ref: 5df8776cafe4ed614fa3c4a0f9e1e4f01de228de
dir: /libmp/crt.c/
#include "os.h" #include <mp.h> #include <libsec.h> // chinese remainder theorem // // handbook of applied cryptography, menezes et al, 1997, pp 610 - 613 struct CRTpre { int n; // number of moduli mpint **m; // pointer to moduli mpint **c; // precomputed coefficients mpint **p; // precomputed products mpint *a[1]; // local storage }; // setup crt info, returns a newly created structure CRTpre* crtpre(int n, mpint **m) { CRTpre *crt; int i, j; mpint *u; crt = malloc(sizeof(CRTpre)+sizeof(mpint)*3*n); if(crt == nil) sysfatal("crtpre: %r"); crt->m = crt->a; crt->c = crt->a+n; crt->p = crt->c+n; crt->n = n; // make a copy of the moduli for(i = 0; i < n; i++) crt->m[i] = mpcopy(m[i]); // precompute the products u = mpcopy(mpone); for(i = 0; i < n; i++){ mpmul(u, m[i], u); crt->p[i] = mpcopy(u); } // precompute the coefficients for(i = 1; i < n; i++){ crt->c[i] = mpcopy(mpone); for(j = 0; j < i; j++){ mpinvert(m[j], m[i], u); mpmul(u, crt->c[i], u); mpmod(u, m[i], crt->c[i]); } } mpfree(u); return crt; } void crtprefree(CRTpre *crt) { int i; for(i = 0; i < crt->n; i++){ if(i != 0) mpfree(crt->c[i]); mpfree(crt->p[i]); mpfree(crt->m[i]); } free(crt); } // convert to residues, returns a newly created structure CRTres* crtin(CRTpre *crt, mpint *x) { int i; CRTres *res; res = malloc(sizeof(CRTres)+sizeof(mpint)*crt->n); if(res == nil) sysfatal("crtin: %r"); res->n = crt->n; for(i = 0; i < res->n; i++){ res->r[i] = mpnew(0); mpmod(x, crt->m[i], res->r[i]); } return res; } // garners algorithm for converting residue form to linear void crtout(CRTpre *crt, CRTres *res, mpint *x) { mpint *u; int i; u = mpnew(0); mpassign(res->r[0], x); for(i = 1; i < crt->n; i++){ mpsub(res->r[i], x, u); mpmul(u, crt->c[i], u); mpmod(u, crt->m[i], u); mpmul(u, crt->p[i-1], u); mpadd(x, u, x); } mpfree(u); } // free the residue void crtresfree(CRTres *res) { int i; for(i = 0; i < res->n; i++) mpfree(res->r[i]); free(res); }