ref: 62eede697b609cc2203b25a9431d2018e719ea6b
dir: /libmp/gmfield.c/
#include "os.h" #include <mp.h> #include "dat.h" /* * fast reduction for generalized mersenne numbers (GM) * using a series of additions and subtractions. */ enum { MAXDIG = 1024/Dbits, }; typedef struct GMfield GMfield; struct GMfield { Mfield f; mpint m2[1]; int nadd; int nsub; int indx[256]; }; static int gmreduce(Mfield *m, mpint *a, mpint *r) { GMfield *g = (GMfield*)m; mpdigit d0, t[MAXDIG]; int i, j, d, *x; if(mpmagcmp(a, g->m2) >= 0) return -1; if(a != r) mpassign(a, r); d = g->f.m.top; mpbits(r, (d+1)*Dbits*2); memmove(t+d, r->p+d, d*Dbytes); r->sign = 1; r->top = d; r->p[d] = 0; if(g->nsub > 0) mpvecdigmuladd(g->f.m.p, d, g->nsub, r->p); x = g->indx; for(i=0; i<g->nadd; i++){ t[0] = 0; d0 = t[*x++]; for(j=1; j<d; j++) t[j] = t[*x++]; t[0] = d0; mpvecadd(r->p, d+1, t, d, r->p); } for(i=0; i<g->nsub; i++){ t[0] = 0; d0 = t[*x++]; for(j=1; j<d; j++) t[j] = t[*x++]; t[0] = d0; mpvecsub(r->p, d+1, t, d, r->p); } mpvecdigmulsub(g->f.m.p, d, r->p[d], r->p); r->p[d] = 0; mpvecsub(r->p, d+1, g->f.m.p, d, r->p+d+1); d0 = r->p[2*d+1]; for(j=0; j<d; j++) r->p[j] = (r->p[j] & d0) | (r->p[j+d+1] & ~d0); mpnorm(r); return 0; } Mfield* gmfield(mpint *N) { int i,j,d, s, *C, *X, *x, *e; mpint *M, *T; GMfield *g; d = N->top; if(d <= 2 || d > MAXDIG/2 || (mpsignif(N) % Dbits) != 0) return nil; g = nil; T = mpnew(0); M = mpcopy(N); C = malloc(sizeof(int)*(d+1)); X = malloc(sizeof(int)*(d*d)); if(C == nil || X == nil) goto out; for(i=0; i<=d; i++){ if((M->p[i]>>8) != 0 && (~M->p[i]>>8) != 0) goto out; j = M->p[i]; C[d - i] = -j; itomp(j, T); mpleft(T, i*Dbits, T); mpsub(M, T, M); } for(j=0; j<d; j++) X[j] = C[d-j]; for(i=1; i<d; i++){ X[d*i] = X[d*(i-1) + d-1]*C[d]; for(j=1; j<d; j++) X[d*i + j] = X[d*(i-1) + j-1] + X[d*(i-1) + d-1]*C[d-j]; } g = mallocz(sizeof(GMfield) + (d+1)*sizeof(mpdigit)*2, 1); if(g == nil) goto out; g->m2->p = (mpdigit*)&g[1]; g->m2->size = d*2+1; mpmul(N, N, g->m2); mpassign(N, (mpint*)g); g->f.reduce = gmreduce; g->f.m.flags |= MPfield; s = 0; x = g->indx; e = x + nelem(g->indx) - d; for(g->nadd=0; x <= e; x += d, g->nadd++){ s = 0; for(i=0; i<d; i++){ for(j=0; j<d; j++){ if(X[d*i+j] > 0 && x[j] == 0){ X[d*i+j]--; x[j] = d+i; s = 1; break; } } } if(s == 0) break; } for(g->nsub=0; x <= e; x += d, g->nsub++){ s = 0; for(i=0; i<d; i++){ for(j=0; j<d; j++){ if(X[d*i+j] < 0 && x[j] == 0){ X[d*i+j]++; x[j] = d+i; s = 1; break; } } } if(s == 0) break; } if(s != 0){ mpfree((mpint*)g); g = nil; } out: free(C); free(X); mpfree(M); mpfree(T); return (Mfield*)g; }