ref: d1a2f94089bff9e099fe72795b2328fb69a9b228
dir: /src/g723_40.c/
/* This source code is a product of Sun Microsystems, Inc. and is provided * for unrestricted use. Users may copy or modify this source code without * charge. * * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. * * Sun source code is provided with no support and without any obligation on * the part of Sun Microsystems, Inc. to assist in its use, correction, * modification or enhancement. * * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE * OR ANY PART THEREOF. * * In no event will Sun Microsystems, Inc. be liable for any lost revenue * or profits or other special, indirect and consequential damages, even if * Sun has been advised of the possibility of such damages. * * Sun Microsystems, Inc. * 2550 Garcia Avenue * Mountain View, California 94043 */ /* * g723_40.c * * Description: * * g723_40_encoder(), g723_40_decoder() * * These routines comprise an implementation of the CCITT G.723 40Kbps * ADPCM coding algorithm. Essentially, this implementation is identical to * the bit level description except for a few deviations which * take advantage of workstation attributes, such as hardware 2's * complement arithmetic. * * The deviation from the bit level specification (lookup tables), * preserves the bit level performance specifications. * * As outlined in the G.723 Recommendation, the algorithm is broken * down into modules. Each section of code below is preceded by * the name of the module which it is implementing. * */ #include "sox_i.h" #include "g711.h" #include "g72x.h" /* * Maps G.723_40 code word to ructeconstructed scale factor normalized log * magnitude values. */ static const short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318, 358, 395, 429, 459, 488, 514, 539, 566, 566, 539, 514, 488, 459, 429, 395, 358, 318, 274, 224, 169, 104, 28, -66, -2048}; /* Maps G.723_40 code word to log of scale factor multiplier. */ static const short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200, 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, 3200, 1856, 1312, 1280, 1248, 768, 448, 448}; /* * Maps G.723_40 code words to a set of values whose long and short * term averages are computed and then compared to give an indication * how stationary (steady state) the signal is. */ static const short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200, 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, 0x200, 0x200, 0x200, 0, 0, 0, 0, 0}; static const short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339, 378, 413, 445, 475, 502, 528, 553}; /* * g723_40_encoder() * * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens * the resulting 5-bit CCITT G.723 40Kbps code. * Returns -1 if the input coding value is invalid. */ int g723_40_encoder(int sl, int in_coding, struct g72x_state *state_ptr) { short sei, sezi, se, sez; /* ACCUM */ short d; /* SUBTA */ short y; /* MIX */ short sr; /* ADDB */ short dqsez; /* ADDC */ short dq, i; switch (in_coding) { /* linearize input sample to 14-bit PCM */ case AUDIO_ENCODING_ALAW: sl = sox_alaw2linear16(sl) >> 2; break; case AUDIO_ENCODING_ULAW: sl = sox_ulaw2linear16(sl) >> 2; break; case AUDIO_ENCODING_LINEAR: sl >>= 2; /* sl of 14-bit dynamic range */ break; default: return (-1); } sezi = predictor_zero(state_ptr); sez = sezi >> 1; sei = sezi + predictor_pole(state_ptr); se = sei >> 1; /* se = estimated signal */ d = sl - se; /* d = estimation difference */ /* quantize prediction difference */ y = step_size(state_ptr); /* adaptive quantizer step size */ i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */ dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */ sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */ dqsez = sr + sez - se; /* dqsez = pole prediction diff. */ update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); return (i); } /* * g723_40_decoder() * * Decodes a 5-bit CCITT G.723 40Kbps code and returns * the resulting 16-bit linear PCM, A-law or u-law sample value. * -1 is returned if the output coding is unknown. */ int g723_40_decoder(int i, int out_coding, struct g72x_state *state_ptr) { short sezi, sei, sez, se; /* ACCUM */ short y; /* MIX */ short sr; /* ADDB */ short dq; short dqsez; i &= 0x1f; /* mask to get proper bits */ sezi = predictor_zero(state_ptr); sez = sezi >> 1; sei = sezi + predictor_pole(state_ptr); se = sei >> 1; /* se = estimated signal */ y = step_size(state_ptr); /* adaptive quantizer step size */ dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */ sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */ dqsez = sr - se + sez; /* pole prediction diff. */ update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); switch (out_coding) { case AUDIO_ENCODING_ALAW: return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40)); case AUDIO_ENCODING_ULAW: return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40)); case AUDIO_ENCODING_LINEAR: return (sr << 2); /* sr was of 14-bit dynamic range */ default: return (-1); } }