ref: e80265f904b1e0e1b7f1abf37fa811aecf3aba36
dir: /amr-wb/cod_main.c/
/*------------------------------------------------------------------------* * COD_MAIN.C * *------------------------------------------------------------------------* * Performs the main encoder routine * *------------------------------------------------------------------------*/ /*___________________________________________________________________________ | | | Fixed-point C simulation of AMR WB ACELP coding algorithm with 20 ms | | speech frames for wideband speech signals. | |___________________________________________________________________________| */ #include <stdio.h> #include <stdlib.h> #include "typedef.h" #include "basic_op.h" #include "oper_32b.h" #include "math_op.h" #include "cnst.h" #include "acelp.h" #include "cod_main.h" #include "bits.h" #include "count.h" #include "main.h" /* LPC interpolation coef {0.45, 0.8, 0.96, 1.0}; in Q15 */ static Word16 interpol_frac[NB_SUBFR] = {14746, 26214, 31457, 32767}; /* isp tables for initialization */ static Word16 isp_init[M] = { 32138, 30274, 27246, 23170, 18205, 12540, 6393, 0, -6393, -12540, -18205, -23170, -27246, -30274, -32138, 1475 }; static Word16 isf_init[M] = { 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360, 3840 }; /* High Band encoding */ static const Word16 HP_gain[16] = { 3624, 4673, 5597, 6479, 7425, 8378, 9324, 10264, 11210, 12206, 13391, 14844, 16770, 19655, 24289, 32728 }; static Word16 synthesis( Word16 Aq[], /* A(z) : quantized Az */ Word16 exc[], /* (i) : excitation at 12kHz */ Word16 Q_new, /* (i) : scaling performed on exc */ Word16 synth16k[], /* (o) : 16kHz synthesis signal */ Coder_State * st /* (i/o) : State structure */ ); /*-----------------------------------------------------------------* * Funtion init_coder * * ~~~~~~~~~~ * * ->Initialization of variables for the coder section. * *-----------------------------------------------------------------*/ void Init_coder(void **spe_state) { Coder_State *st; *spe_state = NULL; /*-------------------------------------------------------------------------* * Memory allocation for coder state. * *-------------------------------------------------------------------------*/ if ((st = (Coder_State *) malloc(sizeof(Coder_State))) == NULL) { printf("Can not malloc Coder_State structure!\n"); return; } st->vadSt = NULL; move16(); st->dtx_encSt = NULL; move16(); wb_vad_init(&(st->vadSt)); dtx_enc_init(&(st->dtx_encSt), isf_init); Reset_encoder((void *) st, 1); *spe_state = (void *) st; return; } void Reset_encoder(void *st, int reset_all) { Word16 i; Coder_State *cod_state; cod_state = (Coder_State *) st; Set_zero(cod_state->old_exc, PIT_MAX + L_INTERPOL); Set_zero(cod_state->mem_syn, M); Set_zero(cod_state->past_isfq, M); cod_state->mem_w0 = 0; move16(); cod_state->tilt_code = 0; move16(); cod_state->first_frame = 1; move16(); Init_gp_clip(cod_state->gp_clip); cod_state->L_gc_thres = 0; move16(); if (reset_all != 0) { /* Static vectors to zero */ Set_zero(cod_state->old_speech, L_TOTAL - L_FRAME); Set_zero(cod_state->old_wsp, (PIT_MAX / OPL_DECIM)); Set_zero(cod_state->mem_decim2, 3); /* routines initialization */ Init_Decim_12k8(cod_state->mem_decim); Init_HP50_12k8(cod_state->mem_sig_in); Init_Levinson(cod_state->mem_levinson); Init_Q_gain2(cod_state->qua_gain); Init_Hp_wsp(cod_state->hp_wsp_mem); /* isp initialization */ Copy(isp_init, cod_state->ispold, M); Copy(isp_init, cod_state->ispold_q, M); /* variable initialization */ cod_state->mem_preemph = 0; move16(); cod_state->mem_wsp = 0; move16(); cod_state->Q_old = 15; move16(); cod_state->Q_max[0] = 15; move16(); cod_state->Q_max[1] = 15; move16(); cod_state->old_wsp_max = 0; move16(); cod_state->old_wsp_shift = 0; move16(); /* pitch ol initialization */ cod_state->old_T0_med = 40; move16(); cod_state->ol_gain = 0; move16(); cod_state->ada_w = 0; move16(); cod_state->ol_wght_flg = 0; move16(); for (i = 0; i < 5; i++) { cod_state->old_ol_lag[i] = 40; move16(); } Set_zero(cod_state->old_hp_wsp, (L_FRAME / 2) / OPL_DECIM + (PIT_MAX / OPL_DECIM)); Set_zero(cod_state->mem_syn_hf, M); Set_zero(cod_state->mem_syn_hi, M); Set_zero(cod_state->mem_syn_lo, M); Init_HP50_12k8(cod_state->mem_sig_out); Init_Filt_6k_7k(cod_state->mem_hf); Init_HP400_12k8(cod_state->mem_hp400); Copy(isf_init, cod_state->isfold, M); cod_state->mem_deemph = 0; move16(); cod_state->seed2 = 21845; move16(); Init_Filt_6k_7k(cod_state->mem_hf2); cod_state->gain_alpha = 32767; move16(); cod_state->vad_hist = 0; wb_vad_reset(cod_state->vadSt); dtx_enc_reset(cod_state->dtx_encSt, isf_init); } return; } void Close_coder(void *spe_state) { wb_vad_exit(&(((Coder_State *) spe_state)->vadSt)); dtx_enc_exit(&(((Coder_State *) spe_state)->dtx_encSt)); free(spe_state); return; } /*-----------------------------------------------------------------* * Funtion coder * * ~~~~~ * * ->Main coder routine. * * * *-----------------------------------------------------------------*/ void coder( Word16 * mode, /* input : used mode */ Word16 speech16k[], /* input : 320 new speech samples (at 16 kHz) */ Word16 prms[], /* output: output parameters */ Word16 * ser_size, /* output: bit rate of the used mode */ void *spe_state, /* i/o : State structure */ int allow_dtx /* input : DTX ON/OFF */ ) { /* Coder states */ Coder_State *st; /* Speech vector */ Word16 old_speech[L_TOTAL]; Word16 *new_speech, *speech, *p_window; /* Weighted speech vector */ Word16 old_wsp[L_FRAME + (PIT_MAX / OPL_DECIM)]; Word16 *wsp; /* Excitation vector */ Word16 old_exc[(L_FRAME + 1) + PIT_MAX + L_INTERPOL]; Word16 *exc; /* LPC coefficients */ Word16 r_h[M + 1], r_l[M + 1]; /* Autocorrelations of windowed speech */ Word16 rc[M]; /* Reflection coefficients. */ Word16 Ap[M + 1]; /* A(z) with spectral expansion */ Word16 ispnew[M]; /* immittance spectral pairs at 4nd sfr */ Word16 ispnew_q[M]; /* quantized ISPs at 4nd subframe */ Word16 isf[M]; /* ISF (frequency domain) at 4nd sfr */ Word16 *p_A, *p_Aq; /* ptr to A(z) for the 4 subframes */ Word16 A[NB_SUBFR * (M + 1)]; /* A(z) unquantized for the 4 subframes */ Word16 Aq[NB_SUBFR * (M + 1)]; /* A(z) quantized for the 4 subframes */ /* Other vectors */ Word16 xn[L_SUBFR]; /* Target vector for pitch search */ Word16 xn2[L_SUBFR]; /* Target vector for codebook search */ Word16 dn[L_SUBFR]; /* Correlation between xn2 and h1 */ Word16 cn[L_SUBFR]; /* Target vector in residual domain */ Word16 h1[L_SUBFR]; /* Impulse response vector */ Word16 h2[L_SUBFR]; /* Impulse response vector */ Word16 code[L_SUBFR]; /* Fixed codebook excitation */ Word16 y1[L_SUBFR]; /* Filtered adaptive excitation */ Word16 y2[L_SUBFR]; /* Filtered adaptive excitation */ Word16 error[M + L_SUBFR]; /* error of quantization */ Word16 synth[L_SUBFR]; /* 12.8kHz synthesis vector */ Word16 exc2[L_FRAME]; /* excitation vector */ Word16 buf[L_FRAME]; /* VAD buffer */ /* Scalars */ Word16 i, j, i_subfr, select, pit_flag, clip_gain, vad_flag; Word16 codec_mode; Word16 T_op, T_op2, T0, T0_min, T0_max, T0_frac, index; Word16 gain_pit, gain_code, g_coeff[4], g_coeff2[4]; Word16 tmp, gain1, gain2, exp, Q_new, mu, shift, max; Word16 voice_fac; Word16 indice[8]; Word32 L_tmp, L_gain_code, L_max; Word16 code2[L_SUBFR]; /* Fixed codebook excitation */ Word16 stab_fac, fac, gain_code_lo; Word16 corr_gain; st = (Coder_State *) spe_state; *ser_size = nb_of_bits[*mode]; move16(); codec_mode = *mode; move16(); /*--------------------------------------------------------------------------* * Initialize pointers to speech vector. * * * * * * |-------|-------|-------|-------|-------|-------| * * past sp sf1 sf2 sf3 sf4 L_NEXT * * <------- Total speech buffer (L_TOTAL) ------> * * old_speech * * <------- LPC analysis window (L_WINDOW) ------> * * | <-- present frame (L_FRAME) ----> * * p_window | <----- new speech (L_FRAME) ----> * * | | * * speech | * * new_speech * *--------------------------------------------------------------------------*/ new_speech = old_speech + L_TOTAL - L_FRAME - L_FILT; move16(); /* New speech */ speech = old_speech + L_TOTAL - L_FRAME - L_NEXT; move16(); /* Present frame */ p_window = old_speech + L_TOTAL - L_WINDOW; move16(); exc = old_exc + PIT_MAX + L_INTERPOL; move16(); wsp = old_wsp + (PIT_MAX / OPL_DECIM); move16(); /* copy coder memory state into working space (internal memory for DSP) */ Copy(st->old_speech, old_speech, L_TOTAL - L_FRAME); Copy(st->old_wsp, old_wsp, PIT_MAX / OPL_DECIM); Copy(st->old_exc, old_exc, PIT_MAX + L_INTERPOL); /*---------------------------------------------------------------* * Down sampling signal from 16kHz to 12.8kHz * * -> The signal is extended by L_FILT samples (padded to zero) * * to avoid additional delay (L_FILT samples) in the coder. * * The last L_FILT samples are approximated after decimation and * * are used (and windowed) only in autocorrelations. * *---------------------------------------------------------------*/ Decim_12k8(speech16k, L_FRAME16k, new_speech, st->mem_decim); /* last L_FILT samples for autocorrelation window */ Copy(st->mem_decim, code, 2 * L_FILT16k); Set_zero(error, L_FILT16k); /* set next sample to zero */ Decim_12k8(error, L_FILT16k, new_speech + L_FRAME, code); /*---------------------------------------------------------------* * Perform 50Hz HP filtering of input signal. * *---------------------------------------------------------------*/ HP50_12k8(new_speech, L_FRAME, st->mem_sig_in); /* last L_FILT samples for autocorrelation window */ Copy(st->mem_sig_in, code, 6); HP50_12k8(new_speech + L_FRAME, L_FILT, code); /*---------------------------------------------------------------* * Perform fixed preemphasis through 1 - g z^-1 * * Scale signal to get maximum of precision in filtering * *---------------------------------------------------------------*/ mu = shr(PREEMPH_FAC, 1); /* Q15 --> Q14 */ /* get max of new preemphased samples (L_FRAME+L_FILT) */ L_tmp = L_mult(new_speech[0], 16384); L_tmp = L_msu(L_tmp, st->mem_preemph, mu); L_max = L_abs(L_tmp); for (i = 1; i < L_FRAME + L_FILT; i++) { L_tmp = L_mult(new_speech[i], 16384); L_tmp = L_msu(L_tmp, new_speech[i - 1], mu); L_tmp = L_abs(L_tmp); test(); if (L_sub(L_tmp, L_max) > (Word32) 0) { L_max = L_tmp; move32(); } } /* get scaling factor for new and previous samples */ /* limit scaling to Q_MAX to keep dynamic for ringing in low signal */ /* limit scaling to Q_MAX also to avoid a[0]<1 in syn_filt_32 */ tmp = extract_h(L_max); test(); if (tmp == 0) { shift = Q_MAX; move16(); } else { shift = sub(norm_s(tmp), 1); test(); if (shift < 0) { shift = 0; move16(); } test(); if (sub(shift, Q_MAX) > 0) { shift = Q_MAX; move16(); } } Q_new = shift; move16(); test(); if (sub(Q_new, st->Q_max[0]) > 0) { Q_new = st->Q_max[0]; move16(); } test(); if (sub(Q_new, st->Q_max[1]) > 0) { Q_new = st->Q_max[1]; move16(); } exp = sub(Q_new, st->Q_old); st->Q_old = Q_new; move16(); st->Q_max[1] = st->Q_max[0]; move16(); st->Q_max[0] = shift; move16(); /* preemphasis with scaling (L_FRAME+L_FILT) */ tmp = new_speech[L_FRAME - 1]; move16(); for (i = L_FRAME + L_FILT - 1; i > 0; i--) { L_tmp = L_mult(new_speech[i], 16384); L_tmp = L_msu(L_tmp, new_speech[i - 1], mu); L_tmp = L_shl(L_tmp, Q_new); new_speech[i] = round(L_tmp); move16(); } L_tmp = L_mult(new_speech[0], 16384); L_tmp = L_msu(L_tmp, st->mem_preemph, mu); L_tmp = L_shl(L_tmp, Q_new); new_speech[0] = round(L_tmp); move16(); st->mem_preemph = tmp; move16(); /* scale previous samples and memory */ Scale_sig(old_speech, L_TOTAL - L_FRAME - L_FILT, exp); Scale_sig(old_exc, PIT_MAX + L_INTERPOL, exp); Scale_sig(st->mem_syn, M, exp); Scale_sig(st->mem_decim2, 3, exp); Scale_sig(&(st->mem_wsp), 1, exp); Scale_sig(&(st->mem_w0), 1, exp); /*------------------------------------------------------------------------* * Call VAD * * Preemphesis scale down signal in low frequency and keep dynamic in HF.* * Vad work slightly in futur (new_speech = speech + L_NEXT - L_FILT). * *------------------------------------------------------------------------*/ Copy(new_speech, buf, L_FRAME); Scale_sig(buf, L_FRAME, sub(1, Q_new)); vad_flag = wb_vad(st->vadSt, buf); if (vad_flag == 0) { st->vad_hist = add(st->vad_hist, 1); move16(); } else { st->vad_hist = 0; move16(); } /* DTX processing */ test(); if (allow_dtx != 0) { /* Note that mode may change here */ tx_dtx_handler(st->dtx_encSt, vad_flag, mode); *ser_size = nb_of_bits[*mode]; move16(); } test(); if (sub(*mode, MRDTX) != 0) { Parm_serial(vad_flag, 1, &prms); } /*------------------------------------------------------------------------* * Perform LPC analysis * * ~~~~~~~~~~~~~~~~~~~~ * * - autocorrelation + lag windowing * * - Levinson-durbin algorithm to find a[] * * - convert a[] to isp[] * * - convert isp[] to isf[] for quantization * * - quantize and code the isf[] * * - convert isf[] to isp[] for interpolation * * - find the interpolated ISPs and convert to a[] for the 4 subframes * *------------------------------------------------------------------------*/ /* LP analysis centered at 4nd subframe */ Autocorr(p_window, M, r_h, r_l); /* Autocorrelations */ Lag_window(r_h, r_l); /* Lag windowing */ Levinson(r_h, r_l, A, rc, st->mem_levinson); /* Levinson Durbin */ Az_isp(A, ispnew, st->ispold); /* From A(z) to ISP */ /* Find the interpolated ISPs and convert to a[] for all subframes */ Int_isp(st->ispold, ispnew, interpol_frac, A); /* update ispold[] for the next frame */ Copy(ispnew, st->ispold, M); /* Convert ISPs to frequency domain 0..6400 */ Isp_isf(ispnew, isf, M); /* check resonance for pitch clipping algorithm */ Gp_clip_test_isf(isf, st->gp_clip); /*----------------------------------------------------------------------* * Perform PITCH_OL analysis * * ~~~~~~~~~~~~~~~~~~~~~~~~~ * * - Find the residual res[] for the whole speech frame * * - Find the weighted input speech wsp[] for the whole speech frame * * - scale wsp[] to avoid overflow in pitch estimation * * - Find open loop pitch lag for whole speech frame * *----------------------------------------------------------------------*/ p_A = A; move16(); for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { Weight_a(p_A, Ap, GAMMA1, M); Residu(Ap, M, &speech[i_subfr], &wsp[i_subfr], L_SUBFR); p_A += (M + 1); move16(); } Deemph2(wsp, TILT_FAC, L_FRAME, &(st->mem_wsp)); /* find maximum value on wsp[] for 12 bits scaling */ max = 0; move16(); for (i = 0; i < L_FRAME; i++) { tmp = abs_s(wsp[i]); test(); if (sub(tmp, max) > 0) { max = tmp; move16(); } } tmp = st->old_wsp_max; move16(); test(); if (sub(max, tmp) > 0) { tmp = max; /* tmp = max(wsp_max, old_wsp_max) */ move16(); } st->old_wsp_max = max; move16(); shift = sub(norm_s(tmp), 3); test(); if (shift > 0) { shift = 0; /* shift = 0..-3 */ move16(); } /* decimation of wsp[] to search pitch in LF and to reduce complexity */ LP_Decim2(wsp, L_FRAME, st->mem_decim2); /* scale wsp[] in 12 bits to avoid overflow */ Scale_sig(wsp, L_FRAME / OPL_DECIM, shift); /* scale old_wsp (warning: exp must be Q_new-Q_old) */ exp = add(exp, sub(shift, st->old_wsp_shift)); st->old_wsp_shift = shift; Scale_sig(old_wsp, PIT_MAX / OPL_DECIM, exp); Scale_sig(st->old_hp_wsp, PIT_MAX / OPL_DECIM, exp); scale_mem_Hp_wsp(st->hp_wsp_mem, exp); /* Find open loop pitch lag for whole speech frame */ test(); if (sub(*ser_size, NBBITS_7k) == 0) { /* Find open loop pitch lag for whole speech frame */ T_op = Pitch_med_ol(wsp, PIT_MIN / OPL_DECIM, PIT_MAX / OPL_DECIM, L_FRAME / OPL_DECIM, st->old_T0_med, &(st->ol_gain), st->hp_wsp_mem, st->old_hp_wsp, st->ol_wght_flg); } else { /* Find open loop pitch lag for first 1/2 frame */ T_op = Pitch_med_ol(wsp, PIT_MIN / OPL_DECIM, PIT_MAX / OPL_DECIM, (L_FRAME / 2) / OPL_DECIM, st->old_T0_med, &(st->ol_gain), st->hp_wsp_mem, st->old_hp_wsp, st->ol_wght_flg); } test(); if (sub(st->ol_gain, 19661) > 0) /* 0.6 in Q15 */ { st->old_T0_med = Med_olag(T_op, st->old_ol_lag); move16(); st->ada_w = 32767; move16(); } else { st->ada_w = mult(st->ada_w, 29491);move16(); } test();move16(); if (sub(st->ada_w, 26214) < 0) st->ol_wght_flg = 0; else st->ol_wght_flg = 1; wb_vad_tone_detection(st->vadSt, st->ol_gain); T_op *= OPL_DECIM; move16(); test(); if (sub(*ser_size, NBBITS_7k) != 0) { /* Find open loop pitch lag for second 1/2 frame */ T_op2 = Pitch_med_ol(wsp + ((L_FRAME / 2) / OPL_DECIM), PIT_MIN / OPL_DECIM, PIT_MAX / OPL_DECIM, (L_FRAME / 2) / OPL_DECIM, st->old_T0_med, &(st->ol_gain), st->hp_wsp_mem, st->old_hp_wsp, st->ol_wght_flg); test(); if (sub(st->ol_gain, 19661) > 0) /* 0.6 in Q15 */ { st->old_T0_med = Med_olag(T_op2, st->old_ol_lag); move16(); st->ada_w = 32767; move16(); } else { st->ada_w = mult(st->ada_w, 29491); move16(); } test();move16(); if (sub(st->ada_w, 26214) < 0) st->ol_wght_flg = 0; else st->ol_wght_flg = 1; wb_vad_tone_detection(st->vadSt, st->ol_gain); T_op2 *= OPL_DECIM; move16(); } else { T_op2 = T_op; move16(); } /*----------------------------------------------------------------------* * DTX-CNG * *----------------------------------------------------------------------*/ test(); if (sub(*mode, MRDTX) == 0) /* CNG mode */ { /* Buffer isf's and energy */ Residu(&A[3 * (M + 1)], M, speech, exc, L_FRAME); for (i = 0; i < L_FRAME; i++) { exc2[i] = shr(exc[i], Q_new); move16(); } L_tmp = 0; move32(); for (i = 0; i < L_FRAME; i++) L_tmp = L_mac(L_tmp, exc2[i], exc2[i]); L_tmp = L_shr(L_tmp, 1); dtx_buffer(st->dtx_encSt, isf, L_tmp, codec_mode); /* Quantize and code the ISFs */ dtx_enc(st->dtx_encSt, isf, exc2, &prms); /* Convert ISFs to the cosine domain */ Isf_isp(isf, ispnew_q, M); Isp_Az(ispnew_q, Aq, M, 0); for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { corr_gain = synthesis(Aq, &exc2[i_subfr], 0, &speech16k[i_subfr * 5 / 4], st); } Copy(isf, st->isfold, M); /* reset speech coder memories */ Reset_encoder(st, 0); /*--------------------------------------------------* * Update signal for next frame. * * -> save past of speech[] and wsp[]. * *--------------------------------------------------*/ Copy(&old_speech[L_FRAME], st->old_speech, L_TOTAL - L_FRAME); Copy(&old_wsp[L_FRAME / OPL_DECIM], st->old_wsp, PIT_MAX / OPL_DECIM); return; } /*----------------------------------------------------------------------* * ACELP * *----------------------------------------------------------------------*/ /* Quantize and code the ISFs */ test(); if (sub(*ser_size, NBBITS_7k) <= 0) { Qpisf_2s_36b(isf, isf, st->past_isfq, indice, 4); Parm_serial(indice[0], 8, &prms); Parm_serial(indice[1], 8, &prms); Parm_serial(indice[2], 7, &prms); Parm_serial(indice[3], 7, &prms); Parm_serial(indice[4], 6, &prms); } else { Qpisf_2s_46b(isf, isf, st->past_isfq, indice, 4); Parm_serial(indice[0], 8, &prms); Parm_serial(indice[1], 8, &prms); Parm_serial(indice[2], 6, &prms); Parm_serial(indice[3], 7, &prms); Parm_serial(indice[4], 7, &prms); Parm_serial(indice[5], 5, &prms); Parm_serial(indice[6], 5, &prms); } /* Check stability on isf : distance between old isf and current isf */ L_tmp = 0; move32(); for (i = 0; i < M - 1; i++) { tmp = sub(isf[i], st->isfold[i]); L_tmp = L_mac(L_tmp, tmp, tmp); } tmp = extract_h(L_shl(L_tmp, 8)); /* saturation can occur here */ tmp = mult(tmp, 26214); /* tmp = L_tmp*0.8/256 */ tmp = sub(20480, tmp); /* 1.25 - tmp (in Q14) */ stab_fac = shl(tmp, 1); /* saturation can occur here */ test(); if (stab_fac < 0) { stab_fac = 0; move16(); } Copy(isf, st->isfold, M); /* Convert ISFs to the cosine domain */ Isf_isp(isf, ispnew_q, M); test(); if (st->first_frame != 0) { st->first_frame = 0; move16(); Copy(ispnew_q, st->ispold_q, M); } /* Find the interpolated ISPs and convert to a[] for all subframes */ Int_isp(st->ispold_q, ispnew_q, interpol_frac, Aq); /* update ispold[] for the next frame */ Copy(ispnew_q, st->ispold_q, M); p_Aq = Aq; for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { Residu(p_Aq, M, &speech[i_subfr], &exc[i_subfr], L_SUBFR); p_Aq += (M + 1); move16(); } /* Buffer isf's and energy for dtx on non-speech frame */ test(); if (vad_flag == 0) { for (i = 0; i < L_FRAME; i++) { exc2[i] = shr(exc[i], Q_new); move16(); } L_tmp = 0; move32(); for (i = 0; i < L_FRAME; i++) L_tmp = L_mac(L_tmp, exc2[i], exc2[i]); L_tmp = L_shr(L_tmp, 1); dtx_buffer(st->dtx_encSt, isf, L_tmp, codec_mode); } /* range for closed loop pitch search in 1st subframe */ T0_min = sub(T_op, 8); test(); if (sub(T0_min, PIT_MIN) < 0) { T0_min = PIT_MIN; move16(); } T0_max = add(T0_min, 15); test(); if (sub(T0_max, PIT_MAX) > 0) { T0_max = PIT_MAX; move16(); T0_min = sub(T0_max, 15); move16(); } /*------------------------------------------------------------------------* * Loop for every subframe in the analysis frame * *------------------------------------------------------------------------* * To find the pitch and innovation parameters. The subframe size is * * L_SUBFR and the loop is repeated L_FRAME/L_SUBFR times. * * - compute the target signal for pitch search * * - compute impulse response of weighted synthesis filter (h1[]) * * - find the closed-loop pitch parameters * * - encode the pitch dealy * * - find 2 lt prediction (with / without LP filter for lt pred) * * - find 2 pitch gains and choose the best lt prediction. * * - find target vector for codebook search * * - update the impulse response h1[] for codebook search * * - correlation between target vector and impulse response * * - codebook search and encoding * * - VQ of pitch and codebook gains * * - find voicing factor and tilt of code for next subframe. * * - update states of weighting filter * * - find excitation and synthesis speech * *------------------------------------------------------------------------*/ p_A = A; move16(); p_Aq = Aq; move16(); for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR) { pit_flag = i_subfr; move16(); test();test(); if ((sub(i_subfr, 2 * L_SUBFR) == 0) && (sub(*ser_size, NBBITS_7k) > 0)) { pit_flag = 0; move16(); /* range for closed loop pitch search in 3rd subframe */ T0_min = sub(T_op2, 8); test(); if (sub(T0_min, PIT_MIN) < 0) { T0_min = PIT_MIN; move16(); } T0_max = add(T0_min, 15); test(); if (sub(T0_max, PIT_MAX) > 0) { T0_max = PIT_MAX; move16(); T0_min = sub(T0_max, 15); } } /*-----------------------------------------------------------------------* * * * Find the target vector for pitch search: * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * * * |------| res[n] * * speech[n]---| A(z) |-------- * * |------| | |--------| error[n] |------| * * zero -- (-)--| 1/A(z) |-----------| W(z) |-- target * * exc |--------| |------| * * * * Instead of subtracting the zero-input response of filters from * * the weighted input speech, the above configuration is used to * * compute the target vector. * * * *-----------------------------------------------------------------------*/ for (i = 0; i < M; i++) { error[i] = sub(speech[i + i_subfr - M], st->mem_syn[i]); move16(); } Residu(p_Aq, M, &speech[i_subfr], &exc[i_subfr], L_SUBFR); Syn_filt(p_Aq, M, &exc[i_subfr], error + M, L_SUBFR, error, 0); Weight_a(p_A, Ap, GAMMA1, M); Residu(Ap, M, error + M, xn, L_SUBFR); Deemph2(xn, TILT_FAC, L_SUBFR, &(st->mem_w0)); /*----------------------------------------------------------------------* * Find approx. target in residual domain "cn[]" for inovation search. * *----------------------------------------------------------------------*/ /* first half: xn[] --> cn[] */ Set_zero(code, M); Copy(xn, code + M, L_SUBFR / 2); tmp = 0; move16(); Preemph2(code + M, TILT_FAC, L_SUBFR / 2, &tmp); Weight_a(p_A, Ap, GAMMA1, M); Syn_filt(Ap, M, code + M, code + M, L_SUBFR / 2, code, 0); Residu(p_Aq, M, code + M, cn, L_SUBFR / 2); /* second half: res[] --> cn[] (approximated and faster) */ Copy(&exc[i_subfr + (L_SUBFR / 2)], cn + (L_SUBFR / 2), L_SUBFR / 2); /*---------------------------------------------------------------* * Compute impulse response, h1[], of weighted synthesis filter * *---------------------------------------------------------------*/ Set_zero(error, M + L_SUBFR); Weight_a(p_A, error + M, GAMMA1, M); for (i = 0; i < L_SUBFR; i++) { L_tmp = L_mult(error[i + M], 16384); /* x4 (Q12 to Q14) */ for (j = 1; j <= M; j++) L_tmp = L_msu(L_tmp, p_Aq[j], error[i + M - j]); h1[i] = error[i + M] = round(L_shl(L_tmp, 3)); move16();move16(); } /* deemph without division by 2 -> Q14 to Q15 */ tmp = 0; move16(); Deemph2(h1, TILT_FAC, L_SUBFR, &tmp); /* h1 in Q14 */ /* h2 in Q12 for codebook search */ Copy(h1, h2, L_SUBFR); Scale_sig(h2, L_SUBFR, -2); /*---------------------------------------------------------------* * scale xn[] and h1[] to avoid overflow in dot_product12() * *---------------------------------------------------------------*/ Scale_sig(xn, L_SUBFR, shift); /* scaling of xn[] to limit dynamic at 12 bits */ Scale_sig(h1, L_SUBFR, add(1, shift)); /* set h1[] in Q15 with scaling for convolution */ /*----------------------------------------------------------------------* * Closed-loop fractional pitch search * *----------------------------------------------------------------------*/ /* find closed loop fractional pitch lag */ test(); if (sub(*ser_size, NBBITS_9k) <= 0) { T0 = Pitch_fr4(&exc[i_subfr], xn, h1, T0_min, T0_max, &T0_frac, pit_flag, PIT_MIN, PIT_FR1_8b, L_SUBFR); /* encode pitch lag */ test(); if (pit_flag == 0) /* if 1st/3rd subframe */ { /*--------------------------------------------------------------* * The pitch range for the 1st/3rd subframe is encoded with * * 8 bits and is divided as follows: * * PIT_MIN to PIT_FR1-1 resolution 1/2 (frac = 0 or 2) * * PIT_FR1 to PIT_MAX resolution 1 (frac = 0) * *--------------------------------------------------------------*/ test(); if (sub(T0, PIT_FR1_8b) < 0) { index = sub(add(shl(T0, 1), shr(T0_frac, 1)), (PIT_MIN * 2)); } else { index = add(sub(T0, PIT_FR1_8b), ((PIT_FR1_8b - PIT_MIN) * 2)); } Parm_serial(index, 8, &prms); /* find T0_min and T0_max for subframe 2 and 4 */ T0_min = sub(T0, 8); test(); if (sub(T0_min, PIT_MIN) < 0) { T0_min = PIT_MIN; move16(); } T0_max = add(T0_min, 15); test(); if (sub(T0_max, PIT_MAX) > 0) { T0_max = PIT_MAX; move16(); T0_min = sub(T0_max, 15); } } else { /* if subframe 2 or 4 */ /*--------------------------------------------------------------* * The pitch range for subframe 2 or 4 is encoded with 5 bits: * * T0_min to T0_max resolution 1/2 (frac = 0 or 2) * *--------------------------------------------------------------*/ i = sub(T0, T0_min); index = add(shl(i, 1), shr(T0_frac, 1)); Parm_serial(index, 5, &prms); } } else { T0 = Pitch_fr4(&exc[i_subfr], xn, h1, T0_min, T0_max, &T0_frac, pit_flag, PIT_FR2, PIT_FR1_9b, L_SUBFR); /* encode pitch lag */ test(); if (pit_flag == 0) /* if 1st/3rd subframe */ { /*--------------------------------------------------------------* * The pitch range for the 1st/3rd subframe is encoded with * * 9 bits and is divided as follows: * * PIT_MIN to PIT_FR2-1 resolution 1/4 (frac = 0,1,2 or 3) * * PIT_FR2 to PIT_FR1-1 resolution 1/2 (frac = 0 or 1) * * PIT_FR1 to PIT_MAX resolution 1 (frac = 0) * *--------------------------------------------------------------*/ test();test(); if (sub(T0, PIT_FR2) < 0) { index = sub(add(shl(T0, 2), T0_frac), (PIT_MIN * 4)); } else if (sub(T0, PIT_FR1_9b) < 0) { index = add(sub(add(shl(T0, 1), shr(T0_frac, 1)), (PIT_FR2 * 2)), ((PIT_FR2 - PIT_MIN) * 4)); } else { index = add(add(sub(T0, PIT_FR1_9b), ((PIT_FR2 - PIT_MIN) * 4)), ((PIT_FR1_9b - PIT_FR2) * 2)); } Parm_serial(index, 9, &prms); /* find T0_min and T0_max for subframe 2 and 4 */ T0_min = sub(T0, 8); test(); if (sub(T0_min, PIT_MIN) < 0) { T0_min = PIT_MIN; move16(); } T0_max = add(T0_min, 15); test(); if (sub(T0_max, PIT_MAX) > 0) { T0_max = PIT_MAX; move16(); T0_min = sub(T0_max, 15); } } else { /* if subframe 2 or 4 */ /*--------------------------------------------------------------* * The pitch range for subframe 2 or 4 is encoded with 6 bits: * * T0_min to T0_max resolution 1/4 (frac = 0,1,2 or 3) * *--------------------------------------------------------------*/ i = sub(T0, T0_min); index = add(shl(i, 2), T0_frac); Parm_serial(index, 6, &prms); } } /*-----------------------------------------------------------------* * Gain clipping test to avoid unstable synthesis on frame erasure * *-----------------------------------------------------------------*/ clip_gain = Gp_clip(st->gp_clip); /*-----------------------------------------------------------------* * - find unity gain pitch excitation (adaptive codebook entry) * * with fractional interpolation. * * - find filtered pitch exc. y1[]=exc[] convolved with h1[]) * * - compute pitch gain1 * *-----------------------------------------------------------------*/ /* find pitch exitation */ Pred_lt4(&exc[i_subfr], T0, T0_frac, L_SUBFR + 1); test(); if (sub(*ser_size, NBBITS_9k) > 0) { Convolve(&exc[i_subfr], h1, y1, L_SUBFR); gain1 = G_pitch(xn, y1, g_coeff, L_SUBFR); /* clip gain if necessary to avoid problem at decoder */ test();test(); if ((clip_gain != 0) && (sub(gain1, GP_CLIP) > 0)) { gain1 = GP_CLIP; move16(); } /* find energy of new target xn2[] */ Updt_tar(xn, dn, y1, gain1, L_SUBFR); /* dn used temporary */ } else { gain1 = 0; move16(); } /*-----------------------------------------------------------------* * - find pitch excitation filtered by 1st order LP filter. * * - find filtered pitch exc. y2[]=exc[] convolved with h1[]) * * - compute pitch gain2 * *-----------------------------------------------------------------*/ /* find pitch excitation with lp filter */ for (i = 0; i < L_SUBFR; i++) { L_tmp = L_mult(5898, exc[i - 1 + i_subfr]); L_tmp = L_mac(L_tmp, 20972, exc[i + i_subfr]); L_tmp = L_mac(L_tmp, 5898, exc[i + 1 + i_subfr]); code[i] = round(L_tmp); move16(); } Convolve(code, h1, y2, L_SUBFR); gain2 = G_pitch(xn, y2, g_coeff2, L_SUBFR); /* clip gain if necessary to avoid problem at decoder */ test();test(); if ((clip_gain != 0) && (sub(gain2, GP_CLIP) > 0)) { gain2 = GP_CLIP; move16(); } /* find energy of new target xn2[] */ Updt_tar(xn, xn2, y2, gain2, L_SUBFR); /*-----------------------------------------------------------------* * use the best prediction (minimise quadratic error). * *-----------------------------------------------------------------*/ select = 0; move16(); test(); if (sub(*ser_size, NBBITS_9k) > 0) { L_tmp = 0L; move32(); for (i = 0; i < L_SUBFR; i++) L_tmp = L_mac(L_tmp, dn[i], dn[i]); for (i = 0; i < L_SUBFR; i++) L_tmp = L_msu(L_tmp, xn2[i], xn2[i]); test(); if (L_tmp <= 0) { select = 1; move16(); } Parm_serial(select, 1, &prms); } test(); if (select == 0) { /* use the lp filter for pitch excitation prediction */ gain_pit = gain2; move16(); Copy(code, &exc[i_subfr], L_SUBFR); Copy(y2, y1, L_SUBFR); Copy(g_coeff2, g_coeff, 4); } else { /* no filter used for pitch excitation prediction */ gain_pit = gain1; move16(); Copy(dn, xn2, L_SUBFR); /* target vector for codebook search */ } /*-----------------------------------------------------------------* * - update cn[] for codebook search * *-----------------------------------------------------------------*/ Updt_tar(cn, cn, &exc[i_subfr], gain_pit, L_SUBFR); Scale_sig(cn, L_SUBFR, shift); /* scaling of cn[] to limit dynamic at 12 bits */ /*-----------------------------------------------------------------* * - include fixed-gain pitch contribution into impulse resp. h1[] * *-----------------------------------------------------------------*/ tmp = 0; move16(); Preemph(h2, st->tilt_code, L_SUBFR, &tmp); test(); if (T0_frac > 2) T0 = add(T0, 1); Pit_shrp(h2, T0, PIT_SHARP, L_SUBFR); /*-----------------------------------------------------------------* * - Correlation between target xn2[] and impulse response h1[] * * - Innovative codebook search * *-----------------------------------------------------------------*/ cor_h_x(h2, xn2, dn); test();test();test();test();test();test();test(); if (sub(*ser_size, NBBITS_7k) <= 0) { ACELP_2t64_fx(dn, cn, h2, code, y2, indice); Parm_serial(indice[0], 12, &prms); } else if (sub(*ser_size, NBBITS_9k) <= 0) { ACELP_4t64_fx(dn, cn, h2, code, y2, 20, *ser_size, indice); Parm_serial(indice[0], 5, &prms); Parm_serial(indice[1], 5, &prms); Parm_serial(indice[2], 5, &prms); Parm_serial(indice[3], 5, &prms); } else if (sub(*ser_size, NBBITS_12k) <= 0) { ACELP_4t64_fx(dn, cn, h2, code, y2, 36, *ser_size, indice); Parm_serial(indice[0], 9, &prms); Parm_serial(indice[1], 9, &prms); Parm_serial(indice[2], 9, &prms); Parm_serial(indice[3], 9, &prms); } else if (sub(*ser_size, NBBITS_14k) <= 0) { ACELP_4t64_fx(dn, cn, h2, code, y2, 44, *ser_size, indice); Parm_serial(indice[0], 13, &prms); Parm_serial(indice[1], 13, &prms); Parm_serial(indice[2], 9, &prms); Parm_serial(indice[3], 9, &prms); } else if (sub(*ser_size, NBBITS_16k) <= 0) { ACELP_4t64_fx(dn, cn, h2, code, y2, 52, *ser_size, indice); Parm_serial(indice[0], 13, &prms); Parm_serial(indice[1], 13, &prms); Parm_serial(indice[2], 13, &prms); Parm_serial(indice[3], 13, &prms); } else if (sub(*ser_size, NBBITS_18k) <= 0) { ACELP_4t64_fx(dn, cn, h2, code, y2, 64, *ser_size, indice); Parm_serial(indice[0], 2, &prms); Parm_serial(indice[1], 2, &prms); Parm_serial(indice[2], 2, &prms); Parm_serial(indice[3], 2, &prms); Parm_serial(indice[4], 14, &prms); Parm_serial(indice[5], 14, &prms); Parm_serial(indice[6], 14, &prms); Parm_serial(indice[7], 14, &prms); } else if (sub(*ser_size, NBBITS_20k) <= 0) { ACELP_4t64_fx(dn, cn, h2, code, y2, 72, *ser_size, indice); Parm_serial(indice[0], 10, &prms); Parm_serial(indice[1], 10, &prms); Parm_serial(indice[2], 2, &prms); Parm_serial(indice[3], 2, &prms); Parm_serial(indice[4], 10, &prms); Parm_serial(indice[5], 10, &prms); Parm_serial(indice[6], 14, &prms); Parm_serial(indice[7], 14, &prms); } else { ACELP_4t64_fx(dn, cn, h2, code, y2, 88, *ser_size, indice); Parm_serial(indice[0], 11, &prms); Parm_serial(indice[1], 11, &prms); Parm_serial(indice[2], 11, &prms); Parm_serial(indice[3], 11, &prms); Parm_serial(indice[4], 11, &prms); Parm_serial(indice[5], 11, &prms); Parm_serial(indice[6], 11, &prms); Parm_serial(indice[7], 11, &prms); } /*-------------------------------------------------------* * - Add the fixed-gain pitch contribution to code[]. * *-------------------------------------------------------*/ tmp = 0; move16(); Preemph(code, st->tilt_code, L_SUBFR, &tmp); Pit_shrp(code, T0, PIT_SHARP, L_SUBFR); /*----------------------------------------------------------* * - Compute the fixed codebook gain * * - quantize fixed codebook gain * *----------------------------------------------------------*/ test(); if (sub(*ser_size, NBBITS_9k) <= 0) { index = Q_gain2(xn, y1, add(Q_new, shift), y2, code, g_coeff, L_SUBFR, 6, &gain_pit, &L_gain_code, clip_gain, st->qua_gain); Parm_serial(index, 6, &prms); } else { index = Q_gain2(xn, y1, add(Q_new, shift), y2, code, g_coeff, L_SUBFR, 7, &gain_pit, &L_gain_code, clip_gain, st->qua_gain); Parm_serial(index, 7, &prms); } /* test quantized gain of pitch for pitch clipping algorithm */ Gp_clip_test_gain_pit(gain_pit, st->gp_clip); L_tmp = L_shl(L_gain_code, Q_new); /* saturation can occur here */ gain_code = round(L_tmp); /* scaled gain_code with Qnew */ /*----------------------------------------------------------* * Update parameters for the next subframe. * * - tilt of code: 0.0 (unvoiced) to 0.5 (voiced) * *----------------------------------------------------------*/ /* find voice factor in Q15 (1=voiced, -1=unvoiced) */ Copy(&exc[i_subfr], exc2, L_SUBFR); Scale_sig(exc2, L_SUBFR, shift); voice_fac = voice_factor(exc2, shift, gain_pit, code, gain_code, L_SUBFR); /* tilt of code for next subframe: 0.5=voiced, 0=unvoiced */ st->tilt_code = add(shr(voice_fac, 2), 8192); move16(); /*------------------------------------------------------* * - Update filter's memory "mem_w0" for finding the * * target vector in the next subframe. * * - Find the total excitation * * - Find synthesis speech to update mem_syn[]. * *------------------------------------------------------*/ /* y2 in Q9, gain_pit in Q14 */ L_tmp = L_mult(gain_code, y2[L_SUBFR - 1]); L_tmp = L_shl(L_tmp, add(5, shift)); L_tmp = L_negate(L_tmp); L_tmp = L_mac(L_tmp, xn[L_SUBFR - 1], 16384); L_tmp = L_msu(L_tmp, y1[L_SUBFR - 1], gain_pit); L_tmp = L_shl(L_tmp, sub(1, shift)); st->mem_w0 = round(L_tmp); move16(); if (sub(*ser_size, NBBITS_24k) >= 0) Copy(&exc[i_subfr], exc2, L_SUBFR); for (i = 0; i < L_SUBFR; i++) { /* code in Q9, gain_pit in Q14 */ L_tmp = L_mult(gain_code, code[i]); L_tmp = L_shl(L_tmp, 5); L_tmp = L_mac(L_tmp, exc[i + i_subfr], gain_pit); L_tmp = L_shl(L_tmp, 1); /* saturation can occur here */ exc[i + i_subfr] = round(L_tmp); move16(); } Syn_filt(p_Aq, M, &exc[i_subfr], synth, L_SUBFR, st->mem_syn, 1); if (sub(*ser_size, NBBITS_24k) >= 0) { /*------------------------------------------------------------* * phase dispersion to enhance noise in low bit rate * *------------------------------------------------------------*/ /* L_gain_code in Q16 */ L_Extract(L_gain_code, &gain_code, &gain_code_lo); /*------------------------------------------------------------* * noise enhancer * * ~~~~~~~~~~~~~~ * * - Enhance excitation on noise. (modify gain of code) * * If signal is noisy and LPC filter is stable, move gain * * of code 1.5 dB toward gain of code threshold. * * This decrease by 3 dB noise energy variation. * *------------------------------------------------------------*/ tmp = sub(16384, shr(voice_fac, 1)); /* 1=unvoiced, 0=voiced */ fac = mult(stab_fac, tmp); L_tmp = L_gain_code; move32(); test(); if (L_sub(L_tmp, st->L_gc_thres) < 0) { L_tmp = L_add(L_tmp, Mpy_32_16(gain_code, gain_code_lo, 6226)); test(); if (L_sub(L_tmp, st->L_gc_thres) > 0) { L_tmp = st->L_gc_thres;move32(); } } else { L_tmp = Mpy_32_16(gain_code, gain_code_lo, 27536); test(); if (L_sub(L_tmp, st->L_gc_thres) < 0) { L_tmp = st->L_gc_thres;move32(); } } st->L_gc_thres = L_tmp; move32(); L_gain_code = Mpy_32_16(gain_code, gain_code_lo, sub(32767, fac)); L_Extract(L_tmp, &gain_code, &gain_code_lo); L_gain_code = L_add(L_gain_code, Mpy_32_16(gain_code, gain_code_lo, fac)); /*------------------------------------------------------------* * pitch enhancer * * ~~~~~~~~~~~~~~ * * - Enhance excitation on voice. (HP filtering of code) * * On voiced signal, filtering of code by a smooth fir HP * * filter to decrease energy of code in low frequency. * *------------------------------------------------------------*/ tmp = add(shr(voice_fac, 3), 4096); /* 0.25=voiced, 0=unvoiced */ L_tmp = L_deposit_h(code[0]); L_tmp = L_msu(L_tmp, code[1], tmp); code2[0] = round(L_tmp); move16(); for (i = 1; i < L_SUBFR - 1; i++) { L_tmp = L_deposit_h(code[i]); L_tmp = L_msu(L_tmp, code[i + 1], tmp); L_tmp = L_msu(L_tmp, code[i - 1], tmp); code2[i] = round(L_tmp); move16(); } L_tmp = L_deposit_h(code[L_SUBFR - 1]); L_tmp = L_msu(L_tmp, code[L_SUBFR - 2], tmp); code2[L_SUBFR - 1] = round(L_tmp); move16(); /* build excitation */ gain_code = round(L_shl(L_gain_code, Q_new)); for (i = 0; i < L_SUBFR; i++) { L_tmp = L_mult(code2[i], gain_code); L_tmp = L_shl(L_tmp, 5); L_tmp = L_mac(L_tmp, exc2[i], gain_pit); L_tmp = L_shl(L_tmp, 1); /* saturation can occur here */ exc2[i] = round(L_tmp); move16(); } corr_gain = synthesis(p_Aq, exc2, Q_new, &speech16k[i_subfr * 5 / 4], st); Parm_serial(corr_gain, 4, &prms); } p_A += (M + 1); move16(); p_Aq += (M + 1); move16(); } /* end of subframe loop */ /*--------------------------------------------------* * Update signal for next frame. * * -> save past of speech[], wsp[] and exc[]. * *--------------------------------------------------*/ Copy(&old_speech[L_FRAME], st->old_speech, L_TOTAL - L_FRAME); Copy(&old_wsp[L_FRAME / OPL_DECIM], st->old_wsp, PIT_MAX / OPL_DECIM); Copy(&old_exc[L_FRAME], st->old_exc, PIT_MAX + L_INTERPOL); return; } /*-----------------------------------------------------* * Function synthesis() * * * * Synthesis of signal at 16kHz with HF extension. * * * *-----------------------------------------------------*/ static Word16 synthesis( Word16 Aq[], /* A(z) : quantized Az */ Word16 exc[], /* (i) : excitation at 12kHz */ Word16 Q_new, /* (i) : scaling performed on exc */ Word16 synth16k[], /* (o) : 16kHz synthesis signal */ Coder_State * st /* (i/o) : State structure */ ) { Word16 i, fac, tmp, exp; Word16 ener, exp_ener; Word32 L_tmp; Word16 synth_hi[M + L_SUBFR], synth_lo[M + L_SUBFR]; Word16 synth[L_SUBFR]; Word16 HF[L_SUBFR16k]; /* High Frequency vector */ Word16 Ap[M + 1]; Word16 HF_SP[L_SUBFR16k]; /* High Frequency vector (from original signal) */ Word16 HP_est_gain, HP_calc_gain, HP_corr_gain; Word16 dist_min, dist; Word16 HP_gain_ind = 0; Word16 gain1, gain2; Word16 weight1, weight2; /*------------------------------------------------------------* * speech synthesis * * ~~~~~~~~~~~~~~~~ * * - Find synthesis speech corresponding to exc2[]. * * - Perform fixed deemphasis and hp 50hz filtering. * * - Oversampling from 12.8kHz to 16kHz. * *------------------------------------------------------------*/ Copy(st->mem_syn_hi, synth_hi, M); Copy(st->mem_syn_lo, synth_lo, M); Syn_filt_32(Aq, M, exc, Q_new, synth_hi + M, synth_lo + M, L_SUBFR); Copy(synth_hi + L_SUBFR, st->mem_syn_hi, M); Copy(synth_lo + L_SUBFR, st->mem_syn_lo, M); Deemph_32(synth_hi + M, synth_lo + M, synth, PREEMPH_FAC, L_SUBFR, &(st->mem_deemph)); HP50_12k8(synth, L_SUBFR, st->mem_sig_out); /* Original speech signal as reference for high band gain quantisation */ for (i = 0; i < L_SUBFR16k; i++) { HF_SP[i] = synth16k[i]; move16(); } /*------------------------------------------------------* * HF noise synthesis * * ~~~~~~~~~~~~~~~~~~ * * - Generate HF noise between 5.5 and 7.5 kHz. * * - Set energy of noise according to synthesis tilt. * * tilt > 0.8 ==> - 14 dB (voiced) * * tilt 0.5 ==> - 6 dB (voiced or noise) * * tilt < 0.0 ==> 0 dB (noise) * *------------------------------------------------------*/ /* generate white noise vector */ for (i = 0; i < L_SUBFR16k; i++) { HF[i] = shr(Random(&(st->seed2)), 3); move16(); } /* energy of excitation */ Scale_sig(exc, L_SUBFR, -3); Q_new = sub(Q_new, 3); ener = extract_h(Dot_product12(exc, exc, L_SUBFR, &exp_ener)); exp_ener = sub(exp_ener, add(Q_new, Q_new)); /* set energy of white noise to energy of excitation */ tmp = extract_h(Dot_product12(HF, HF, L_SUBFR16k, &exp)); test(); if (sub(tmp, ener) > 0) { tmp = shr(tmp, 1); /* Be sure tmp < ener */ exp = add(exp, 1); } L_tmp = L_deposit_h(div_s(tmp, ener)); /* result is normalized */ exp = sub(exp, exp_ener); Isqrt_n(&L_tmp, &exp); L_tmp = L_shl(L_tmp, add(exp, 1)); /* L_tmp x 2, L_tmp in Q31 */ tmp = extract_h(L_tmp); /* tmp = 2 x sqrt(ener_exc/ener_hf) */ for (i = 0; i < L_SUBFR16k; i++) { HF[i] = mult(HF[i], tmp); move16(); } /* find tilt of synthesis speech (tilt: 1=voiced, -1=unvoiced) */ HP400_12k8(synth, L_SUBFR, st->mem_hp400); L_tmp = 1L; move32(); for (i = 0; i < L_SUBFR; i++) L_tmp = L_mac(L_tmp, synth[i], synth[i]); exp = norm_l(L_tmp); ener = extract_h(L_shl(L_tmp, exp)); /* ener = r[0] */ L_tmp = 1L; move32(); for (i = 1; i < L_SUBFR; i++) L_tmp = L_mac(L_tmp, synth[i], synth[i - 1]); tmp = extract_h(L_shl(L_tmp, exp)); /* tmp = r[1] */ test(); if (tmp > 0) { fac = div_s(tmp, ener); } else { fac = 0; move16(); } /* modify energy of white noise according to synthesis tilt */ gain1 = sub(32767, fac); gain2 = mult(sub(32767, fac), 20480); gain2 = shl(gain2, 1); test(); if (st->vad_hist > 0) { weight1 = 0; weight2 = 32767; } else { weight1 = 32767; weight2 = 0; } tmp = mult(weight1, gain1); tmp = add(tmp, mult(weight2, gain2)); test(); if (tmp != 0) { tmp = add(tmp, 1); } HP_est_gain = tmp; test(); if (sub(HP_est_gain, 3277) < 0) { HP_est_gain = 3277; /* 0.1 in Q15 */ move16(); } /* synthesis of noise: 4.8kHz..5.6kHz --> 6kHz..7kHz */ Weight_a(Aq, Ap, 19661, M); /* fac=0.6 */ Syn_filt(Ap, M, HF, HF, L_SUBFR16k, st->mem_syn_hf, 1); /* noise High Pass filtering (1ms of delay) */ Filt_6k_7k(HF, L_SUBFR16k, st->mem_hf); /* filtering of the original signal */ Filt_6k_7k(HF_SP, L_SUBFR16k, st->mem_hf2); /* check the gain difference */ Scale_sig(HF_SP, L_SUBFR16k, -1); ener = extract_h(Dot_product12(HF_SP, HF_SP, L_SUBFR16k, &exp_ener)); /* set energy of white noise to energy of excitation */ tmp = extract_h(Dot_product12(HF, HF, L_SUBFR16k, &exp)); test(); if (sub(tmp, ener) > 0) { tmp = shr(tmp, 1); /* Be sure tmp < ener */ exp = add(exp, 1); } L_tmp = L_deposit_h(div_s(tmp, ener)); /* result is normalized */ exp = sub(exp, exp_ener); Isqrt_n(&L_tmp, &exp); L_tmp = L_shl(L_tmp, exp); /* L_tmp, L_tmp in Q31 */ HP_calc_gain = extract_h(L_tmp); /* tmp = sqrt(ener_input/ener_hf) */ /* st->gain_alpha *= st->dtx_encSt->dtxHangoverCount/7 */ L_tmp = L_shl(L_mult(st->dtx_encSt->dtxHangoverCount, 4681), 15); st->gain_alpha = mult(st->gain_alpha, extract_h(L_tmp)); test(); if (sub(st->dtx_encSt->dtxHangoverCount, 6) > 0) st->gain_alpha = 32767; HP_est_gain = shr(HP_est_gain, 1); /* From Q15 to Q14 */ HP_corr_gain = add(mult(HP_calc_gain, st->gain_alpha), mult(sub(32767, st->gain_alpha), HP_est_gain)); /* Quantise the correction gain */ dist_min = 32767; for (i = 0; i < 16; i++) { dist = mult(sub(HP_corr_gain, HP_gain[i]), sub(HP_corr_gain, HP_gain[i])); test(); if (dist_min > dist) { dist_min = dist; HP_gain_ind = i; } } HP_corr_gain = HP_gain[HP_gain_ind]; /* return the quantised gain index when using the highest mode, otherwise zero */ return (HP_gain_ind); }