ref: e9189be45890d10cb3aef09819684bd266118c5b
dir: /lpc10/tbdm.c/
/* * Revision 1.1 1996/08/19 22:30:26 jaf * Initial revision * */ /* -- translated by f2c (version 19951025). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "f2c.h" extern int tbdm_(real *speech, integer *lpita, integer *tau, integer *ltau, real *amdf, integer *minptr, integer *maxptr, integer *mintau); /* ********************************************************************** */ /* TBDM Version 49 */ /* * Revision 1.1 1996/08/19 22:30:26 jaf * Initial revision * */ /* Revision 1.3 1996/03/18 22:14:00 jaf */ /* Just added a few comments about which array indices of the arguments */ /* are used, and mentioning that this subroutine has no local state. */ /* Revision 1.2 1996/03/13 14:48:37 jaf */ /* Comments added explaining that none of the local variables of this */ /* subroutine need to be saved from one invocation to the next. */ /* Revision 1.1 1996/02/07 14:49:54 jaf */ /* Initial revision */ /* ********************************************************************* */ /*TURBO DIFMAG: Compute High Resolution Average Magnitude Difference Function */ /* Note: There are several constants in here that appear to depend on a */ /* particular TAU table. That's not a problem for the LPC10 coder, but */ /* watch out if you change the contents of TAU in the subroutine ANALYS. */ /* Input: */ /* SPEECH - Low pass filtered speech */ /* Indices 1 through MAX+LPITA-1 are read, where: */ /* MAX = (TAU(LTAU)-TAU(1))/2+1 */ /* (If TAU(1) .LT. 39, then larger indices could be read */ /* by the last call to DIFMAG below.) */ /* LPITA - Length of speech buffer */ /* TAU - Table of lags, sorted in increasing order. */ /* Indices 1 through LTAU read. */ /* LTAU - Number of lag values to compute */ /* Output: */ /* AMDF - Average Magnitude Difference for each lag in TAU */ /* Indices 1 through LTAU written, and several might then be read.*/ /* MINPTR - Index of minimum AMDF value */ /* MAXPTR - Index of maximum AMDF value within +/- 1/2 octave of min */ /* MINTAU - Lag corresponding to minimum AMDF value */ /* This subroutine has no local state. */ /* Subroutine */ int tbdm_(real *speech, integer *lpita, integer *tau, integer *ltau, real *amdf, integer *minptr, integer *maxptr, integer * mintau) { /* System generated locals */ integer i__1, i__2, i__3, i__4; /* Local variables */ real amdf2[6]; integer minp2, ltau2, maxp2, i__; extern /* Subroutine */ int difmag_(real *, integer *, integer *, integer *, integer *, real *, integer *, integer *); integer minamd, ptr, tau2[6]; /* Arguments */ /* REAL SPEECH(LPITA+TAU(LTAU)), AMDF(LTAU) */ /* Stupid TOAST doesn't understand expressions */ /* Local variables that need not be saved */ /* Local state */ /* None */ /* Compute full AMDF using log spaced lags, find coarse minimum */ /* Parameter adjustments */ --speech; --amdf; --tau; /* Function Body */ difmag_(&speech[1], lpita, &tau[1], ltau, &tau[*ltau], &amdf[1], minptr, maxptr); *mintau = tau[*minptr]; minamd = amdf[*minptr]; /* Build table containing all lags within +/- 3 of the AMDF minimum */ /* excluding all that have already been computed */ ltau2 = 0; ptr = *minptr - 2; /* Computing MAX */ i__1 = *mintau - 3; /* Computing MIN */ i__3 = *mintau + 3, i__4 = tau[*ltau] - 1; i__2 = min(i__3,i__4); for (i__ = max(i__1,41); i__ <= i__2; ++i__) { while(tau[ptr] < i__) { ++ptr; } if (tau[ptr] != i__) { ++ltau2; tau2[ltau2 - 1] = i__; } } /* Compute AMDF of the new lags, if there are any, and choose one */ /* if it is better than the coarse minimum */ if (ltau2 > 0) { difmag_(&speech[1], lpita, tau2, <au2, &tau[*ltau], amdf2, &minp2, & maxp2); if (amdf2[minp2 - 1] < (real) minamd) { *mintau = tau2[minp2 - 1]; minamd = amdf2[minp2 - 1]; } } /* Check one octave up, if there are any lags not yet computed */ if (*mintau >= 80) { i__ = *mintau / 2; if ((i__ & 1) == 0) { ltau2 = 2; tau2[0] = i__ - 1; tau2[1] = i__ + 1; } else { ltau2 = 1; tau2[0] = i__; } difmag_(&speech[1], lpita, tau2, <au2, &tau[*ltau], amdf2, &minp2, & maxp2); if (amdf2[minp2 - 1] < (real) minamd) { *mintau = tau2[minp2 - 1]; minamd = amdf2[minp2 - 1]; *minptr += -20; } } /* Force minimum of the AMDF array to the high resolution minimum */ amdf[*minptr] = (real) minamd; /* Find maximum of AMDF within 1/2 octave of minimum */ /* Computing MAX */ i__2 = *minptr - 5; *maxptr = max(i__2,1); /* Computing MIN */ i__1 = *minptr + 5; i__2 = min(i__1,*ltau); for (i__ = *maxptr + 1; i__ <= i__2; ++i__) { if (amdf[i__] > amdf[*maxptr]) { *maxptr = i__; } } return 0; } /* tbdm_ */