ref: fcbcd918881f33941e9aabacf75e3fddf9f695fb
dir: /src/effects_i.c/
/* Implements a libSoX internal interface for implementing effects. * All public functions & data are prefixed with lsx_ . * * Copyright (c) 2005-2012 Chris Bagwell and SoX contributors * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at * your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define LSX_EFF_ALIAS #include "sox_i.h" #include <string.h> #include <ctype.h> int lsx_usage(sox_effect_t * effp) { if (effp->handler.usage) lsx_fail("usage: %s", effp->handler.usage); else lsx_fail("this effect takes no parameters"); return SOX_EOF; } char * lsx_usage_lines(char * * usage, char const * const * lines, size_t n) { if (!*usage) { size_t i, len; for (len = i = 0; i < n; len += strlen(lines[i++]) + 1); *usage = lsx_malloc(len); /* FIXME: this memory will never be freed */ strcpy(*usage, lines[0]); for (i = 1; i < n; ++i) { strcat(*usage, "\n"); strcat(*usage, lines[i]); } } return *usage; } static lsx_enum_item const s_lsx_wave_enum[] = { LSX_ENUM_ITEM(SOX_WAVE_,SINE) LSX_ENUM_ITEM(SOX_WAVE_,TRIANGLE) {0, 0}}; lsx_enum_item const * lsx_get_wave_enum(void) { return s_lsx_wave_enum; } void lsx_generate_wave_table( lsx_wave_t wave_type, sox_data_t data_type, void *table, size_t table_size, double min, double max, double phase) { uint32_t t; uint32_t phase_offset = phase / M_PI / 2 * table_size + 0.5; for (t = 0; t < table_size; t++) { uint32_t point = (t + phase_offset) % table_size; double d; switch (wave_type) { case SOX_WAVE_SINE: d = (sin((double)point / table_size * 2 * M_PI) + 1) / 2; break; case SOX_WAVE_TRIANGLE: d = (double)point * 2 / table_size; switch (4 * point / table_size) { case 0: d = d + 0.5; break; case 1: case 2: d = 1.5 - d; break; case 3: d = d - 1.5; break; } break; default: /* Oops! FIXME */ d = 0.0; /* Make sure we have a value */ break; } d = d * (max - min) + min; switch (data_type) { case SOX_FLOAT: { float *fp = (float *)table; *fp++ = (float)d; table = fp; continue; } case SOX_DOUBLE: { double *dp = (double *)table; *dp++ = d; table = dp; continue; } default: break; } d += d < 0? -0.5 : +0.5; switch (data_type) { case SOX_SHORT: { short *sp = table; *sp++ = (short)d; table = sp; continue; } case SOX_INT: { int *ip = table; *ip++ = (int)d; table = ip; continue; } default: break; } } } /* * lsx_parsesamples * * Parse a string for # of samples. The input consists of one or more * parts, with '+' or '-' between them indicating if the sample count * should be added to or subtracted from the previous value. * If a part ends with a 's' then it is interpreted as a * user-calculated # of samples. * If a part contains ':' or '.' but no 'e' or if it ends with a 't' * then it is treated as an amount of time. This is converted into * seconds and fraction of seconds, then the sample rate is used to * calculate # of samples. * Parameter def specifies which interpretation should be the default * for a bare number like "123". It can either be 't' or 's'. * Returns NULL on error, pointer to next char to parse otherwise. */ static char const * parsesamples(sox_rate_t rate, const char *str0, uint64_t *samples, int def, int combine); char const * lsx_parsesamples(sox_rate_t rate, const char *str0, uint64_t *samples, int def) { *samples = 0; return parsesamples(rate, str0, samples, def, '+'); } static char const * parsesamples(sox_rate_t rate, const char *str0, uint64_t *samples, int def, int combine) { char * str = (char *)str0; do { uint64_t samples_part; sox_bool found_samples = sox_false, found_time = sox_false; char const * end; char const * pos; sox_bool found_colon, found_dot, found_e; for (;*str == ' '; ++str); for (end = str; *end && strchr("0123456789:.ets", *end); ++end); if (end == str) return NULL; /* error: empty input */ pos = strchr(str, ':'); found_colon = pos && pos < end; pos = strchr(str, '.'); found_dot = pos && pos < end; pos = strchr(str, 'e'); found_e = pos && pos < end; if (found_colon || (found_dot && !found_e) || *(end-1) == 't') found_time = sox_true; else if (*(end-1) == 's') found_samples = sox_true; if (found_time || (def == 't' && !found_samples)) { int i; if (found_e) return NULL; /* error: e notation in time */ for (samples_part = 0, i = 0; *str != '.' && i < 3; ++i) { char * last_str = str; long part = strtol(str, &str, 10); if (!i && str == last_str) return NULL; /* error: empty first component */ samples_part += rate * part; if (i < 2) { if (*str != ':') break; ++str; samples_part *= 60; } } if (*str == '.') { char * last_str = str; double part = strtod(str, &str); if (str == last_str) return NULL; /* error: empty fractional part */ samples_part += rate * part + .5; } if (*str == 't') str++; } else { char * last_str = str; double part = strtod(str, &str); if (str == last_str) return NULL; /* error: no sample count */ samples_part = part + .5; if (*str == 's') str++; } if (str != end) return NULL; /* error: trailing characters */ switch (combine) { case '+': *samples += samples_part; break; case '-': *samples = samples_part <= *samples ? *samples - samples_part : 0; break; } combine = '\0'; if (*str && strchr("+-", *str)) combine = *str++; } while (combine); return str; } #if 0 #include <assert.h> #define TEST(st, samp, len) \ str = st; \ next = lsx_parsesamples(10000, str, &samples, 't'); \ assert(samples == samp && next == str + len); int main(int argc, char * * argv) { char const * str, * next; uint64_t samples; TEST("0" , 0, 1) TEST("1" , 10000, 1) TEST("0s" , 0, 2) TEST("0s,", 0, 2) TEST("0s/", 0, 2) TEST("0s@", 0, 2) TEST("0t" , 0, 2) TEST("0t,", 0, 2) TEST("0t/", 0, 2) TEST("0t@", 0, 2) TEST("1s" , 1, 2) TEST("1s,", 1, 2) TEST("1s/", 1, 2) TEST("1s@", 1, 2) TEST(" 01s" , 1, 4) TEST("1e6s" , 1000000, 4) TEST("1t" , 10000, 2) TEST("1t,", 10000, 2) TEST("1t/", 10000, 2) TEST("1t@", 10000, 2) TEST("1.1t" , 11000, 4) TEST("1.1t,", 11000, 4) TEST("1.1t/", 11000, 4) TEST("1.1t@", 11000, 4) assert(!lsx_parsesamples(10000, "1e6t", &samples, 't')); TEST(".0", 0, 2) TEST("0.0", 0, 3) TEST("0:0.0", 0, 5) TEST("0:0:0.0", 0, 7) TEST(".1", 1000, 2) TEST(".10", 1000, 3) TEST("0.1", 1000, 3) TEST("1.1", 11000, 3) TEST("1:1.1", 611000, 5) TEST("1:1:1.1", 36611000, 7) TEST("1:1", 610000, 3) TEST("1:01", 610000, 4) TEST("1:1:1", 36610000, 5) TEST("1:", 600000, 2) TEST("1::", 36000000, 3) TEST("0.444444", 4444, 8) TEST("0.555555", 5556, 8) assert(!lsx_parsesamples(10000, "x", &samples, 't')); TEST("1:23+37", 1200000, 7) TEST("12t+12s", 120012, 7) TEST("1e6s-10", 900000, 7) TEST("10-2:00", 0, 7) TEST("123-45+12s+2:00-3e3s@foo", 1977012, 20) TEST("1\0" "2", 10000, 1) return 0; } #endif /* * lsx_parseposition * * Parse a string for an audio position. Similar to lsx_parsesamples * above, but an initial '=', '+' or '-' indicates that the specified time * is relative to the start of audio, last used position or end of audio, * respectively. Parameter def states which of these is the default. * Parameters latest and end are the positions to which '+' and '-' relate; * end may be SOX_UNKNOWN_LEN, in which case "-0" is the only valid * end-relative input and will result in a position of SOX_UNKNOWN_LEN. * Other parameters and return value are the same as for lsx_parsesamples. * * A test parse that only checks for valid syntax can be done by * specifying samples = NULL. If this passes, a later reparse of the same * input will only fail if it is relative to the end ("-"), not "-0", and * the end position is unknown. */ char const * lsx_parseposition(sox_rate_t rate, const char *str0, uint64_t *samples, uint64_t latest, uint64_t end, int def) { char *str = (char *)str0; char anchor, combine; if (!strchr("+-=", def)) return NULL; /* error: invalid default anchor */ anchor = def; if (*str && strchr("+-=", *str)) anchor = *str++; combine = '+'; if (strchr("+-", anchor)) { combine = anchor; if (*str && strchr("+-", *str)) combine = *str++; } if (!samples) { /* dummy parse, syntax checking only */ uint64_t dummy = 0; return parsesamples(0., str, &dummy, 't', '+'); } switch (anchor) { case '=': *samples = 0; break; case '+': *samples = latest; break; case '-': *samples = end; break; } if (anchor == '-' && end == SOX_UNKNOWN_LEN) { /* "-0" only valid input here */ char const *l; for (l = str; *l && strchr("0123456789:.ets+-", *l); ++l); if (l == str+1 && *str == '0') { /* *samples already set to SOX_UNKNOWN_LEN */ return l; } return NULL; /* error: end-relative position, but end unknown */ } return parsesamples(rate, str, samples, 't', combine); } /* a note is given as an int, * 0 => 440 Hz = A * >0 => number of half notes 'up', * <0 => number of half notes down, * example 12 => A of next octave, 880Hz * * calculated by freq = 440Hz * 2**(note/12) */ static double calc_note_freq(double note, int key) { if (key != INT_MAX) { /* Just intonation. */ static const int n[] = {16, 9, 6, 5, 4, 7}; /* Numerator. */ static const int d[] = {15, 8, 5, 4, 3, 5}; /* Denominator. */ static double j[13]; /* Just semitones */ int i, m = floor(note); if (!j[1]) for (i = 1; i <= 12; ++i) j[i] = i <= 6? log((double)n[i - 1] / d[i - 1]) / log(2.) : 1 - j[12 - i]; note -= m; m -= key = m - ((INT_MAX / 2 - ((INT_MAX / 2) % 12) + m - key) % 12); return 440 * pow(2., key / 12. + j[m] + (j[m + 1] - j[m]) * note); } return 440 * pow(2., note / 12); } int lsx_parse_note(char const * text, char * * end_ptr) { int result = INT_MAX; if (*text >= 'A' && *text <= 'G') { result = (int)(5/3. * (*text++ - 'A') + 9.5) % 12 - 9; if (*text == 'b') {--result; ++text;} else if (*text == '#') {++result; ++text;} if (isdigit((unsigned char)*text)) result += 12 * (*text++ - '4'); } *end_ptr = (char *)text; return result; } /* Read string 'text' and convert to frequency. * 'text' can be a positive number which is the frequency in Hz. * If 'text' starts with a '%' and a following number the corresponding * note is calculated. * Return -1 on error. */ double lsx_parse_frequency_k(char const * text, char * * end_ptr, int key) { double result; if (*text == '%') { result = strtod(text + 1, end_ptr); if (*end_ptr == text + 1) return -1; return calc_note_freq(result, key); } if (*text >= 'A' && *text <= 'G') { int result2 = lsx_parse_note(text, end_ptr); return result2 == INT_MAX? - 1 : calc_note_freq((double)result2, key); } result = strtod(text, end_ptr); if (end_ptr) { if (*end_ptr == text) return -1; if (**end_ptr == 'k') { result *= 1000; ++*end_ptr; } } return result < 0 ? -1 : result; } FILE * lsx_open_input_file(sox_effect_t * effp, char const * filename, sox_bool text_mode) { FILE * file; if (!filename || !strcmp(filename, "-")) { if (effp->global_info->global_info->stdin_in_use_by) { lsx_fail("stdin already in use by `%s'", effp->global_info->global_info->stdin_in_use_by); return NULL; } effp->global_info->global_info->stdin_in_use_by = effp->handler.name; file = stdin; } else if (!(file = fopen(filename, text_mode ? "r" : "rb"))) { lsx_fail("couldn't open file %s: %s", filename, strerror(errno)); return NULL; } return file; } int lsx_effects_init(void) { init_fft_cache(); return SOX_SUCCESS; } int lsx_effects_quit(void) { clear_fft_cache(); return SOX_SUCCESS; }