(2.0, note / 12.0); } /* Read string 'text' and convert to frequency. * 'text' can be a positive number which is the frequency in Hz. * If 'text' starts with a hash '%' and a following number the corresponding * note is calculated. * Return -1 on error. */ double lsx_parse_frequency(char const * text, char * * end_ptr) { double result; if (*text == '%') { result = strtod(text + 1, end_ptr); if (*end_ptr == text + 1) return -1; return calc_note_freq(result); } result = strtod(text, end_ptr); if (end_ptr) { if (*end_ptr == text) return -1; if (**end_ptr == 'k') { result *= 1000; ++*end_ptr; } } return result < 0 ? -1 : result; } double bessel_I_0(double x) { double term = 1, sum = 1, last_sum, x2 = x / 2; int i = 1; do { double y = x2 / i++; last_sum = sum, sum += term *= y * y; } while (sum != last_sum); return sum; }