ref: 12b2608b241743314f177e73d8d73b72580d2948
dir: /galaxies.c/
/* * galaxies.c: implementation of 'Tentai Show' from Nikoli, * also sometimes called 'Spiral Galaxies'. * * Notes: * * Grid is stored as size (2n-1), holding edges as well as spaces * (and thus vertices too, at edge intersections). * * Any dot will thus be positioned at one of our grid points, * which saves any faffing with half-of-a-square stuff. * * Edges have on/off state; obviously the actual edges of the * board are fixed to on, and everything else starts as off. * * Future solver directions: * * - Non-local version of the exclave extension? Suppose you have an * exclave with multiple potential paths back home, but all of them * go through the same tile somewhere in the middle of the path. * Then _that_ critical square can be assigned to the home dot, * even if we don't yet know the details of the path from it to * either existing region. * * - Permit non-simply-connected puzzle instances in sub-Unreasonable * mode? Even the simplest case 5x3:ubb is graded Unreasonable at * present, because we have no solution technique short of * recursion that can handle it. * * The reasoning a human uses for that puzzle is to observe that * the centre left square has to connect to the centre dot, so it * must have _some_ path back there. It could go round either side * of the dot in the way. But _whichever_ way it goes, that rules * out the left dot extending to the squares above and below it, * because if it did that, that would block _both_ routes back to * the centre. * * But the exclave-extending deduction we have at present is only * capable of extending an exclave with _one_ liberty. This has * two, so the only technique we have available is to try them one * by one via recursion. * * My vague plan to fix this would be to re-run the exclave * extension on a per-dot basis (probably after working out a * non-local version as described above): instead of trying to find * all exclaves at once, try it for one exclave at a time, or * perhaps all exclaves relating to a particular home dot H. The * point of this is that then you could spot pairs of squares with * _two_ possible dots, one of which is H, and which are opposite * to each other with respect to their other dot D (such as the * squares above/below the left dot in this example). And then you * merge those into one vertex of the connectivity graph, on the * grounds that they're either both H or both D - and _then_ you * have an exclave with only one path back home, and can make * progress. * * Bugs: * * Notable puzzle IDs: * * Nikoli's example [web site has wrong highlighting] * (at http://www.nikoli.co.jp/en/puzzles/astronomical_show/): * 5x5:eBbbMlaBbOEnf * * The 'spiral galaxies puzzles are NP-complete' paper * (at http://www.stetson.edu/~efriedma/papers/spiral.pdf): * 7x7:chpgdqqqoezdddki * * Puzzle competition pdf examples * (at http://www.puzzleratings.org/Yurekli2006puz.pdf): * 6x6:EDbaMucCohbrecEi * 10x10:beFbufEEzowDlxldibMHezBQzCdcFzjlci * 13x13:dCemIHFFkJajjgDfdbdBzdzEgjccoPOcztHjBczLDjczqktJjmpreivvNcggFi * */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <limits.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include "puzzles.h" #ifdef DEBUGGING #define solvep debug #elif defined STANDALONE_SOLVER static bool solver_show_working; #define solvep(x) do { if (solver_show_working) { printf x; } } while(0) #else #define solvep(x) ((void)0) #endif #ifdef STANDALONE_PICTURE_GENERATOR /* * Dirty hack to enable the generator to construct a game ID which * solves to a specified black-and-white bitmap. We define a global * variable here which gives the desired colour of each square, and * we arrange that the grid generator never merges squares of * different colours. * * The bitmap as stored here is a simple int array (at these sizes * it isn't worth doing fiddly bit-packing). picture[y*w+x] is 1 * iff the pixel at (x,y) is intended to be black. * * (It might be nice to be able to specify some pixels as * don't-care, to give the generator more leeway. But that might be * fiddly.) */ static int *picture; #endif enum { COL_BACKGROUND, COL_WHITEBG, COL_BLACKBG, COL_WHITEDOT, COL_BLACKDOT, COL_GRID, COL_EDGE, COL_ARROW, COL_CURSOR, NCOLOURS }; #define DIFFLIST(A) \ A(NORMAL,Normal,n) \ A(UNREASONABLE,Unreasonable,u) #define ENUM(upper,title,lower) DIFF_ ## upper, #define TITLE(upper,title,lower) #title, #define ENCODE(upper,title,lower) #lower #define CONFIG(upper,title,lower) ":" #title enum { DIFFLIST(ENUM) DIFF_IMPOSSIBLE, DIFF_AMBIGUOUS, DIFF_UNFINISHED, DIFF_MAX }; static char const *const galaxies_diffnames[] = { DIFFLIST(TITLE) "Impossible", "Ambiguous", "Unfinished" }; static char const galaxies_diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) struct game_params { /* X and Y is the area of the board as seen by * the user, not the (2n+1) area the game uses. */ int w, h, diff; }; enum { s_tile, s_edge, s_vertex }; #define F_DOT 1 /* there's a dot here */ #define F_EDGE_SET 2 /* the edge is set */ #define F_TILE_ASSOC 4 /* this tile is associated with a dot. */ #define F_DOT_BLACK 8 /* (ui only) dot is black. */ #define F_MARK 16 /* scratch flag */ #define F_REACHABLE 32 #define F_SCRATCH 64 #define F_MULTIPLE 128 #define F_DOT_HOLD 256 #define F_GOOD 512 typedef struct space { int x, y; /* its position */ int type; unsigned int flags; int dotx, doty; /* if flags & F_TILE_ASSOC */ int nassoc; /* if flags & F_DOT */ } space; #define INGRID(s,x,y) ((x) >= 0 && (y) >= 0 && \ (x) < (state)->sx && (y) < (state)->sy) #define INUI(s,x,y) ((x) > 0 && (y) > 0 && \ (x) < ((state)->sx-1) && (y) < ((state)->sy-1)) #define GRID(s,g,x,y) ((s)->g[((y)*(s)->sx)+(x)]) #define SPACE(s,x,y) GRID(s,grid,x,y) struct game_state { int w, h; /* size from params */ int sx, sy; /* allocated size, (2x-1)*(2y-1) */ space *grid; bool completed, used_solve; int ndots; space **dots; midend *me; /* to call supersede_game_desc */ int cdiff; /* difficulty of current puzzle (for status bar), or -1 if stale. */ }; static bool check_complete(const game_state *state, DSF *dsf, int *colours); static int solver_state_inner(game_state *state, int maxdiff, int depth); static int solver_state(game_state *state, int maxdiff); static int solver_obvious(game_state *state); static int solver_obvious_dot(game_state *state, space *dot); static space *space_opposite_dot(const game_state *state, const space *sp, const space *dot); static space *tile_opposite(const game_state *state, const space *sp); static game_state *execute_move(const game_state *state, const char *move); /* ---------------------------------------------------------- * Game parameters and presets */ /* make up some sensible default sizes */ #define DEFAULT_PRESET 0 static const game_params galaxies_presets[] = { { 7, 7, DIFF_NORMAL }, { 7, 7, DIFF_UNREASONABLE }, { 10, 10, DIFF_NORMAL }, { 10, 10, DIFF_UNREASONABLE }, { 15, 15, DIFF_NORMAL }, { 15, 15, DIFF_UNREASONABLE }, }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char buf[80]; if (i < 0 || i >= lenof(galaxies_presets)) return false; ret = snew(game_params); *ret = galaxies_presets[i]; /* structure copy */ sprintf(buf, "%dx%d %s", ret->w, ret->h, galaxies_diffnames[ret->diff]); if (name) *name = dupstr(buf); *params = ret; return true; } static game_params *default_params(void) { game_params *ret; game_fetch_preset(DEFAULT_PRESET, NULL, &ret); return ret; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { params->h = params->w = atoi(string); params->diff = DIFF_NORMAL; while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; params->h = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; } if (*string == 'd') { int i; string++; for (i = 0; i <= DIFF_UNREASONABLE; i++) if (*string == galaxies_diffchars[i]) params->diff = i; if (*string) string++; } } static char *encode_params(const game_params *params, bool full) { char str[80]; sprintf(str, "%dx%d", params->w, params->h); if (full) sprintf(str + strlen(str), "d%c", galaxies_diffchars[params->diff]); return dupstr(str); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(4, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Difficulty"; ret[2].type = C_CHOICES; ret[2].u.choices.choicenames = DIFFCONFIG; ret[2].u.choices.selected = params->diff; ret[3].name = NULL; ret[3].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); ret->diff = cfg[2].u.choices.selected; return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w < 3 || params->h < 3) return "Width and height must both be at least 3"; if (params->w > INT_MAX / 2 || params->h > INT_MAX / 2 || params->w > (INT_MAX - params->w*2 - params->h*2 - 1) / 4 / params->h) return "Width times height must not be unreasonably large"; /* * This shouldn't be able to happen at all, since decode_params * and custom_params will never generate anything that isn't * within range. */ assert(params->diff <= DIFF_UNREASONABLE); return NULL; } /* ---------------------------------------------------------- * Game utility functions. */ static void add_dot(space *space) { assert(!(space->flags & F_DOT)); space->flags |= F_DOT; space->nassoc = 0; } static void remove_dot(space *space) { assert(space->flags & F_DOT); space->flags &= ~F_DOT; } static void remove_assoc(const game_state *state, space *tile) { if (tile->flags & F_TILE_ASSOC) { SPACE(state, tile->dotx, tile->doty).nassoc--; tile->flags &= ~F_TILE_ASSOC; tile->dotx = -1; tile->doty = -1; } } static void remove_assoc_with_opposite(game_state *state, space *tile) { space *opposite; if (!(tile->flags & F_TILE_ASSOC)) { return; } opposite = tile_opposite(state, tile); remove_assoc(state, tile); if (opposite != NULL && opposite != tile) { remove_assoc(state, opposite); } } static void add_assoc(const game_state *state, space *tile, space *dot) { remove_assoc(state, tile); #ifdef STANDALONE_PICTURE_GENERATOR if (picture) assert(!picture[(tile->y/2) * state->w + (tile->x/2)] == !(dot->flags & F_DOT_BLACK)); #endif tile->flags |= F_TILE_ASSOC; tile->dotx = dot->x; tile->doty = dot->y; dot->nassoc++; /*debug(("add_assoc sp %d %d --> dot %d,%d, new nassoc %d.\n", tile->x, tile->y, dot->x, dot->y, dot->nassoc));*/ } static bool ok_to_add_assoc_with_opposite_internal( const game_state *state, space *tile, space *opposite) { int *colors; bool toret; if (tile->type != s_tile) return false; if (tile->flags & F_DOT) return false; if (opposite == NULL) return false; if (opposite->flags & F_DOT) return false; toret = true; colors = snewn(state->w * state->h, int); check_complete(state, NULL, colors); if (colors[(tile->y - 1)/2 * state->w + (tile->x - 1)/2]) toret = false; if (colors[(opposite->y - 1)/2 * state->w + (opposite->x - 1)/2]) toret = false; sfree(colors); return toret; } #ifndef EDITOR static bool ok_to_add_assoc_with_opposite( const game_state *state, space *tile, space *dot) { space *opposite = space_opposite_dot(state, tile, dot); return ok_to_add_assoc_with_opposite_internal(state, tile, opposite); } #endif static void add_assoc_with_opposite(game_state *state, space *tile, space *dot) { space *opposite = space_opposite_dot(state, tile, dot); if(opposite && ok_to_add_assoc_with_opposite_internal( state, tile, opposite)) { remove_assoc_with_opposite(state, tile); add_assoc(state, tile, dot); remove_assoc_with_opposite(state, opposite); add_assoc(state, opposite, dot); } } #ifndef EDITOR static space *sp2dot(const game_state *state, int x, int y) { space *sp = &SPACE(state, x, y); if (!(sp->flags & F_TILE_ASSOC)) return NULL; return &SPACE(state, sp->dotx, sp->doty); } #endif #define IS_VERTICAL_EDGE(x) ((x % 2) == 0) static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *encode_game(const game_state *state); static char *game_text_format(const game_state *state) { #ifdef EDITOR game_params par; char *params, *desc, *ret; par.w = state->w; par.h = state->h; par.diff = DIFF_MAX; /* shouldn't be used */ params = encode_params(&par, false); desc = encode_game(state); ret = snewn(strlen(params) + strlen(desc) + 2, char); sprintf(ret, "%s:%s", params, desc); sfree(params); sfree(desc); return ret; #else int maxlen = (state->sx+1)*state->sy, x, y; char *ret, *p; space *sp; ret = snewn(maxlen+1, char); p = ret; for (y = 0; y < state->sy; y++) { for (x = 0; x < state->sx; x++) { sp = &SPACE(state, x, y); if (sp->flags & F_DOT) *p++ = 'o'; #if 0 else if (sp->flags & (F_REACHABLE|F_MULTIPLE|F_MARK)) *p++ = (sp->flags & F_MULTIPLE) ? 'M' : (sp->flags & F_REACHABLE) ? 'R' : 'X'; #endif else { switch (sp->type) { case s_tile: if (sp->flags & F_TILE_ASSOC) { space *dot = sp2dot(state, sp->x, sp->y); if (dot && dot->flags & F_DOT) *p++ = (dot->flags & F_DOT_BLACK) ? 'B' : 'W'; else *p++ = '?'; /* association with not-a-dot. */ } else *p++ = ' '; break; case s_vertex: *p++ = '+'; break; case s_edge: if (sp->flags & F_EDGE_SET) *p++ = (IS_VERTICAL_EDGE(x)) ? '|' : '-'; else *p++ = ' '; break; default: assert(!"shouldn't get here!"); } } } *p++ = '\n'; } assert(p - ret == maxlen); *p = '\0'; return ret; #endif } static void dbg_state(const game_state *state) { #ifdef DEBUGGING char *temp = game_text_format(state); debug(("%s\n", temp)); sfree(temp); #endif } /* Space-enumeration callbacks should all return 1 for 'progress made', * -1 for 'impossible', and 0 otherwise. */ typedef int (*space_cb)(game_state *state, space *sp, void *ctx); #define IMPOSSIBLE_QUITS 1 static int foreach_sub(game_state *state, space_cb cb, unsigned int f, void *ctx, int startx, int starty) { int x, y, ret; bool progress = false, impossible = false; space *sp; for (y = starty; y < state->sy; y += 2) { sp = &SPACE(state, startx, y); for (x = startx; x < state->sx; x += 2) { ret = cb(state, sp, ctx); if (ret == -1) { if (f & IMPOSSIBLE_QUITS) return -1; impossible = true; } else if (ret == 1) { progress = true; } sp += 2; } } return impossible ? -1 : progress ? 1 : 0; } static int foreach_tile(game_state *state, space_cb cb, unsigned int f, void *ctx) { return foreach_sub(state, cb, f, ctx, 1, 1); } static int foreach_edge(game_state *state, space_cb cb, unsigned int f, void *ctx) { int ret1, ret2; ret1 = foreach_sub(state, cb, f, ctx, 0, 1); ret2 = foreach_sub(state, cb, f, ctx, 1, 0); if (ret1 == -1 || ret2 == -1) return -1; return (ret1 || ret2) ? 1 : 0; } #if 0 static int foreach_vertex(game_state *state, space_cb cb, unsigned int f, void *ctx) { return foreach_sub(state, cb, f, ctx, 0, 0); } #endif #if 0 static int is_same_assoc(game_state *state, int x1, int y1, int x2, int y2) { space *s1, *s2; if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return 0; s1 = &SPACE(state, x1, y1); s2 = &SPACE(state, x2, y2); assert(s1->type == s_tile && s2->type == s_tile); if ((s1->flags & F_TILE_ASSOC) && (s2->flags & F_TILE_ASSOC) && s1->dotx == s2->dotx && s1->doty == s2->doty) return 1; return 0; /* 0 if not same or not both associated. */ } #endif #if 0 static int edges_into_vertex(game_state *state, int x, int y) { int dx, dy, nx, ny, count = 0; assert(SPACE(state, x, y).type == s_vertex); for (dx = -1; dx <= 1; dx++) { for (dy = -1; dy <= 1; dy++) { if (dx != 0 && dy != 0) continue; if (dx == 0 && dy == 0) continue; nx = x+dx; ny = y+dy; if (!INGRID(state, nx, ny)) continue; assert(SPACE(state, nx, ny).type == s_edge); if (SPACE(state, nx, ny).flags & F_EDGE_SET) count++; } } return count; } #endif static space *space_opposite_dot(const game_state *state, const space *sp, const space *dot) { int dx, dy, tx, ty; space *sp2; dx = sp->x - dot->x; dy = sp->y - dot->y; tx = dot->x - dx; ty = dot->y - dy; if (!INGRID(state, tx, ty)) return NULL; sp2 = &SPACE(state, tx, ty); assert(sp2->type == sp->type); return sp2; } static space *tile_opposite(const game_state *state, const space *sp) { space *dot; assert(sp->flags & F_TILE_ASSOC); dot = &SPACE(state, sp->dotx, sp->doty); return space_opposite_dot(state, sp, dot); } static bool dotfortile(game_state *state, space *tile, space *dot) { space *tile_opp = space_opposite_dot(state, tile, dot); if (!tile_opp) return false; /* opposite would be off grid */ if (tile_opp->flags & F_TILE_ASSOC && (tile_opp->dotx != dot->x || tile_opp->doty != dot->y)) return false; /* opposite already associated with diff. dot */ return true; } static void adjacencies(game_state *state, space *sp, space **a1s, space **a2s) { int dxs[4] = {-1, 1, 0, 0}, dys[4] = {0, 0, -1, 1}; int n, x, y; /* this function needs optimising. */ for (n = 0; n < 4; n++) { x = sp->x+dxs[n]; y = sp->y+dys[n]; if (INGRID(state, x, y)) { a1s[n] = &SPACE(state, x, y); x += dxs[n]; y += dys[n]; if (INGRID(state, x, y)) a2s[n] = &SPACE(state, x, y); else a2s[n] = NULL; } else { a1s[n] = a2s[n] = NULL; } } } static bool outline_tile_fordot(game_state *state, space *tile, bool mark) { space *tadj[4], *eadj[4]; int i; bool didsth = false, edge, same; assert(tile->type == s_tile); adjacencies(state, tile, eadj, tadj); for (i = 0; i < 4; i++) { if (!eadj[i]) continue; edge = eadj[i]->flags & F_EDGE_SET; if (tadj[i]) { if (!(tile->flags & F_TILE_ASSOC)) same = !(tadj[i]->flags & F_TILE_ASSOC); else same = ((tadj[i]->flags & F_TILE_ASSOC) && tile->dotx == tadj[i]->dotx && tile->doty == tadj[i]->doty); } else same = false; if (!edge && !same) { if (mark) eadj[i]->flags |= F_EDGE_SET; didsth = true; } else if (edge && same) { if (mark) eadj[i]->flags &= ~F_EDGE_SET; didsth = true; } } return didsth; } static void tiles_from_edge(game_state *state, space *sp, space **ts) { int xs[2], ys[2]; if (IS_VERTICAL_EDGE(sp->x)) { xs[0] = sp->x-1; ys[0] = sp->y; xs[1] = sp->x+1; ys[1] = sp->y; } else { xs[0] = sp->x; ys[0] = sp->y-1; xs[1] = sp->x; ys[1] = sp->y+1; } ts[0] = INGRID(state, xs[0], ys[0]) ? &SPACE(state, xs[0], ys[0]) : NULL; ts[1] = INGRID(state, xs[1], ys[1]) ? &SPACE(state, xs[1], ys[1]) : NULL; } /* Returns a move string for use by 'solve', including the initial * 'S' if issolve is true. */ static char *diff_game(const game_state *src, const game_state *dest, bool issolve, int set_cdiff) { int movelen = 0, movesize = 256, x, y, len; char *move = snewn(movesize, char), buf[80]; const char *sep = ""; char achar = issolve ? 'a' : 'A'; space *sps, *spd; assert(src->sx == dest->sx && src->sy == dest->sy); if (issolve) { move[movelen++] = 'S'; sep = ";"; } #ifdef EDITOR if (set_cdiff >= 0) { switch (set_cdiff) { case DIFF_IMPOSSIBLE: movelen += sprintf(move+movelen, "%sII", sep); break; case DIFF_AMBIGUOUS: movelen += sprintf(move+movelen, "%sIA", sep); break; case DIFF_UNFINISHED: movelen += sprintf(move+movelen, "%sIU", sep); break; default: movelen += sprintf(move+movelen, "%si%c", sep, galaxies_diffchars[set_cdiff]); break; } sep = ";"; } #endif move[movelen] = '\0'; for (x = 0; x < src->sx; x++) { for (y = 0; y < src->sy; y++) { sps = &SPACE(src, x, y); spd = &SPACE(dest, x, y); assert(sps->type == spd->type); len = 0; if (sps->type == s_tile) { if ((sps->flags & F_TILE_ASSOC) && (spd->flags & F_TILE_ASSOC)) { if (sps->dotx != spd->dotx || sps->doty != spd->doty) /* Both associated; change association, if different */ len = sprintf(buf, "%s%c%d,%d,%d,%d", sep, (int)achar, x, y, spd->dotx, spd->doty); } else if (sps->flags & F_TILE_ASSOC) /* Only src associated; remove. */ len = sprintf(buf, "%sU%d,%d", sep, x, y); else if (spd->flags & F_TILE_ASSOC) /* Only dest associated; add. */ len = sprintf(buf, "%s%c%d,%d,%d,%d", sep, (int)achar, x, y, spd->dotx, spd->doty); } else if (sps->type == s_edge) { if ((sps->flags & F_EDGE_SET) != (spd->flags & F_EDGE_SET)) /* edge flags are different; flip them. */ len = sprintf(buf, "%sE%d,%d", sep, x, y); } if (len) { if (movelen + len >= movesize) { movesize = movelen + len + 256; move = sresize(move, movesize, char); } strcpy(move + movelen, buf); movelen += len; sep = ";"; } } } debug(("diff_game src then dest:\n")); dbg_state(src); dbg_state(dest); debug(("diff string %s\n", move)); return move; } /* Returns true if a dot here would not be too close to any other dots * (and would avoid other game furniture). */ static bool dot_is_possible(const game_state *state, space *sp, bool allow_assoc) { int bx = 0, by = 0, dx, dy; space *adj; #ifdef STANDALONE_PICTURE_GENERATOR int col = -1; #endif switch (sp->type) { case s_tile: bx = by = 1; break; case s_edge: if (IS_VERTICAL_EDGE(sp->x)) { bx = 2; by = 1; } else { bx = 1; by = 2; } break; case s_vertex: bx = by = 2; break; } for (dx = -bx; dx <= bx; dx++) { for (dy = -by; dy <= by; dy++) { if (!INGRID(state, sp->x+dx, sp->y+dy)) continue; adj = &SPACE(state, sp->x+dx, sp->y+dy); #ifdef STANDALONE_PICTURE_GENERATOR /* * Check that all the squares we're looking at have the * same colour. */ if (picture) { if (adj->type == s_tile) { int c = picture[(adj->y / 2) * state->w + (adj->x / 2)]; if (col < 0) col = c; if (c != col) return false; /* colour mismatch */ } } #endif if (!allow_assoc && (adj->flags & F_TILE_ASSOC)) return false; if (dx != 0 || dy != 0) { /* Other than our own square, no dots nearby. */ if (adj->flags & (F_DOT)) return false; } /* We don't want edges within our rectangle * (but don't care about edges on the edge) */ if (abs(dx) < bx && abs(dy) < by && adj->flags & F_EDGE_SET) return false; } } return true; } /* ---------------------------------------------------------- * Game generation, structure creation, and descriptions. */ static game_state *blank_game(int w, int h) { game_state *state = snew(game_state); int x, y; state->w = w; state->h = h; state->sx = (w*2)+1; state->sy = (h*2)+1; state->grid = snewn(state->sx * state->sy, space); state->completed = false; state->used_solve = false; for (x = 0; x < state->sx; x++) { for (y = 0; y < state->sy; y++) { space *sp = &SPACE(state, x, y); memset(sp, 0, sizeof(space)); sp->x = x; sp->y = y; if ((x % 2) == 0 && (y % 2) == 0) sp->type = s_vertex; else if ((x % 2) == 0 || (y % 2) == 0) { sp->type = s_edge; if (x == 0 || y == 0 || x == state->sx-1 || y == state->sy-1) sp->flags |= F_EDGE_SET; } else sp->type = s_tile; } } state->ndots = 0; state->dots = NULL; state->me = NULL; /* filled in by new_game. */ state->cdiff = -1; return state; } static void game_update_dots(game_state *state) { int i, n, sz = state->sx * state->sy; if (state->dots) sfree(state->dots); state->ndots = 0; for (i = 0; i < sz; i++) { if (state->grid[i].flags & F_DOT) state->ndots++; } state->dots = snewn(state->ndots, space *); n = 0; for (i = 0; i < sz; i++) { if (state->grid[i].flags & F_DOT) state->dots[n++] = &state->grid[i]; } } static void clear_game(game_state *state, bool cleardots) { int x, y; /* don't erase edge flags around outline! */ for (x = 1; x < state->sx-1; x++) { for (y = 1; y < state->sy-1; y++) { if (cleardots) SPACE(state, x, y).flags = 0; else SPACE(state, x, y).flags &= (F_DOT|F_DOT_BLACK); } } if (cleardots) game_update_dots(state); } static game_state *dup_game(const game_state *state) { game_state *ret = blank_game(state->w, state->h); ret->completed = state->completed; ret->used_solve = state->used_solve; memcpy(ret->grid, state->grid, ret->sx*ret->sy*sizeof(space)); game_update_dots(ret); ret->me = state->me; ret->cdiff = state->cdiff; return ret; } static void free_game(game_state *state) { if (state->dots) sfree(state->dots); sfree(state->grid); sfree(state); } /* Game description is a sequence of letters representing the number * of spaces (a = 0, y = 24) before the next dot; a-y for a white dot, * and A-Y for a black dot. 'z' is 25 spaces (and no dot). * * I know it's a bitch to generate by hand, so we provide * an edit mode. */ static char *encode_game(const game_state *state) { char *desc, *p; int run, x, y, area; unsigned int f; area = (state->sx-2) * (state->sy-2); desc = snewn(area, char); p = desc; run = 0; for (y = 1; y < state->sy-1; y++) { for (x = 1; x < state->sx-1; x++) { f = SPACE(state, x, y).flags; /* a/A is 0 spaces between, b/B is 1 space, ... * y/Y is 24 spaces, za/zA is 25 spaces, ... * It's easier to count from 0 because we then * don't have to special-case the top left-hand corner * (which could be a dot with 0 spaces before it). */ if (!(f & F_DOT)) run++; else { while (run > 24) { *p++ = 'z'; run -= 25; } *p++ = ((f & F_DOT_BLACK) ? 'A' : 'a') + run; run = 0; } } } assert(p - desc < area); *p++ = '\0'; desc = sresize(desc, p - desc, char); return desc; } struct movedot { int op; space *olddot, *newdot; }; enum { MD_CHECK, MD_MOVE }; static int movedot_cb(game_state *state, space *tile, void *vctx) { struct movedot *md = (struct movedot *)vctx; space *newopp = NULL; assert(tile->type == s_tile); assert(md->olddot && md->newdot); if (!(tile->flags & F_TILE_ASSOC)) return 0; if (tile->dotx != md->olddot->x || tile->doty != md->olddot->y) return 0; newopp = space_opposite_dot(state, tile, md->newdot); switch (md->op) { case MD_CHECK: /* If the tile is associated with the old dot, check its * opposite wrt the _new_ dot is empty or same assoc. */ if (!newopp) return -1; /* no new opposite */ if (newopp->flags & F_TILE_ASSOC) { if (newopp->dotx != md->olddot->x || newopp->doty != md->olddot->y) return -1; /* associated, but wrong dot. */ } #ifdef STANDALONE_PICTURE_GENERATOR if (picture) { /* * Reject if either tile and the dot don't match in colour. */ if (!(picture[(tile->y/2) * state->w + (tile->x/2)]) ^ !(md->newdot->flags & F_DOT_BLACK)) return -1; if (!(picture[(newopp->y/2) * state->w + (newopp->x/2)]) ^ !(md->newdot->flags & F_DOT_BLACK)) return -1; } #endif break; case MD_MOVE: /* Move dot associations: anything that was associated * with the old dot, and its opposite wrt the new dot, * become associated with the new dot. */ assert(newopp); debug(("Associating %d,%d and %d,%d with new dot %d,%d.\n", tile->x, tile->y, newopp->x, newopp->y, md->newdot->x, md->newdot->y)); add_assoc(state, tile, md->newdot); add_assoc(state, newopp, md->newdot); return 1; /* we did something! */ } return 0; } /* For the given dot, first see if we could expand it into all the given * extra spaces (by checking for empty spaces on the far side), and then * see if we can move the dot to shift the CoG to include the new spaces. */ static bool dot_expand_or_move(game_state *state, space *dot, space **toadd, int nadd) { space *tileopp; int i, ret, nnew, cx, cy; struct movedot md; debug(("dot_expand_or_move: %d tiles for dot %d,%d\n", nadd, dot->x, dot->y)); for (i = 0; i < nadd; i++) debug(("dot_expand_or_move: dot %d,%d\n", toadd[i]->x, toadd[i]->y)); assert(dot->flags & F_DOT); #ifdef STANDALONE_PICTURE_GENERATOR if (picture) { /* * Reject the expansion totally if any of the new tiles are * the wrong colour. */ for (i = 0; i < nadd; i++) { if (!(picture[(toadd[i]->y/2) * state->w + (toadd[i]->x/2)]) ^ !(dot->flags & F_DOT_BLACK)) return false; } } #endif /* First off, could we just expand the current dot's tile to cover * the space(s) passed in and their opposites? */ for (i = 0; i < nadd; i++) { tileopp = space_opposite_dot(state, toadd[i], dot); if (!tileopp) goto noexpand; if (tileopp->flags & F_TILE_ASSOC) goto noexpand; #ifdef STANDALONE_PICTURE_GENERATOR if (picture) { /* * The opposite tiles have to be the right colour as well. */ if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^ !(dot->flags & F_DOT_BLACK)) goto noexpand; } #endif } /* OK, all spaces have valid empty opposites: associate spaces and * opposites with our dot. */ for (i = 0; i < nadd; i++) { tileopp = space_opposite_dot(state, toadd[i], dot); add_assoc(state, toadd[i], dot); add_assoc(state, tileopp, dot); debug(("Added associations %d,%d and %d,%d --> %d,%d\n", toadd[i]->x, toadd[i]->y, tileopp->x, tileopp->y, dot->x, dot->y)); dbg_state(state); } return true; noexpand: /* Otherwise, try to move dot so as to encompass given spaces: */ /* first, calculate the 'centre of gravity' of the new dot. */ nnew = dot->nassoc + nadd; /* number of tiles assoc. with new dot. */ cx = dot->x * dot->nassoc; cy = dot->y * dot->nassoc; for (i = 0; i < nadd; i++) { cx += toadd[i]->x; cy += toadd[i]->y; } /* If the CoG isn't a whole number, it's not possible. */ if ((cx % nnew) != 0 || (cy % nnew) != 0) { debug(("Unable to move dot %d,%d, CoG not whole number.\n", dot->x, dot->y)); return false; } cx /= nnew; cy /= nnew; /* Check whether all spaces in the old tile would have a good * opposite wrt the new dot. */ md.olddot = dot; md.newdot = &SPACE(state, cx, cy); md.op = MD_CHECK; ret = foreach_tile(state, movedot_cb, IMPOSSIBLE_QUITS, &md); if (ret == -1) { debug(("Unable to move dot %d,%d, new dot not symmetrical.\n", dot->x, dot->y)); return false; } /* Also check whether all spaces we're adding would have a good * opposite wrt the new dot. */ for (i = 0; i < nadd; i++) { tileopp = space_opposite_dot(state, toadd[i], md.newdot); if (tileopp && (tileopp->flags & F_TILE_ASSOC) && (tileopp->dotx != dot->x || tileopp->doty != dot->y)) { tileopp = NULL; } if (!tileopp) { debug(("Unable to move dot %d,%d, new dot not symmetrical.\n", dot->x, dot->y)); return false; } #ifdef STANDALONE_PICTURE_GENERATOR if (picture) { if (!(picture[(tileopp->y/2) * state->w + (tileopp->x/2)]) ^ !(dot->flags & F_DOT_BLACK)) return false; } #endif } /* If we've got here, we're ok. First, associate all of 'toadd' * with the _old_ dot (so they'll get fixed up, with their opposites, * in the next step). */ for (i = 0; i < nadd; i++) { debug(("Associating to-add %d,%d with old dot %d,%d.\n", toadd[i]->x, toadd[i]->y, dot->x, dot->y)); add_assoc(state, toadd[i], dot); } /* Finally, move the dot and fix up all the old associations. */ debug(("Moving dot at %d,%d to %d,%d\n", dot->x, dot->y, md.newdot->x, md.newdot->y)); { #ifdef STANDALONE_PICTURE_GENERATOR int f = dot->flags & F_DOT_BLACK; #endif remove_dot(dot); add_dot(md.newdot); #ifdef STANDALONE_PICTURE_GENERATOR md.newdot->flags |= f; #endif } md.op = MD_MOVE; ret = foreach_tile(state, movedot_cb, 0, &md); assert(ret == 1); dbg_state(state); return true; } /* Hard-code to a max. of 2x2 squares, for speed (less malloc) */ #define MAX_TOADD 4 #define MAX_OUTSIDE 8 #define MAX_TILE_PERC 20 static bool generate_try_block(game_state *state, random_state *rs, int x1, int y1, int x2, int y2) { int x, y, nadd = 0, nout = 0, i, maxsz; space *sp, *toadd[MAX_TOADD], *outside[MAX_OUTSIDE], *dot; if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return false; /* We limit the maximum size of tiles to be ~2*sqrt(area); so, * a 5x5 grid shouldn't have anything >10 tiles, a 20x20 grid * nothing >40 tiles. */ maxsz = (int)sqrt((double)(state->w * state->h)) * 2; debug(("generate_try_block, maxsz %d\n", maxsz)); /* Make a static list of the spaces; if any space is already * associated then quit immediately. */ for (x = x1; x <= x2; x += 2) { for (y = y1; y <= y2; y += 2) { assert(nadd < MAX_TOADD); sp = &SPACE(state, x, y); assert(sp->type == s_tile); if (sp->flags & F_TILE_ASSOC) return false; toadd[nadd++] = sp; } } /* Make a list of the spaces outside of our block, and shuffle it. */ #define OUTSIDE(x, y) do { \ if (INGRID(state, (x), (y))) { \ assert(nout < MAX_OUTSIDE); \ outside[nout++] = &SPACE(state, (x), (y)); \ } \ } while(0) for (x = x1; x <= x2; x += 2) { OUTSIDE(x, y1-2); OUTSIDE(x, y2+2); } for (y = y1; y <= y2; y += 2) { OUTSIDE(x1-2, y); OUTSIDE(x2+2, y); } shuffle(outside, nout, sizeof(space *), rs); for (i = 0; i < nout; i++) { if (!(outside[i]->flags & F_TILE_ASSOC)) continue; dot = &SPACE(state, outside[i]->dotx, outside[i]->doty); if (dot->nassoc >= maxsz) { debug(("Not adding to dot %d,%d, large enough (%d) already.\n", dot->x, dot->y, dot->nassoc)); continue; } if (dot_expand_or_move(state, dot, toadd, nadd)) return true; } return false; } #ifdef STANDALONE_SOLVER static bool one_try; /* override for soak testing */ #endif #define GP_DOTS 1 static void generate_pass(game_state *state, random_state *rs, int *scratch, int perc, unsigned int flags) { int sz = state->sx*state->sy, nspc, i, ret; /* Random list of squares to try and process, one-by-one. */ for (i = 0; i < sz; i++) scratch[i] = i; shuffle(scratch, sz, sizeof(int), rs); /* This bug took me a, er, little while to track down. On PalmOS, * which has 16-bit signed ints, puzzles over about 9x9 started * failing to generate because the nspc calculation would start * to overflow, causing the dots not to be filled in properly. */ nspc = (int)(((long)perc * (long)sz) / 100L); debug(("generate_pass: %d%% (%d of %dx%d) squares, flags 0x%x\n", perc, nspc, state->sx, state->sy, flags)); for (i = 0; i < nspc; i++) { space *sp = &state->grid[scratch[i]]; int x1 = sp->x, y1 = sp->y, x2 = sp->x, y2 = sp->y; if (sp->type == s_edge) { if (IS_VERTICAL_EDGE(sp->x)) { x1--; x2++; } else { y1--; y2++; } } if (sp->type != s_vertex) { /* heuristic; expanding from vertices tends to generate lots of * too-big regions of tiles. */ if (generate_try_block(state, rs, x1, y1, x2, y2)) continue; /* we expanded successfully. */ } if (!(flags & GP_DOTS)) continue; if ((sp->type == s_edge) && (i % 2)) { debug(("Omitting edge %d,%d as half-of.\n", sp->x, sp->y)); continue; } /* If we've got here we might want to put a dot down. Check * if we can, and add one if so. */ if (dot_is_possible(state, sp, false)) { add_dot(sp); #ifdef STANDALONE_PICTURE_GENERATOR if (picture) { if (picture[(sp->y/2) * state->w + (sp->x/2)]) sp->flags |= F_DOT_BLACK; } #endif ret = solver_obvious_dot(state, sp); assert(ret != -1); debug(("Added dot (and obvious associations) at %d,%d\n", sp->x, sp->y)); dbg_state(state); } } dbg_state(state); } /* * We try several times to generate a grid at all, before even feeding * it to the solver. Then we pick whichever of the resulting grids was * the most 'wiggly', as measured by the number of inward corners in * the shape of any region. * * Rationale: wiggly shapes are what make this puzzle fun, and it's * disappointing to be served a game whose entire solution is a * collection of rectangles. But we also don't want to introduce a * _hard requirement_ of wiggliness, because a player who knew that * was there would be able to use it as an extra clue. This way, we * just probabilistically skew in favour of wiggliness. */ #define GENERATE_TRIES 10 static bool is_wiggle(const game_state *state, int x, int y, int dx, int dy) { int x1 = x+2*dx, y1 = y+2*dy; int x2 = x-2*dy, y2 = y+2*dx; space *t, *t1, *t2; if (!INGRID(state, x1, y1) || !INGRID(state, x2, y2)) return false; t = &SPACE(state, x, y); t1 = &SPACE(state, x1, y1); t2 = &SPACE(state, x2, y2); return ((t1->dotx == t2->dotx && t1->doty == t2->doty) && !(t1->dotx == t->dotx && t1->doty == t->doty)); } static int measure_wiggliness(const game_state *state, int *scratch) { int sz = state->sx*state->sy; int x, y, nwiggles = 0; memset(scratch, 0, sz); for (y = 1; y < state->sy; y += 2) { for (x = 1; x < state->sx; x += 2) { if (y+2 < state->sy) { nwiggles += is_wiggle(state, x, y, 0, +1); nwiggles += is_wiggle(state, x, y, 0, -1); nwiggles += is_wiggle(state, x, y, +1, 0); nwiggles += is_wiggle(state, x, y, -1, 0); } } } return nwiggles; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { game_state *state = blank_game(params->w, params->h), *copy; char *desc; int *scratch, sz = state->sx*state->sy, i; int diff, best_wiggliness; bool cc; scratch = snewn(sz, int); generate: best_wiggliness = -1; copy = NULL; for (i = 0; i < GENERATE_TRIES; i++) { int this_wiggliness; do { clear_game(state, true); generate_pass(state, rs, scratch, 100, GP_DOTS); game_update_dots(state); } while (state->ndots == 1); this_wiggliness = measure_wiggliness(state, scratch); debug(("Grid gen #%d: wiggliness=%d", i, this_wiggliness)); if (this_wiggliness > best_wiggliness) { best_wiggliness = this_wiggliness; if (copy) free_game(copy); copy = dup_game(state); debug((" new best")); } debug(("\n")); } assert(copy); free_game(state); state = copy; #ifdef DEBUGGING { char *tmp = encode_game(state); debug(("new_game_desc state %dx%d:%s\n", params->w, params->h, tmp)); sfree(tmp); } #endif for (i = 0; i < state->sx*state->sy; i++) if (state->grid[i].type == s_tile) outline_tile_fordot(state, &state->grid[i], true); cc = check_complete(state, NULL, NULL); assert(cc); copy = dup_game(state); clear_game(copy, false); dbg_state(copy); diff = solver_state(copy, params->diff); free_game(copy); assert(diff != DIFF_IMPOSSIBLE); if (diff != params->diff) { /* * If the puzzle was insoluble at this difficulty level (i.e. * too hard), _or_ soluble at a lower level (too easy), go * round again. * * An exception is in soak-testing mode, where we return the * first puzzle we got regardless. */ #ifdef STANDALONE_SOLVER if (!one_try) #endif goto generate; } #ifdef STANDALONE_PICTURE_GENERATOR /* * Postprocessing pass to prevent excessive numbers of adjacent * singletons. Iterate over all edges in random shuffled order; * for each edge that separates two regions, investigate * whether removing that edge and merging the regions would * still yield a valid and soluble puzzle. (The two regions * must also be the same colour, of course.) If so, do it. * * This postprocessing pass is slow (due to repeated solver * invocations), and seems to be unnecessary during normal * unconstrained game generation. However, when generating a * game under colour constraints, excessive singletons seem to * turn up more often, so it's worth doing this. */ { int *posns, nposns; int i, j, newdiff; game_state *copy2; nposns = params->w * (params->h+1) + params->h * (params->w+1); posns = snewn(nposns, int); for (i = j = 0; i < state->sx*state->sy; i++) if (state->grid[i].type == s_edge) posns[j++] = i; assert(j == nposns); shuffle(posns, nposns, sizeof(*posns), rs); for (i = 0; i < nposns; i++) { int x, y, x0, y0, x1, y1, cx, cy, cn, cx0, cy0, cx1, cy1, tx, ty; space *s0, *s1, *ts, *d0, *d1, *dn; bool ok; /* Coordinates of edge space */ x = posns[i] % state->sx; y = posns[i] / state->sx; /* Coordinates of square spaces on either side of edge */ x0 = ((x+1) & ~1) - 1; /* round down to next odd number */ y0 = ((y+1) & ~1) - 1; x1 = 2*x-x0; /* and reflect about x to get x1 */ y1 = 2*y-y0; if (!INGRID(state, x0, y0) || !INGRID(state, x1, y1)) continue; /* outermost edge of grid */ s0 = &SPACE(state, x0, y0); s1 = &SPACE(state, x1, y1); assert(s0->type == s_tile && s1->type == s_tile); if (s0->dotx == s1->dotx && s0->doty == s1->doty) continue; /* tiles _already_ owned by same dot */ d0 = &SPACE(state, s0->dotx, s0->doty); d1 = &SPACE(state, s1->dotx, s1->doty); if ((d0->flags ^ d1->flags) & F_DOT_BLACK) continue; /* different colours: cannot merge */ /* * Work out where the centre of gravity of the new * region would be. */ cx = d0->nassoc * d0->x + d1->nassoc * d1->x; cy = d0->nassoc * d0->y + d1->nassoc * d1->y; cn = d0->nassoc + d1->nassoc; if (cx % cn || cy % cn) continue; /* CoG not at integer coordinates */ cx /= cn; cy /= cn; assert(INUI(state, cx, cy)); /* * Ensure that the CoG would actually be _in_ the new * region, by verifying that all its surrounding tiles * belong to one or other of our two dots. */ cx0 = ((cx+1) & ~1) - 1; /* round down to next odd number */ cy0 = ((cy+1) & ~1) - 1; cx1 = 2*cx-cx0; /* and reflect about cx to get cx1 */ cy1 = 2*cy-cy0; ok = true; for (ty = cy0; ty <= cy1; ty += 2) for (tx = cx0; tx <= cx1; tx += 2) { ts = &SPACE(state, tx, ty); assert(ts->type == s_tile); if ((ts->dotx != d0->x || ts->doty != d0->y) && (ts->dotx != d1->x || ts->doty != d1->y)) ok = false; } if (!ok) continue; /* * Verify that for every tile in either source region, * that tile's image in the new CoG is also in one of * the two source regions. */ for (ty = 1; ty < state->sy; ty += 2) { for (tx = 1; tx < state->sx; tx += 2) { int tx1, ty1; ts = &SPACE(state, tx, ty); assert(ts->type == s_tile); if ((ts->dotx != d0->x || ts->doty != d0->y) && (ts->dotx != d1->x || ts->doty != d1->y)) continue; /* not part of these tiles anyway */ tx1 = 2*cx-tx; ty1 = 2*cy-ty; if (!INGRID(state, tx1, ty1)) { ok = false; break; } ts = &SPACE(state, cx+cx-tx, cy+cy-ty); if ((ts->dotx != d0->x || ts->doty != d0->y) && (ts->dotx != d1->x || ts->doty != d1->y)) { ok = false; break; } } if (!ok) break; } if (!ok) continue; /* * Now we're clear to attempt the merge. We take a copy * of the game state first, so we can revert it easily * if the resulting puzzle turns out to have become * insoluble. */ copy2 = dup_game(state); remove_dot(d0); remove_dot(d1); dn = &SPACE(state, cx, cy); add_dot(dn); dn->flags |= (d0->flags & F_DOT_BLACK); for (ty = 1; ty < state->sy; ty += 2) { for (tx = 1; tx < state->sx; tx += 2) { ts = &SPACE(state, tx, ty); assert(ts->type == s_tile); if ((ts->dotx != d0->x || ts->doty != d0->y) && (ts->dotx != d1->x || ts->doty != d1->y)) continue; /* not part of these tiles anyway */ add_assoc(state, ts, dn); } } copy = dup_game(state); clear_game(copy, false); dbg_state(copy); newdiff = solver_state(copy, params->diff); free_game(copy); if (diff == newdiff) { /* Still just as soluble. Let the merge stand. */ free_game(copy2); } else { /* Became insoluble. Revert. */ free_game(state); state = copy2; } } sfree(posns); } #endif desc = encode_game(state); #ifndef STANDALONE_SOLVER debug(("new_game_desc generated: \n")); dbg_state(state); #endif game_state *blank = blank_game(params->w, params->h); *aux = diff_game(blank, state, true, -1); free_game(blank); free_game(state); sfree(scratch); return desc; } static bool dots_too_close(game_state *state) { /* Quick-and-dirty check, using half the solver: * solver_obvious will only fail if the dots are * too close together, so dot-proximity associations * overlap. */ game_state *tmp = dup_game(state); int ret = solver_obvious(tmp); free_game(tmp); return ret == -1; } static game_state *load_game(const game_params *params, const char *desc, const char **why_r) { game_state *state = blank_game(params->w, params->h); const char *why = NULL; int i, x, y, n; unsigned int df; i = 0; while (*desc) { n = *desc++; if (n == 'z') { i += 25; continue; } if (n >= 'a' && n <= 'y') { i += n - 'a'; df = 0; } else if (n >= 'A' && n <= 'Y') { i += n - 'A'; df = F_DOT_BLACK; } else { why = "Invalid characters in game description"; goto fail; } /* if we got here we incremented i and have a dot to add. */ y = (i / (state->sx-2)) + 1; x = (i % (state->sx-2)) + 1; if (!INUI(state, x, y)) { why = "Too much data to fit in grid"; goto fail; } add_dot(&SPACE(state, x, y)); SPACE(state, x, y).flags |= df; i++; } game_update_dots(state); if (dots_too_close(state)) { why = "Dots too close together"; goto fail; } return state; fail: free_game(state); if (why_r) *why_r = why; return NULL; } static const char *validate_desc(const game_params *params, const char *desc) { const char *why = NULL; game_state *dummy = load_game(params, desc, &why); if (dummy) { free_game(dummy); assert(!why); } else assert(why); return why; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state = load_game(params, desc, NULL); if (!state) { assert("Unable to load ?validated game."); return NULL; } #ifdef EDITOR state->me = me; #endif return state; } /* ---------------------------------------------------------- * Solver and all its little wizards. */ #if defined DEBUGGING || defined STANDALONE_SOLVER static int solver_recurse_depth; #define STATIC_RECURSION_DEPTH #endif typedef struct solver_ctx { game_state *state; int sz; /* state->sx * state->sy */ space **scratch; /* size sz */ DSF *dsf; /* size sz */ int *iscratch; /* size sz */ } solver_ctx; static solver_ctx *new_solver(game_state *state) { solver_ctx *sctx = snew(solver_ctx); sctx->state = state; sctx->sz = state->sx*state->sy; sctx->scratch = snewn(sctx->sz, space *); sctx->dsf = dsf_new(sctx->sz); sctx->iscratch = snewn(sctx->sz, int); return sctx; } static void free_solver(solver_ctx *sctx) { sfree(sctx->scratch); dsf_free(sctx->dsf); sfree(sctx->iscratch); sfree(sctx); } /* Solver ideas so far: * * For any empty space, work out how many dots it could associate * with: * it needs line-of-sight * it needs an empty space on the far side * any adjacent lines need corresponding line possibilities. */ /* The solver_ctx should keep a list of dot positions, for quicker looping. * * Solver techniques, in order of difficulty: * obvious adjacency to dots * transferring tiles to opposite side * transferring lines to opposite side * one possible dot for a given tile based on opposite availability * tile with 3 definite edges next to an associated tile must associate with same dot. * * one possible dot for a given tile based on line-of-sight */ static int solver_add_assoc(game_state *state, space *tile, int dx, int dy, const char *why) { space *dot, *tile_opp; dot = &SPACE(state, dx, dy); tile_opp = space_opposite_dot(state, tile, dot); assert(tile->type == s_tile); if (tile->flags & F_TILE_ASSOC) { if ((tile->dotx != dx) || (tile->doty != dy)) { solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; " "already --> %d,%d.\n", solver_recurse_depth*4, "", tile->x, tile->y, dx, dy, why, tile->dotx, tile->doty)); return -1; } return 0; /* no-op */ } if (!tile_opp) { solvep(("%*s%d,%d --> %d,%d impossible, no opposite tile.\n", solver_recurse_depth*4, "", tile->x, tile->y, dx, dy)); return -1; } if (tile_opp->flags & F_TILE_ASSOC && (tile_opp->dotx != dx || tile_opp->doty != dy)) { solvep(("%*sSet %d,%d --> %d,%d (%s) impossible; " "opposite already --> %d,%d.\n", solver_recurse_depth*4, "", tile->x, tile->y, dx, dy, why, tile_opp->dotx, tile_opp->doty)); return -1; } add_assoc(state, tile, dot); add_assoc(state, tile_opp, dot); solvep(("%*sSetting %d,%d --> %d,%d (%s).\n", solver_recurse_depth*4, "", tile->x, tile->y,dx, dy, why)); solvep(("%*sSetting %d,%d --> %d,%d (%s, opposite).\n", solver_recurse_depth*4, "", tile_opp->x, tile_opp->y, dx, dy, why)); return 1; } static int solver_obvious_dot(game_state *state, space *dot) { int dx, dy, ret, didsth = 0; space *tile; debug(("%*ssolver_obvious_dot for %d,%d.\n", solver_recurse_depth*4, "", dot->x, dot->y)); assert(dot->flags & F_DOT); for (dx = -1; dx <= 1; dx++) { for (dy = -1; dy <= 1; dy++) { if (!INGRID(state, dot->x+dx, dot->y+dy)) continue; tile = &SPACE(state, dot->x+dx, dot->y+dy); if (tile->type == s_tile) { ret = solver_add_assoc(state, tile, dot->x, dot->y, "next to dot"); if (ret < 0) return -1; if (ret > 0) didsth = 1; } } } return didsth; } static int solver_obvious(game_state *state) { int i, didsth = 0, ret; debug(("%*ssolver_obvious.\n", solver_recurse_depth*4, "")); for (i = 0; i < state->ndots; i++) { ret = solver_obvious_dot(state, state->dots[i]); if (ret < 0) return -1; if (ret > 0) didsth = 1; } return didsth; } static int solver_lines_opposite_cb(game_state *state, space *edge, void *ctx) { int didsth = 0, n, dx, dy; space *tiles[2], *tile_opp, *edge_opp; assert(edge->type == s_edge); tiles_from_edge(state, edge, tiles); /* if tiles[0] && tiles[1] && they're both associated * and they're both associated with different dots, * ensure the line is set. */ if (!(edge->flags & F_EDGE_SET) && tiles[0] && tiles[1] && (tiles[0]->flags & F_TILE_ASSOC) && (tiles[1]->flags & F_TILE_ASSOC) && (tiles[0]->dotx != tiles[1]->dotx || tiles[0]->doty != tiles[1]->doty)) { /* No edge, but the two adjacent tiles are both * associated with different dots; add the edge. */ solvep(("%*sSetting edge %d,%d - tiles different dots.\n", solver_recurse_depth*4, "", edge->x, edge->y)); edge->flags |= F_EDGE_SET; didsth = 1; } if (!(edge->flags & F_EDGE_SET)) return didsth; for (n = 0; n < 2; n++) { if (!tiles[n]) continue; assert(tiles[n]->type == s_tile); if (!(tiles[n]->flags & F_TILE_ASSOC)) continue; tile_opp = tile_opposite(state, tiles[n]); if (!tile_opp) { solvep(("%*simpossible: edge %d,%d has assoc. tile %d,%d" " with no opposite.\n", solver_recurse_depth*4, "", edge->x, edge->y, tiles[n]->x, tiles[n]->y)); /* edge of tile has no opposite edge (off grid?); * this is impossible. */ return -1; } dx = tiles[n]->x - edge->x; dy = tiles[n]->y - edge->y; assert(INGRID(state, tile_opp->x+dx, tile_opp->y+dy)); edge_opp = &SPACE(state, tile_opp->x+dx, tile_opp->y+dy); if (!(edge_opp->flags & F_EDGE_SET)) { solvep(("%*sSetting edge %d,%d as opposite %d,%d\n", solver_recurse_depth*4, "", tile_opp->x+dx, tile_opp->y+dy, edge->x, edge->y)); edge_opp->flags |= F_EDGE_SET; didsth = 1; } } return didsth; } static int solver_spaces_oneposs_cb(game_state *state, space *tile, void *ctx) { int n, eset, ret; space *edgeadj[4], *tileadj[4]; int dotx, doty; assert(tile->type == s_tile); if (tile->flags & F_TILE_ASSOC) return 0; adjacencies(state, tile, edgeadj, tileadj); /* Empty tile. If each edge is either set, or associated with * the same dot, we must also associate with dot. */ eset = 0; dotx = -1; doty = -1; for (n = 0; n < 4; n++) { assert(edgeadj[n]); assert(edgeadj[n]->type == s_edge); if (edgeadj[n]->flags & F_EDGE_SET) { eset++; } else { assert(tileadj[n]); assert(tileadj[n]->type == s_tile); /* If an adjacent tile is empty we can't make any deductions.*/ if (!(tileadj[n]->flags & F_TILE_ASSOC)) return 0; /* If an adjacent tile is assoc. with a different dot * we can't make any deductions. */ if (dotx != -1 && doty != -1 && (tileadj[n]->dotx != dotx || tileadj[n]->doty != doty)) return 0; dotx = tileadj[n]->dotx; doty = tileadj[n]->doty; } } if (eset == 4) { solvep(("%*simpossible: empty tile %d,%d has 4 edges\n", solver_recurse_depth*4, "", tile->x, tile->y)); return -1; } assert(dotx != -1 && doty != -1); ret = solver_add_assoc(state, tile, dotx, doty, "rest are edges"); if (ret == -1) return -1; assert(ret != 0); /* really should have done something. */ return 1; } /* Improved algorithm for tracking line-of-sight from dots, and not spaces. * * The solver_ctx already stores a list of dots: the algorithm proceeds by * expanding outwards from each dot in turn, expanding first to the boundary * of its currently-connected tile and then to all empty tiles that could see * it. Empty tiles will be flagged with a 'can see dot <x,y>' sticker. * * Expansion will happen by (symmetrically opposite) pairs of squares; if * a square hasn't an opposite number there's no point trying to expand through * it. Empty tiles will therefore also be tagged in pairs. * * If an empty tile already has a 'can see dot <x,y>' tag from a previous dot, * it (and its partner) gets untagged (or, rather, a 'can see two dots' tag) * because we're looking for single-dot possibilities. * * Once we've gone through all the dots, any which still have a 'can see dot' * tag get associated with that dot (because it must have been the only one); * any without any tag (i.e. that could see _no_ dots) cause an impossibility * marked. * * The expansion will happen each time with a stored list of (space *) pairs, * rather than a mark-and-sweep idea; that's horrifically inefficient. * * expansion algorithm: * * * allocate list of (space *) the size of s->sx*s->sy. * * allocate second grid for (flags, dotx, doty) size of sx*sy. * * clear second grid (flags = 0, all dotx and doty = 0) * flags: F_REACHABLE, F_MULTIPLE * * * * for each dot, start with one pair of tiles that are associated with it -- * * vertex --> (dx+1, dy+1), (dx-1, dy-1) * * edge --> (adj1, adj2) * * tile --> (tile, tile) ??? * * mark that pair of tiles with F_MARK, clear all other F_MARKs. * * add two tiles to start of list. * * set start = 0, end = next = 2 * * from (start to end-1, step 2) { * * we have two tiles (t1, t2), opposites wrt our dot. * * for each (at1) sensible adjacent tile to t1 (i.e. not past an edge): * * work out at2 as the opposite to at1 * * assert at1 and at2 have the same F_MARK values. * * if at1 & F_MARK ignore it (we've been there on a previous sweep) * * if either are associated with a different dot * * mark both with F_MARK (so we ignore them later) * * otherwise (assoc. with our dot, or empty): * * mark both with F_MARK * * add their space * values to the end of the list, set next += 2. * } * * if (end == next) * * we didn't add any new squares; exit the loop. * else * * set start = next+1, end = next. go round again * * We've finished expanding from the dot. Now, for each square we have * in our list (--> each square with F_MARK): * * if the tile is empty: * * if F_REACHABLE was already set * * set F_MULTIPLE * * otherwise * * set F_REACHABLE, set dotx and doty to our dot. * * Then, continue the whole thing for each dot in turn. * * Once we've done for each dot, go through the entire grid looking for * empty tiles: for each empty tile: * if F_REACHABLE and not F_MULTIPLE, set that dot (and its double) * if !F_REACHABLE, return as impossible. * */ /* Returns true if this tile is either already associated with this dot, * or blank. */ static bool solver_expand_checkdot(space *tile, space *dot) { if (!(tile->flags & F_TILE_ASSOC)) return true; if (tile->dotx == dot->x && tile->doty == dot->y) return true; return false; } static void solver_expand_fromdot(game_state *state, space *dot, solver_ctx *sctx) { int i, j, x, y, start, end, next; space *sp; /* Clear the grid of the (space) flags we'll use. */ /* This is well optimised; analysis showed that: for (i = 0; i < sctx->sz; i++) state->grid[i].flags &= ~F_MARK; took up ~85% of the total function time! */ for (y = 1; y < state->sy; y += 2) { sp = &SPACE(state, 1, y); for (x = 1; x < state->sx; x += 2, sp += 2) sp->flags &= ~F_MARK; } /* Seed the list of marked squares with two that must be associated * with our dot (possibly the same space) */ if (dot->type == s_tile) { sctx->scratch[0] = sctx->scratch[1] = dot; } else if (dot->type == s_edge) { tiles_from_edge(state, dot, sctx->scratch); } else if (dot->type == s_vertex) { /* pick two of the opposite ones arbitrarily. */ sctx->scratch[0] = &SPACE(state, dot->x-1, dot->y-1); sctx->scratch[1] = &SPACE(state, dot->x+1, dot->y+1); } assert(sctx->scratch[0]->flags & F_TILE_ASSOC); assert(sctx->scratch[1]->flags & F_TILE_ASSOC); sctx->scratch[0]->flags |= F_MARK; sctx->scratch[1]->flags |= F_MARK; debug(("%*sexpand from dot %d,%d seeded with %d,%d and %d,%d.\n", solver_recurse_depth*4, "", dot->x, dot->y, sctx->scratch[0]->x, sctx->scratch[0]->y, sctx->scratch[1]->x, sctx->scratch[1]->y)); start = 0; end = 2; next = 2; expand: debug(("%*sexpand: start %d, end %d, next %d\n", solver_recurse_depth*4, "", start, end, next)); for (i = start; i < end; i += 2) { space *t1 = sctx->scratch[i]/*, *t2 = sctx->scratch[i+1]*/; space *edges[4], *tileadj[4], *tileadj2; adjacencies(state, t1, edges, tileadj); for (j = 0; j < 4; j++) { assert(edges[j]); if (edges[j]->flags & F_EDGE_SET) continue; assert(tileadj[j]); if (tileadj[j]->flags & F_MARK) continue; /* seen before. */ /* We have a tile adjacent to t1; find its opposite. */ tileadj2 = space_opposite_dot(state, tileadj[j], dot); if (!tileadj2) { debug(("%*sMarking %d,%d, no opposite.\n", solver_recurse_depth*4, "", tileadj[j]->x, tileadj[j]->y)); tileadj[j]->flags |= F_MARK; continue; /* no opposite, so mark for next time. */ } /* If the tile had an opposite we should have either seen both of * these, or neither of these, before. */ assert(!(tileadj2->flags & F_MARK)); if (solver_expand_checkdot(tileadj[j], dot) && solver_expand_checkdot(tileadj2, dot)) { /* Both tiles could associate with this dot; add them to * our list. */ debug(("%*sAdding %d,%d and %d,%d to possibles list.\n", solver_recurse_depth*4, "", tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y)); sctx->scratch[next++] = tileadj[j]; sctx->scratch[next++] = tileadj2; } /* Either way, we've seen these tiles already so mark them. */ debug(("%*sMarking %d,%d and %d,%d.\n", solver_recurse_depth*4, "", tileadj[j]->x, tileadj[j]->y, tileadj2->x, tileadj2->y)); tileadj[j]->flags |= F_MARK; tileadj2->flags |= F_MARK; } } if (next > end) { /* We added more squares; go back and try again. */ start = end; end = next; goto expand; } /* We've expanded as far as we can go. Now we update the main flags * on all tiles we've expanded into -- if they were empty, we have * found possible associations for this dot. */ for (i = 0; i < end; i++) { if (sctx->scratch[i]->flags & F_TILE_ASSOC) continue; if (sctx->scratch[i]->flags & F_REACHABLE) { /* This is (at least) the second dot this tile could * associate with. */ debug(("%*sempty tile %d,%d could assoc. other dot %d,%d\n", solver_recurse_depth*4, "", sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y)); sctx->scratch[i]->flags |= F_MULTIPLE; } else { /* This is the first (possibly only) dot. */ debug(("%*sempty tile %d,%d could assoc. 1st dot %d,%d\n", solver_recurse_depth*4, "", sctx->scratch[i]->x, sctx->scratch[i]->y, dot->x, dot->y)); sctx->scratch[i]->flags |= F_REACHABLE; sctx->scratch[i]->dotx = dot->x; sctx->scratch[i]->doty = dot->y; } } dbg_state(state); } static int solver_expand_postcb(game_state *state, space *tile, void *ctx) { assert(tile->type == s_tile); if (tile->flags & F_TILE_ASSOC) return 0; if (!(tile->flags & F_REACHABLE)) { solvep(("%*simpossible: space (%d,%d) can reach no dots.\n", solver_recurse_depth*4, "", tile->x, tile->y)); return -1; } if (tile->flags & F_MULTIPLE) return 0; return solver_add_assoc(state, tile, tile->dotx, tile->doty, "single possible dot after expansion"); } static int solver_expand_dots(game_state *state, solver_ctx *sctx) { int i; for (i = 0; i < sctx->sz; i++) state->grid[i].flags &= ~(F_REACHABLE|F_MULTIPLE); for (i = 0; i < state->ndots; i++) solver_expand_fromdot(state, state->dots[i], sctx); return foreach_tile(state, solver_expand_postcb, IMPOSSIBLE_QUITS, sctx); } static int solver_extend_exclaves(game_state *state, solver_ctx *sctx) { int x, y, done_something = 0; /* * Make a dsf by unifying any two adjacent tiles associated with * the same dot. This will identify separate connected components * of the tiles belonging to a given dot. Any such component that * doesn't contain its own dot is an 'exclave', and will need some * kind of path of tiles to connect it back to the dot. */ dsf_reinit(sctx->dsf); for (x = 1; x < state->sx; x += 2) { for (y = 1; y < state->sy; y += 2) { int dotx, doty; space *tile, *othertile; tile = &SPACE(state, x, y); if (!(tile->flags & F_TILE_ASSOC)) continue; /* not associated with any dot */ dotx = tile->dotx; doty = tile->doty; if (INGRID(state, x+2, y)) { othertile = &SPACE(state, x+2, y); if ((othertile->flags & F_TILE_ASSOC) && othertile->dotx == dotx && othertile->doty == doty) dsf_merge(sctx->dsf, y*state->sx+x, y*state->sx+(x+2)); } if (INGRID(state, x, y+2)) { othertile = &SPACE(state, x, y+2); if ((othertile->flags & F_TILE_ASSOC) && othertile->dotx == dotx && othertile->doty == doty) dsf_merge(sctx->dsf, y*state->sx+x, (y+2)*state->sx+x); } } } /* * Go through the grid again, and count the 'liberties' of each * connected component, in the Go sense, i.e. the number of * currently unassociated squares adjacent to the component. The * idea is that if an exclave has just one liberty, then that * square _must_ extend the exclave, or else it will be completely * cut off from connecting back to its home dot. * * We need to count each adjacent square just once, even if it * borders the component on multiple edges. So we'll go through * each unassociated square, check all four of its neighbours, and * de-duplicate them. * * We'll store the count of liberties in the entry of iscratch * corresponding to the square centre (i.e. with odd coordinates). * Every time we find a liberty, we store its index in the square * to the left of that, so that when a component has exactly one * liberty we can remember what it was. * * Square centres that are not the canonical dsf element of a * connected component will get their liberty count set to -1, * which will allow us to identify them in the later loop (after * we start making changes and need to spot that an associated * square _now_ was not associated when the dsf was built). */ /* Initialise iscratch */ for (x = 1; x < state->sx; x += 2) { for (y = 1; y < state->sy; y += 2) { int index = y * state->sx + x; if (!(SPACE(state, x, y).flags & F_TILE_ASSOC) || dsf_canonify(sctx->dsf, index) != index) { sctx->iscratch[index] = -1; /* mark as not a component */ } else { sctx->iscratch[index] = 0; /* zero liberty count */ sctx->iscratch[index-1] = 0; /* initialise neighbour id */ } } } /* Find each unassociated square and see what it's a liberty of */ for (x = 1; x < state->sx; x += 2) { for (y = 1; y < state->sy; y += 2) { int dx, dy, ni[4], nn, i; if ((SPACE(state, x, y).flags & F_TILE_ASSOC)) continue; /* not an unassociated square */ /* Find distinct indices of adjacent components */ nn = 0; for (dx = -1; dx <= 1; dx++) { for (dy = -1; dy <= 1; dy++) { if (dx != 0 && dy != 0) continue; if (dx == 0 && dy == 0) continue; if (INGRID(state, x+2*dx, y+2*dy) && (SPACE(state, x+2*dx, y+2*dy).flags & F_TILE_ASSOC)) { /* Find id of the component adjacent to x,y */ int nindex = (y+2*dy) * state->sx + (x+2*dx); nindex = dsf_canonify(sctx->dsf, nindex); /* See if we've seen it before in another direction */ for (i = 0; i < nn; i++) if (ni[i] == nindex) break; if (i == nn) { /* No, it's new. Mark x,y as a liberty of it */ sctx->iscratch[nindex]++; assert(nindex > 0); sctx->iscratch[nindex-1] = y * state->sx + x; /* And record this component as having been seen */ ni[nn++] = nindex; } } } } } } /* * Now we have all the data we need to find exclaves with exactly * one liberty. In each case, associate the unique liberty square * with the same dot. */ for (x = 1; x < state->sx; x += 2) { for (y = 1; y < state->sy; y += 2) { int index, dotx, doty, ex, ey, added; space *tile; index = y*state->sx+x; if (sctx->iscratch[index] == -1) continue; /* wasn't canonical when dsf was built */ tile = &SPACE(state, x, y); if (!(tile->flags & F_TILE_ASSOC)) continue; /* not associated with any dot */ dotx = tile->dotx; doty = tile->doty; if (index == dsf_canonify( sctx->dsf, (doty | 1) * state->sx + (dotx | 1))) continue; /* not an exclave - contains its own dot */ if (sctx->iscratch[index] == 0) { solvep(("%*sExclave at %d,%d has no liberties!\n", solver_recurse_depth*4, "", x, y)); return -1; } if (sctx->iscratch[index] != 1) continue; /* more than one liberty, can't be sure which */ assert(sctx->iscratch[index-1] != 0); ex = sctx->iscratch[index-1] % state->sx; ey = sctx->iscratch[index-1] / state->sx; tile = &SPACE(state, ex, ey); if (tile->flags & F_TILE_ASSOC) continue; /* already done by earlier iteration of this loop */ added = solver_add_assoc(state, tile, dotx, doty, "to connect exclave"); if (added < 0) return -1; if (added > 0) done_something = 1; } } return done_something; } struct recurse_ctx { space *best; int bestn; }; static int solver_recurse_cb(game_state *state, space *tile, void *ctx) { struct recurse_ctx *rctx = (struct recurse_ctx *)ctx; int i, n = 0; assert(tile->type == s_tile); if (tile->flags & F_TILE_ASSOC) return 0; /* We're unassociated: count up all the dots we could associate with. */ for (i = 0; i < state->ndots; i++) { if (dotfortile(state, tile, state->dots[i])) n++; } if (n > rctx->bestn) { rctx->bestn = n; rctx->best = tile; } return 0; } #define MAXRECURSE 5 static int solver_recurse(game_state *state, int maxdiff, int depth) { int diff = DIFF_IMPOSSIBLE, ret, n, gsz = state->sx * state->sy; space *ingrid, *outgrid = NULL, *bestopp; struct recurse_ctx rctx; if (depth >= MAXRECURSE) { solvep(("Limiting recursion to %d, returning.\n", MAXRECURSE)); return DIFF_UNFINISHED; } /* Work out the cell to recurse on; go through all unassociated tiles * and find which one has the most possible dots it could associate * with. */ rctx.best = NULL; rctx.bestn = 0; foreach_tile(state, solver_recurse_cb, 0, &rctx); if (rctx.bestn == 0) return DIFF_IMPOSSIBLE; /* or assert? */ assert(rctx.best); solvep(("%*sRecursing around %d,%d, with %d possible dots.\n", solver_recurse_depth*4, "", rctx.best->x, rctx.best->y, rctx.bestn)); ingrid = snewn(gsz, space); memcpy(ingrid, state->grid, gsz * sizeof(space)); for (n = 0; n < state->ndots; n++) { memcpy(state->grid, ingrid, gsz * sizeof(space)); if (!dotfortile(state, rctx.best, state->dots[n])) continue; /* set cell (temporarily) pointing to that dot. */ solver_add_assoc(state, rctx.best, state->dots[n]->x, state->dots[n]->y, "Attempting for recursion"); ret = solver_state_inner(state, maxdiff, depth + 1); #ifdef STATIC_RECURSION_DEPTH solver_recurse_depth = depth; /* restore after recursion returns */ #endif if (diff == DIFF_IMPOSSIBLE && ret != DIFF_IMPOSSIBLE) { /* we found our first solved grid; copy it away. */ assert(!outgrid); outgrid = snewn(gsz, space); memcpy(outgrid, state->grid, gsz * sizeof(space)); } /* reset cell back to unassociated. */ bestopp = tile_opposite(state, rctx.best); assert(bestopp && bestopp->flags & F_TILE_ASSOC); remove_assoc(state, rctx.best); remove_assoc(state, bestopp); if (ret == DIFF_AMBIGUOUS || ret == DIFF_UNFINISHED) diff = ret; else if (ret == DIFF_IMPOSSIBLE) /* no change */; else { /* precisely one solution */ if (diff == DIFF_IMPOSSIBLE) diff = DIFF_UNREASONABLE; else diff = DIFF_AMBIGUOUS; } /* if we've found >1 solution, or ran out of recursion, * give up immediately. */ if (diff == DIFF_AMBIGUOUS || diff == DIFF_UNFINISHED) break; } if (outgrid) { /* we found (at least one) soln; copy it back to state */ memcpy(state->grid, outgrid, gsz * sizeof(space)); sfree(outgrid); } sfree(ingrid); return diff; } static int solver_state_inner(game_state *state, int maxdiff, int depth) { solver_ctx *sctx = new_solver(state); int ret, diff = DIFF_NORMAL; #ifdef STANDALONE_PICTURE_GENERATOR /* hack, hack: set picture to NULL during solving so that add_assoc * won't complain when we attempt recursive guessing and guess wrong */ int *savepic = picture; picture = NULL; #endif #ifdef STATIC_RECURSION_DEPTH solver_recurse_depth = depth; #endif ret = solver_obvious(state); if (ret < 0) { diff = DIFF_IMPOSSIBLE; goto got_result; } #define CHECKRET(d) do { \ if (ret < 0) { diff = DIFF_IMPOSSIBLE; goto got_result; } \ if (ret > 0) { diff = max(diff, (d)); goto cont; } \ } while(0) while (1) { cont: ret = foreach_edge(state, solver_lines_opposite_cb, IMPOSSIBLE_QUITS, sctx); CHECKRET(DIFF_NORMAL); ret = foreach_tile(state, solver_spaces_oneposs_cb, IMPOSSIBLE_QUITS, sctx); CHECKRET(DIFF_NORMAL); ret = solver_expand_dots(state, sctx); CHECKRET(DIFF_NORMAL); ret = solver_extend_exclaves(state, sctx); CHECKRET(DIFF_NORMAL); if (maxdiff <= DIFF_NORMAL) break; /* harder still? */ /* if we reach here, we've made no deductions, so we terminate. */ break; } if (check_complete(state, NULL, NULL)) goto got_result; diff = (maxdiff >= DIFF_UNREASONABLE) ? solver_recurse(state, maxdiff, depth) : DIFF_UNFINISHED; got_result: free_solver(sctx); #ifndef STANDALONE_SOLVER debug(("solver_state ends, diff %s:\n", galaxies_diffnames[diff])); dbg_state(state); #endif #ifdef STANDALONE_PICTURE_GENERATOR picture = savepic; #endif return diff; } static int solver_state(game_state *state, int maxdiff) { return solver_state_inner(state, maxdiff, 0); } #ifndef EDITOR static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { game_state *tosolve; char *ret; int i; int diff; if (aux) { tosolve = execute_move(state, aux); goto solved; } else { tosolve = dup_game(currstate); diff = solver_state(tosolve, DIFF_UNREASONABLE); if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) { debug(("solve_game solved with current state.\n")); goto solved; } free_game(tosolve); tosolve = dup_game(state); diff = solver_state(tosolve, DIFF_UNREASONABLE); if (diff != DIFF_UNFINISHED && diff != DIFF_IMPOSSIBLE) { debug(("solve_game solved with original state.\n")); goto solved; } free_game(tosolve); } return NULL; solved: /* * Clear tile associations: the solution will only include the * edges. */ for (i = 0; i < tosolve->sx*tosolve->sy; i++) tosolve->grid[i].flags &= ~F_TILE_ASSOC; ret = diff_game(currstate, tosolve, true, -1); free_game(tosolve); return ret; } #endif /* ---------------------------------------------------------- * User interface. */ struct game_ui { bool dragging; int dx, dy; /* pixel coords of drag pos. */ int dotx, doty; /* grid coords of dot we're dragging from. */ int srcx, srcy; /* grid coords of drag start */ int cur_x, cur_y; bool cur_visible; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->dragging = false; ui->cur_x = ui->cur_y = 1; ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false); return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } #define FLASH_TIME 0.15F #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define DOT_SIZE (TILE_SIZE / 4) #define EDGE_THICKNESS (max(TILE_SIZE / 16, 2)) #define BORDER TILE_SIZE #define COORD(x) ( (x) * TILE_SIZE + BORDER ) #define SCOORD(x) ( ((x) * TILE_SIZE)/2 + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER) / TILE_SIZE ) #define DRAW_WIDTH (BORDER * 2 + ds->w * TILE_SIZE) #define DRAW_HEIGHT (BORDER * 2 + ds->h * TILE_SIZE) #define CURSOR_SIZE DOT_SIZE struct game_drawstate { bool started; int w, h; int tilesize; unsigned long *grid; int *dx, *dy; blitter *bl; blitter *blmirror; bool dragging; int dragx, dragy, oppx, oppy; int *colour_scratch; int cx, cy; bool cur_visible; blitter *cur_bl; }; #define CORNER_TOLERANCE 0.15F #define CENTRE_TOLERANCE 0.15F /* * Round FP coordinates to the centre of the nearest edge. */ #ifndef EDITOR static void coord_round_to_edge(float x, float y, int *xr, int *yr) { float xs, ys, xv, yv, dx, dy; /* * Find the nearest square-centre. */ xs = (float)floor(x) + 0.5F; ys = (float)floor(y) + 0.5F; /* * Find the nearest grid vertex. */ xv = (float)floor(x + 0.5F); yv = (float)floor(y + 0.5F); /* * Determine whether the horizontal or vertical edge from that * vertex alongside that square is closer to us, by comparing * distances from the square cente. */ dx = (float)fabs(x - xs); dy = (float)fabs(y - ys); if (dx > dy) { /* Vertical edge: x-coord of corner, * y-coord of square centre. */ *xr = 2 * (int)xv; *yr = 1 + 2 * (int)floor(ys); } else { /* Horizontal edge: x-coord of square centre, * y-coord of corner. */ *xr = 1 + 2 * (int)floor(xs); *yr = 2 * (int)yv; } } #endif #ifdef EDITOR static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { char buf[80]; int px, py; space *sp; px = 2*FROMCOORD((float)x) + 0.5F; py = 2*FROMCOORD((float)y) + 0.5F; if (button == 'C' || button == 'c') return dupstr("C"); if (button == 'S' || button == 's') { char *ret; game_state *tmp = dup_game(state); int cdiff = solver_state(tmp, DIFF_UNREASONABLE-1); ret = diff_game(state, tmp, 0, cdiff); free_game(tmp); return ret; } if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { if (!INUI(state, px, py)) return NULL; sp = &SPACE(state, px, py); if (!dot_is_possible(state, sp, 1)) return NULL; sprintf(buf, "%c%d,%d", (char)((button == LEFT_BUTTON) ? 'D' : 'd'), px, py); return dupstr(buf); } return NULL; } #else static bool edge_placement_legal(const game_state *state, int x, int y) { space *sp = &SPACE(state, x, y); if (sp->type != s_edge) return false; /* this is a face-centre or a grid vertex */ /* Check this line doesn't actually intersect a dot */ unsigned int flags = (GRID(state, grid, x, y).flags | GRID(state, grid, x & ~1U, y & ~1U).flags | GRID(state, grid, (x+1) & ~1U, (y+1) & ~1U).flags); if (flags & F_DOT) return false; return true; } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { space *sp; if (IS_CURSOR_SELECT(button) && ui->cur_visible) { sp = &SPACE(state, ui->cur_x, ui->cur_y); if (ui->dragging) { if (ui->cur_x == ui->srcx && ui->cur_y == ui->srcy) return "Cancel"; if (ok_to_add_assoc_with_opposite( state, &SPACE(state, ui->cur_x, ui->cur_y), &SPACE(state, ui->dotx, ui->doty))) return "Place"; return (ui->srcx == ui->dotx && ui->srcy == ui->doty) ? "Cancel" : "Remove"; } else if (sp->flags & F_DOT) return "New arrow"; else if (sp->flags & F_TILE_ASSOC) return "Move arrow"; else if (sp->type == s_edge && edge_placement_legal(state, ui->cur_x, ui->cur_y)) return (sp->flags & F_EDGE_SET) ? "Clear" : "Edge"; } return ""; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { /* UI operations (play mode): * * Toggle edge (set/unset) (left-click on edge) * Associate space with dot (left-drag from dot) * Unassociate space (left-drag from space off grid) * Autofill lines around shape? (right-click?) * * (edit mode; will clear all lines/associations) * * Add or remove dot (left-click) */ char buf[80]; const char *sep = ""; int px, py; space *sp, *dot; buf[0] = '\0'; if (button == 'H' || button == 'h') { char *ret; game_state *tmp = dup_game(state); solver_obvious(tmp); ret = diff_game(state, tmp, false, -1); free_game(tmp); return ret; } if (button == LEFT_BUTTON) { ui->cur_visible = false; coord_round_to_edge(FROMCOORD((float)x), FROMCOORD((float)y), &px, &py); if (!INUI(state, px, py)) return NULL; if (!edge_placement_legal(state, px, py)) return NULL; sprintf(buf, "E%d,%d", px, py); return dupstr(buf); } else if (button == RIGHT_BUTTON) { int px1, py1; ui->cur_visible = false; px = (int)(2*FROMCOORD((float)x) + 0.5F); py = (int)(2*FROMCOORD((float)y) + 0.5F); dot = NULL; /* * If there's a dot anywhere nearby, we pick up an arrow * pointing at that dot. */ for (py1 = py-1; py1 <= py+1; py1++) for (px1 = px-1; px1 <= px+1; px1++) { if (px1 >= 0 && px1 < state->sx && py1 >= 0 && py1 < state->sy && x >= SCOORD(px1-1) && x < SCOORD(px1+1) && y >= SCOORD(py1-1) && y < SCOORD(py1+1) && SPACE(state, px1, py1).flags & F_DOT) { /* * Found a dot. Begin a drag from it. */ dot = &SPACE(state, px1, py1); ui->srcx = px1; ui->srcy = py1; goto done; /* multi-level break */ } } /* * Otherwise, find the nearest _square_, and pick up the * same arrow as it's got on it, if any. */ if (!dot) { px = 2*FROMCOORD(x+TILE_SIZE) - 1; py = 2*FROMCOORD(y+TILE_SIZE) - 1; if (px >= 0 && px < state->sx && py >= 0 && py < state->sy) { sp = &SPACE(state, px, py); if (sp->flags & F_TILE_ASSOC) { dot = &SPACE(state, sp->dotx, sp->doty); ui->srcx = px; ui->srcy = py; } } } done: /* * Now, if we've managed to find a dot, begin a drag. */ if (dot) { ui->dragging = true; ui->dx = x; ui->dy = y; ui->dotx = dot->x; ui->doty = dot->y; return UI_UPDATE; } } else if (button == RIGHT_DRAG && ui->dragging) { /* just move the drag coords. */ ui->dx = x; ui->dy = y; return UI_UPDATE; } else if (button == RIGHT_RELEASE && ui->dragging) { /* * Drags are always targeted at a single square. */ px = 2*FROMCOORD(x+TILE_SIZE) - 1; py = 2*FROMCOORD(y+TILE_SIZE) - 1; dropped: /* We arrive here from the end of a keyboard drag. */ ui->dragging = false; /* * Dragging an arrow on to the same square it started from * is a null move; just update the ui and finish. */ if (px == ui->srcx && py == ui->srcy) return UI_UPDATE; /* * Otherwise, we remove the arrow from its starting * square if we didn't start from a dot... */ if ((ui->srcx != ui->dotx || ui->srcy != ui->doty) && SPACE(state, ui->srcx, ui->srcy).flags & F_TILE_ASSOC) { sprintf(buf + strlen(buf), "%sU%d,%d", sep, ui->srcx, ui->srcy); sep = ";"; } /* * ... and if the square we're moving it _to_ is valid, we * add one there instead. */ if (INUI(state, px, py)) { sp = &SPACE(state, px, py); dot = &SPACE(state, ui->dotx, ui->doty); /* * Exception: if it's not actually legal to add an arrow * and its opposite at this position, we don't try, * because otherwise we'd append an empty entry to the * undo chain. */ if (ok_to_add_assoc_with_opposite(state, sp, dot)) sprintf(buf + strlen(buf), "%sA%d,%d,%d,%d", sep, px, py, ui->dotx, ui->doty); } if (buf[0]) return dupstr(buf); else return UI_UPDATE; } else if (IS_CURSOR_MOVE(button)) { move_cursor(button, &ui->cur_x, &ui->cur_y, state->sx-1, state->sy-1, false); if (ui->cur_x < 1) ui->cur_x = 1; if (ui->cur_y < 1) ui->cur_y = 1; ui->cur_visible = true; if (ui->dragging) { ui->dx = SCOORD(ui->cur_x); ui->dy = SCOORD(ui->cur_y); } return UI_UPDATE; } else if (IS_CURSOR_SELECT(button)) { if (!ui->cur_visible) { ui->cur_visible = true; return UI_UPDATE; } sp = &SPACE(state, ui->cur_x, ui->cur_y); if (ui->dragging) { px = ui->cur_x; py = ui->cur_y; goto dropped; } else if (sp->flags & F_DOT) { ui->dragging = true; ui->dx = SCOORD(ui->cur_x); ui->dy = SCOORD(ui->cur_y); ui->dotx = ui->srcx = ui->cur_x; ui->doty = ui->srcy = ui->cur_y; return UI_UPDATE; } else if (sp->flags & F_TILE_ASSOC) { assert(sp->type == s_tile); ui->dragging = true; ui->dx = SCOORD(ui->cur_x); ui->dy = SCOORD(ui->cur_y); ui->dotx = sp->dotx; ui->doty = sp->doty; ui->srcx = ui->cur_x; ui->srcy = ui->cur_y; return UI_UPDATE; } else if (sp->type == s_edge && edge_placement_legal(state, ui->cur_x, ui->cur_y)) { sprintf(buf, "E%d,%d", ui->cur_x, ui->cur_y); return dupstr(buf); } } return NULL; } #endif static bool check_complete(const game_state *state, DSF *dsf, int *colours) { int w = state->w, h = state->h; int x, y, i; bool ret; bool free_dsf; struct sqdata { int minx, miny, maxx, maxy; int cx, cy; bool valid; int colour; } *sqdata; if (!dsf) { dsf = dsf_new(w*h); free_dsf = true; } else { dsf_reinit(dsf); free_dsf = false; } /* * During actual game play, completion checking is done on the * basis of the edges rather than the square associations. So * first we must go through the grid figuring out the connected * components into which the edges divide it. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { if (y+1 < h && !(SPACE(state, 2*x+1, 2*y+2).flags & F_EDGE_SET)) dsf_merge(dsf, y*w+x, (y+1)*w+x); if (x+1 < w && !(SPACE(state, 2*x+2, 2*y+1).flags & F_EDGE_SET)) dsf_merge(dsf, y*w+x, y*w+(x+1)); } /* * That gives us our connected components. Now, for each * component, decide whether it's _valid_. A valid component is * one which: * * - is 180-degree rotationally symmetric * - has a dot at its centre of symmetry * - has no other dots anywhere within it (including on its * boundary) * - contains no internal edges (i.e. edges separating two * squares which are both part of the component). */ /* * First, go through the grid finding the bounding box of each * component. */ sqdata = snewn(w*h, struct sqdata); for (i = 0; i < w*h; i++) { sqdata[i].minx = w+1; sqdata[i].miny = h+1; sqdata[i].maxx = sqdata[i].maxy = -1; sqdata[i].valid = false; } for (y = 0; y < h; y++) for (x = 0; x < w; x++) { i = dsf_canonify(dsf, y*w+x); if (sqdata[i].minx > x) sqdata[i].minx = x; if (sqdata[i].maxx < x) sqdata[i].maxx = x; if (sqdata[i].miny > y) sqdata[i].miny = y; if (sqdata[i].maxy < y) sqdata[i].maxy = y; sqdata[i].valid = true; } /* * Now we're in a position to loop over each actual component * and figure out where its centre of symmetry has to be if * it's anywhere. */ for (i = 0; i < w*h; i++) if (sqdata[i].valid) { int cx, cy; cx = sqdata[i].cx = sqdata[i].minx + sqdata[i].maxx + 1; cy = sqdata[i].cy = sqdata[i].miny + sqdata[i].maxy + 1; if (!(SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT)) sqdata[i].valid = false; /* no dot at centre of symmetry */ if (dsf_canonify(dsf, (cy-1)/2*w+(cx-1)/2) != i || dsf_canonify(dsf, (cy)/2*w+(cx-1)/2) != i || dsf_canonify(dsf, (cy-1)/2*w+(cx)/2) != i || dsf_canonify(dsf, (cy)/2*w+(cx)/2) != i) sqdata[i].valid = false; /* dot at cx,cy isn't ours */ if (SPACE(state, sqdata[i].cx, sqdata[i].cy).flags & F_DOT_BLACK) sqdata[i].colour = 2; else sqdata[i].colour = 1; } /* * Now we loop over the whole grid again, this time finding * extraneous dots (any dot which wholly or partially overlaps * a square and is not at the centre of symmetry of that * square's component disqualifies the component from validity) * and extraneous edges (any edge separating two squares * belonging to the same component also disqualifies that * component). */ for (y = 1; y < state->sy-1; y++) for (x = 1; x < state->sx-1; x++) { space *sp = &SPACE(state, x, y); if (sp->flags & F_DOT) { /* * There's a dot here. Use it to disqualify any * component which deserves it. */ int cx, cy; for (cy = (y-1) >> 1; cy <= y >> 1; cy++) for (cx = (x-1) >> 1; cx <= x >> 1; cx++) { i = dsf_canonify(dsf, cy*w+cx); if (x != sqdata[i].cx || y != sqdata[i].cy) sqdata[i].valid = false; } } if (sp->flags & F_EDGE_SET) { /* * There's an edge here. Use it to disqualify a * component if necessary. */ int cx1 = (x-1) >> 1, cx2 = x >> 1; int cy1 = (y-1) >> 1, cy2 = y >> 1; assert((cx1==cx2) ^ (cy1==cy2)); i = dsf_canonify(dsf, cy1*w+cx1); if (i == dsf_canonify(dsf, cy2*w+cx2)) sqdata[i].valid = false; } } /* * And finally we test rotational symmetry: for each square in * the grid, find which component it's in, test that that * component also has a square in the symmetric position, and * disqualify it if it doesn't. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int x2, y2; i = dsf_canonify(dsf, y*w+x); x2 = sqdata[i].cx - 1 - x; y2 = sqdata[i].cy - 1 - y; if (i != dsf_canonify(dsf, y2*w+x2)) sqdata[i].valid = false; } /* * That's it. We now have all the connected components marked * as valid or not valid. So now we return a `colours' array if * we were asked for one, and also we return an overall * true/false value depending on whether _every_ square in the * grid is part of a valid component. */ ret = true; for (i = 0; i < w*h; i++) { int ci = dsf_canonify(dsf, i); bool thisok = sqdata[ci].valid; if (colours) colours[i] = thisok ? sqdata[ci].colour : 0; ret = ret && thisok; } sfree(sqdata); if (free_dsf) dsf_free(dsf); return ret; } static game_state *execute_move(const game_state *state, const char *move) { int x, y, ax, ay, n, dx, dy; game_state *ret = dup_game(state); space *sp, *dot; bool currently_solving = false; debug(("%s\n", move)); while (*move) { char c = *move; if (c == 'E' || c == 'U' || c == 'M' #ifdef EDITOR || c == 'D' || c == 'd' #endif ) { move++; if (sscanf(move, "%d,%d%n", &x, &y, &n) != 2 || !INUI(ret, x, y)) goto badmove; sp = &SPACE(ret, x, y); #ifdef EDITOR if (c == 'D' || c == 'd') { unsigned int currf, newf, maskf; if (!dot_is_possible(ret, sp, 1)) goto badmove; newf = F_DOT | (c == 'd' ? F_DOT_BLACK : 0); currf = GRID(ret, grid, x, y).flags; maskf = F_DOT | F_DOT_BLACK; /* if we clicked 'white dot': * white --> empty, empty --> white, black --> white. * if we clicked 'black dot': * black --> empty, empty --> black, white --> black. */ if (currf & maskf) { sp->flags &= ~maskf; if ((currf & maskf) != newf) sp->flags |= newf; } else sp->flags |= newf; sp->nassoc = 0; /* edit-mode disallows associations. */ game_update_dots(ret); } else #endif if (c == 'E') { if (sp->type != s_edge) goto badmove; sp->flags ^= F_EDGE_SET; } else if (c == 'U') { if (sp->type != s_tile || !(sp->flags & F_TILE_ASSOC)) goto badmove; /* The solver doesn't assume we'll mirror things */ if (currently_solving) remove_assoc(ret, sp); else remove_assoc_with_opposite(ret, sp); } else if (c == 'M') { if (!(sp->flags & F_DOT)) goto badmove; sp->flags ^= F_DOT_HOLD; } move += n; } else if (c == 'A' || c == 'a') { move++; if (sscanf(move, "%d,%d,%d,%d%n", &x, &y, &ax, &ay, &n) != 4 || x < 1 || y < 1 || x >= (ret->sx-1) || y >= (ret->sy-1) || ax < 1 || ay < 1 || ax >= (ret->sx-1) || ay >= (ret->sy-1)) goto badmove; dot = &GRID(ret, grid, ax, ay); if (!(dot->flags & F_DOT))goto badmove; if (dot->flags & F_DOT_HOLD) goto badmove; for (dx = -1; dx <= 1; dx++) { for (dy = -1; dy <= 1; dy++) { sp = &GRID(ret, grid, x+dx, y+dy); if (sp->type != s_tile) continue; if (sp->flags & F_TILE_ASSOC) { space *dot = &SPACE(ret, sp->dotx, sp->doty); if (dot->flags & F_DOT_HOLD) continue; } /* The solver doesn't assume we'll mirror things */ if (currently_solving) add_assoc(ret, sp, dot); else add_assoc_with_opposite(ret, sp, dot); } } move += n; #ifdef EDITOR } else if (c == 'C') { move++; clear_game(ret, true); } else if (c == 'i') { int diff; move++; for (diff = 0; diff <= DIFF_UNREASONABLE; diff++) if (*move == galaxies_diffchars[diff]) break; if (diff > DIFF_UNREASONABLE) goto badmove; ret->cdiff = diff; move++; } else if (c == 'I') { int diff; move++; switch (*move) { case 'A': diff = DIFF_AMBIGUOUS; break; case 'I': diff = DIFF_IMPOSSIBLE; break; case 'U': diff = DIFF_UNFINISHED; break; default: goto badmove; } ret->cdiff = diff; move++; #endif } else if (c == 'S') { move++; ret->used_solve = true; currently_solving = true; } else goto badmove; if (*move == ';') move++; else if (*move) goto badmove; } if (check_complete(ret, NULL, NULL)) ret->completed = true; return ret; badmove: free_game(ret); return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ /* Lines will be much smaller size than squares; say, 1/8 the size? * * Need a 'top-left corner of location XxY' to take this into account; * alternaticaly, that could give the middle of that location, and the * drawing code would just know the expected dimensions. * * We also need something to take a click and work out what it was * we were interested in. Clicking on vertices is required because * we may want to drag from them, for example. */ static void game_compute_size(const game_params *params, int sz, const game_ui *ui, int *x, int *y) { struct { int tilesize, w, h; } ads, *ds = &ads; ds->tilesize = sz; ds->w = params->w; ds->h = params->h; *x = DRAW_WIDTH; *y = DRAW_HEIGHT; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int sz) { ds->tilesize = sz; assert(TILE_SIZE > 0); assert(!ds->bl); ds->bl = blitter_new(dr, TILE_SIZE, TILE_SIZE); assert(!ds->blmirror); ds->blmirror = blitter_new(dr, TILE_SIZE, TILE_SIZE); assert(!ds->cur_bl); ds->cur_bl = blitter_new(dr, TILE_SIZE, TILE_SIZE); } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; /* * We call game_mkhighlight to ensure the background colour * isn't completely white. We don't actually use the high- and * lowlight colours it generates. */ game_mkhighlight(fe, ret, COL_BACKGROUND, COL_WHITEBG, COL_BLACKBG); for (i = 0; i < 3; i++) { /* * Currently, white dots and white-background squares are * both pure white. */ ret[COL_WHITEDOT * 3 + i] = 1.0F; ret[COL_WHITEBG * 3 + i] = 1.0F; /* * But black-background squares are a dark grey, whereas * black dots are really black. */ ret[COL_BLACKDOT * 3 + i] = 0.0F; ret[COL_BLACKBG * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.3F; /* * In unfilled squares, we draw a faint gridwork. */ ret[COL_GRID * 3 + i] = ret[COL_BACKGROUND * 3 + i] * 0.8F; /* * Edges and arrows are filled in in pure black. */ ret[COL_EDGE * 3 + i] = 0.0F; ret[COL_ARROW * 3 + i] = 0.0F; } #ifdef EDITOR /* tinge the edit background to bluey */ ret[COL_BACKGROUND * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F; ret[COL_BACKGROUND * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F; ret[COL_BACKGROUND * 3 + 2] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F); #endif ret[COL_CURSOR * 3 + 0] = min(ret[COL_BACKGROUND * 3 + 0] * 1.4F, 1.0F); ret[COL_CURSOR * 3 + 1] = ret[COL_BACKGROUND * 3 + 0] * 0.8F; ret[COL_CURSOR * 3 + 2] = ret[COL_BACKGROUND * 3 + 0] * 0.8F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = false; ds->w = state->w; ds->h = state->h; ds->grid = snewn(ds->w*ds->h, unsigned long); for (i = 0; i < ds->w*ds->h; i++) ds->grid[i] = 0xFFFFFFFFUL; ds->dx = snewn(ds->w*ds->h, int); ds->dy = snewn(ds->w*ds->h, int); ds->bl = NULL; ds->blmirror = NULL; ds->dragging = false; ds->dragx = ds->dragy = ds->oppx = ds->oppy = 0; ds->colour_scratch = snewn(ds->w * ds->h, int); ds->cur_bl = NULL; ds->cx = ds->cy = 0; ds->cur_visible = false; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { if (ds->cur_bl) blitter_free(dr, ds->cur_bl); sfree(ds->colour_scratch); if (ds->blmirror) blitter_free(dr, ds->blmirror); if (ds->bl) blitter_free(dr, ds->bl); sfree(ds->dx); sfree(ds->dy); sfree(ds->grid); sfree(ds); } #define DRAW_EDGE_L 0x0001 #define DRAW_EDGE_R 0x0002 #define DRAW_EDGE_U 0x0004 #define DRAW_EDGE_D 0x0008 #define DRAW_CORNER_UL 0x0010 #define DRAW_CORNER_UR 0x0020 #define DRAW_CORNER_DL 0x0040 #define DRAW_CORNER_DR 0x0080 #define DRAW_WHITE 0x0100 #define DRAW_BLACK 0x0200 #define DRAW_ARROW 0x0400 #define DRAW_CURSOR 0x0800 #define DOT_SHIFT_C 12 #define DOT_SHIFT_M 2 #define DOT_WHITE 1UL #define DOT_BLACK 2UL /* * Draw an arrow centred on (cx,cy), pointing in the direction * (ddx,ddy). (I.e. pointing at the point (cx+ddx, cy+ddy). */ static void draw_arrow(drawing *dr, game_drawstate *ds, int cx, int cy, int ddx, int ddy, int col) { int sqdist = ddx*ddx+ddy*ddy; if (sqdist == 0) return; /* avoid division by zero */ float vlen = (float)sqrt(sqdist); float xdx = ddx/vlen, xdy = ddy/vlen; float ydx = -xdy, ydy = xdx; int e1x = cx + (int)(xdx*TILE_SIZE/3), e1y = cy + (int)(xdy*TILE_SIZE/3); int e2x = cx - (int)(xdx*TILE_SIZE/3), e2y = cy - (int)(xdy*TILE_SIZE/3); int adx = (int)((ydx-xdx)*TILE_SIZE/8), ady = (int)((ydy-xdy)*TILE_SIZE/8); int adx2 = (int)((-ydx-xdx)*TILE_SIZE/8), ady2 = (int)((-ydy-xdy)*TILE_SIZE/8); draw_line(dr, e1x, e1y, e2x, e2y, col); draw_line(dr, e1x, e1y, e1x+adx, e1y+ady, col); draw_line(dr, e1x, e1y, e1x+adx2, e1y+ady2, col); } static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, unsigned long flags, int ddx, int ddy) { int lx = COORD(x), ly = COORD(y); int dx, dy; int gridcol; clip(dr, lx, ly, TILE_SIZE, TILE_SIZE); /* * Draw the tile background. */ draw_rect(dr, lx, ly, TILE_SIZE, TILE_SIZE, (flags & DRAW_WHITE ? COL_WHITEBG : flags & DRAW_BLACK ? COL_BLACKBG : COL_BACKGROUND)); /* * Draw the grid. */ gridcol = (flags & DRAW_BLACK ? COL_BLACKDOT : COL_GRID); draw_rect(dr, lx, ly, 1, TILE_SIZE, gridcol); draw_rect(dr, lx, ly, TILE_SIZE, 1, gridcol); /* * Draw the arrow, if present, or the cursor, if here. */ if (flags & DRAW_ARROW) draw_arrow(dr, ds, lx + TILE_SIZE/2, ly + TILE_SIZE/2, ddx, ddy, (flags & DRAW_CURSOR) ? COL_CURSOR : COL_ARROW); else if (flags & DRAW_CURSOR) draw_rect_outline(dr, lx + TILE_SIZE/2 - CURSOR_SIZE, ly + TILE_SIZE/2 - CURSOR_SIZE, 2*CURSOR_SIZE+1, 2*CURSOR_SIZE+1, COL_CURSOR); /* * Draw the edges. */ if (flags & DRAW_EDGE_L) draw_rect(dr, lx, ly, EDGE_THICKNESS, TILE_SIZE, COL_EDGE); if (flags & DRAW_EDGE_R) draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly, EDGE_THICKNESS - 1, TILE_SIZE, COL_EDGE); if (flags & DRAW_EDGE_U) draw_rect(dr, lx, ly, TILE_SIZE, EDGE_THICKNESS, COL_EDGE); if (flags & DRAW_EDGE_D) draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1, TILE_SIZE, EDGE_THICKNESS - 1, COL_EDGE); if (flags & DRAW_CORNER_UL) draw_rect(dr, lx, ly, EDGE_THICKNESS, EDGE_THICKNESS, COL_EDGE); if (flags & DRAW_CORNER_UR) draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly, EDGE_THICKNESS - 1, EDGE_THICKNESS, COL_EDGE); if (flags & DRAW_CORNER_DL) draw_rect(dr, lx, ly + TILE_SIZE - EDGE_THICKNESS + 1, EDGE_THICKNESS, EDGE_THICKNESS - 1, COL_EDGE); if (flags & DRAW_CORNER_DR) draw_rect(dr, lx + TILE_SIZE - EDGE_THICKNESS + 1, ly + TILE_SIZE - EDGE_THICKNESS + 1, EDGE_THICKNESS - 1, EDGE_THICKNESS - 1, COL_EDGE); /* * Draw the dots. */ for (dy = 0; dy < 3; dy++) for (dx = 0; dx < 3; dx++) { int dotval = (flags >> (DOT_SHIFT_C + DOT_SHIFT_M*(dy*3+dx))); dotval &= (1 << DOT_SHIFT_M)-1; if (dotval) draw_circle(dr, lx+dx*TILE_SIZE/2, ly+dy*TILE_SIZE/2, DOT_SIZE, (dotval == 1 ? COL_WHITEDOT : COL_BLACKDOT), COL_BLACKDOT); } unclip(dr); draw_update(dr, lx, ly, TILE_SIZE, TILE_SIZE); } static void calculate_opposite_point(const game_ui *ui, const game_drawstate *ds, const int x, const int y, int *oppositex, int *oppositey) { /* oppositex - dotx = dotx - x <=> oppositex = 2 * dotx - x */ *oppositex = 2 * SCOORD(ui->dotx) - x; *oppositey = 2 * SCOORD(ui->doty) - y; } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int w = ds->w, h = ds->h; int x, y; bool flashing = false; if (flashtime > 0) { int frame = (int)(flashtime / FLASH_TIME); flashing = (frame % 2 == 0); } if (ds->dragging) { assert(ds->bl); assert(ds->blmirror); blitter_load(dr, ds->blmirror, ds->oppx, ds->oppy); draw_update(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE); blitter_load(dr, ds->bl, ds->dragx, ds->dragy); draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE); ds->dragging = false; } if (ds->cur_visible) { assert(ds->cur_bl); blitter_load(dr, ds->cur_bl, ds->cx, ds->cy); draw_update(dr, ds->cx, ds->cy, CURSOR_SIZE*2+1, CURSOR_SIZE*2+1); ds->cur_visible = false; } if (!ds->started) { draw_rect(dr, BORDER - EDGE_THICKNESS + 1, BORDER - EDGE_THICKNESS + 1, w*TILE_SIZE + EDGE_THICKNESS*2 - 1, h*TILE_SIZE + EDGE_THICKNESS*2 - 1, COL_EDGE); draw_update(dr, 0, 0, DRAW_WIDTH, DRAW_HEIGHT); ds->started = true; } check_complete(state, NULL, ds->colour_scratch); for (y = 0; y < h; y++) for (x = 0; x < w; x++) { unsigned long flags = 0; int ddx = 0, ddy = 0; space *sp, *opp; int dx, dy; /* * Set up the flags for this square. Firstly, see if we * have edges. */ if (SPACE(state, x*2, y*2+1).flags & F_EDGE_SET) flags |= DRAW_EDGE_L; if (SPACE(state, x*2+2, y*2+1).flags & F_EDGE_SET) flags |= DRAW_EDGE_R; if (SPACE(state, x*2+1, y*2).flags & F_EDGE_SET) flags |= DRAW_EDGE_U; if (SPACE(state, x*2+1, y*2+2).flags & F_EDGE_SET) flags |= DRAW_EDGE_D; /* * Also, mark corners of neighbouring edges. */ if ((x > 0 && SPACE(state, x*2-1, y*2).flags & F_EDGE_SET) || (y > 0 && SPACE(state, x*2, y*2-1).flags & F_EDGE_SET)) flags |= DRAW_CORNER_UL; if ((x+1 < w && SPACE(state, x*2+3, y*2).flags & F_EDGE_SET) || (y > 0 && SPACE(state, x*2+2, y*2-1).flags & F_EDGE_SET)) flags |= DRAW_CORNER_UR; if ((x > 0 && SPACE(state, x*2-1, y*2+2).flags & F_EDGE_SET) || (y+1 < h && SPACE(state, x*2, y*2+3).flags & F_EDGE_SET)) flags |= DRAW_CORNER_DL; if ((x+1 < w && SPACE(state, x*2+3, y*2+2).flags & F_EDGE_SET) || (y+1 < h && SPACE(state, x*2+2, y*2+3).flags & F_EDGE_SET)) flags |= DRAW_CORNER_DR; /* * If this square is part of a valid region, paint it * that region's colour. Exception: if we're flashing, * everything goes briefly back to background colour. */ sp = &SPACE(state, x*2+1, y*2+1); if (sp->flags & F_TILE_ASSOC) { opp = tile_opposite(state, sp); } else { opp = NULL; } if (ds->colour_scratch[y*w+x] && !flashing) { flags |= (ds->colour_scratch[y*w+x] == 2 ? DRAW_BLACK : DRAW_WHITE); } /* * If this square is associated with a dot but it isn't * part of a valid region, draw an arrow in it pointing * in the direction of that dot. * * Exception: if this is the source point of an active * drag, we don't draw the arrow. */ if ((sp->flags & F_TILE_ASSOC) && !ds->colour_scratch[y*w+x]) { if (ui->dragging && ui->srcx == x*2+1 && ui->srcy == y*2+1) { /* tile is the source, don't do it */ } else if (ui->dragging && opp && ui->srcx == opp->x && ui->srcy == opp->y) { /* opposite tile is the source, don't do it */ } else if (sp->doty != y*2+1 || sp->dotx != x*2+1) { flags |= DRAW_ARROW; ddy = sp->doty - (y*2+1); ddx = sp->dotx - (x*2+1); } } /* * Now go through the nine possible places we could * have dots. */ for (dy = 0; dy < 3; dy++) for (dx = 0; dx < 3; dx++) { sp = &SPACE(state, x*2+dx, y*2+dy); if (sp->flags & F_DOT) { unsigned long dotval = (sp->flags & F_DOT_BLACK ? DOT_BLACK : DOT_WHITE); flags |= dotval << (DOT_SHIFT_C + DOT_SHIFT_M*(dy*3+dx)); } } /* * Now work out if we have to draw a cursor for this square; * cursors-on-lines are taken care of below. */ if (ui->cur_visible && ui->cur_x == x*2+1 && ui->cur_y == y*2+1 && !(SPACE(state, x*2+1, y*2+1).flags & F_DOT)) flags |= DRAW_CURSOR; /* * Now we have everything we're going to need. Draw the * square. */ if (ds->grid[y*w+x] != flags || ds->dx[y*w+x] != ddx || ds->dy[y*w+x] != ddy) { draw_square(dr, ds, x, y, flags, ddx, ddy); ds->grid[y*w+x] = flags; ds->dx[y*w+x] = ddx; ds->dy[y*w+x] = ddy; } } /* * Draw a cursor. This secondary blitter is much less invasive than trying * to fix up all of the rest of the code with sufficient flags to be able to * display this sensibly. */ if (ui->cur_visible) { space *sp = &SPACE(state, ui->cur_x, ui->cur_y); ds->cur_visible = true; ds->cx = SCOORD(ui->cur_x) - CURSOR_SIZE; ds->cy = SCOORD(ui->cur_y) - CURSOR_SIZE; blitter_save(dr, ds->cur_bl, ds->cx, ds->cy); if (sp->flags & F_DOT) { /* draw a red dot (over the top of whatever would be there already) */ draw_circle(dr, SCOORD(ui->cur_x), SCOORD(ui->cur_y), DOT_SIZE, COL_CURSOR, COL_BLACKDOT); } else if (sp->type != s_tile) { /* draw an edge/vertex square; tile cursors are dealt with above. */ int dx = (ui->cur_x % 2) ? CURSOR_SIZE : CURSOR_SIZE/3; int dy = (ui->cur_y % 2) ? CURSOR_SIZE : CURSOR_SIZE/3; int x1 = SCOORD(ui->cur_x)-dx, y1 = SCOORD(ui->cur_y)-dy; int xs = dx*2+1, ys = dy*2+1; draw_rect(dr, x1, y1, xs, ys, COL_CURSOR); } draw_update(dr, ds->cx, ds->cy, CURSOR_SIZE*2+1, CURSOR_SIZE*2+1); } if (ui->dragging) { int oppx, oppy; ds->dragging = true; ds->dragx = ui->dx - TILE_SIZE/2; ds->dragy = ui->dy - TILE_SIZE/2; calculate_opposite_point(ui, ds, ui->dx, ui->dy, &oppx, &oppy); ds->oppx = oppx - TILE_SIZE/2; ds->oppy = oppy - TILE_SIZE/2; blitter_save(dr, ds->bl, ds->dragx, ds->dragy); clip(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE); draw_arrow(dr, ds, ui->dx, ui->dy, SCOORD(ui->dotx) - ui->dx, SCOORD(ui->doty) - ui->dy, COL_ARROW); unclip(dr); draw_update(dr, ds->dragx, ds->dragy, TILE_SIZE, TILE_SIZE); blitter_save(dr, ds->blmirror, ds->oppx, ds->oppy); clip(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE); draw_arrow(dr, ds, oppx, oppy, SCOORD(ui->dotx) - oppx, SCOORD(ui->doty) - oppy, COL_ARROW); unclip(dr); draw_update(dr, ds->oppx, ds->oppy, TILE_SIZE, TILE_SIZE); } #ifdef EDITOR { char buf[256]; if (state->cdiff != -1) sprintf(buf, "Puzzle is %s.", galaxies_diffnames[state->cdiff]); else buf[0] = '\0'; status_bar(dr, buf); } #endif } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if ((!oldstate->completed && newstate->completed) && !(newstate->used_solve)) return 3 * FLASH_TIME; else return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cur_visible) { space *sp = &SPACE(state, ui->cur_x, ui->cur_y); if(sp->flags & F_DOT) { *x = SCOORD(ui->cur_x) - DOT_SIZE; *y = SCOORD(ui->cur_y) - DOT_SIZE; *w = *h = 2 * DOT_SIZE + 1; } else if(sp->type != s_tile) { int dx = (ui->cur_x % 2) ? CURSOR_SIZE : CURSOR_SIZE/3; int dy = (ui->cur_y % 2) ? CURSOR_SIZE : CURSOR_SIZE/3; int x1 = SCOORD(ui->cur_x)-dx, y1 = SCOORD(ui->cur_y)-dy; int xs = dx*2+1, ys = dy*2+1; *x = x1; *y = y1; *w = xs; *h = ys; } else { *x = SCOORD(ui->cur_x) - CURSOR_SIZE; *y = SCOORD(ui->cur_y) - CURSOR_SIZE; *w = *h = 2 * CURSOR_SIZE + 1; } } } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } #ifndef EDITOR static void game_print_size(const game_params *params, const game_ui *ui, float *x, float *y) { int pw, ph; /* * 8mm squares by default. (There isn't all that much detail * that needs to go in each square.) */ game_compute_size(params, 800, ui, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, const game_ui *ui, int sz) { int w = state->w, h = state->h; int white, black, blackish; int x, y, i, j; int *colours; DSF *dsf; int *coords = NULL; int ncoords = 0, coordsize = 0; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; ds->tilesize = sz; white = print_mono_colour(dr, 1); black = print_mono_colour(dr, 0); blackish = print_hatched_colour(dr, HATCH_X); /* * Get the completion information. */ dsf = dsf_new(w * h); colours = snewn(w * h, int); check_complete(state, dsf, colours); /* * Draw the grid. */ print_line_width(dr, TILE_SIZE / 64); for (x = 1; x < w; x++) draw_line(dr, COORD(x), COORD(0), COORD(x), COORD(h), black); for (y = 1; y < h; y++) draw_line(dr, COORD(0), COORD(y), COORD(w), COORD(y), black); /* * Shade the completed regions. Just in case any particular * printing platform deals badly with adjacent * similarly-hatched regions, we'll fill each one as a single * polygon. */ for (i = 0; i < w*h; i++) { j = dsf_canonify(dsf, i); if (colours[j] != 0) { int dx, dy, t; /* * This is the first square we've run into belonging to * this polyomino, which means an edge of the polyomino * is certain to be to our left. (After we finish * tracing round it, we'll set the colours[] entry to * zero to prevent accidentally doing it again.) */ x = i % w; y = i / w; dx = -1; dy = 0; ncoords = 0; while (1) { /* * We are currently sitting on square (x,y), which * we know to be in our polyomino, and we also know * that (x+dx,y+dy) is not. The way I visualise * this is that we're standing to the right of a * boundary line, stretching our left arm out to * point to the exterior square on the far side. */ /* * First, check if we've gone round the entire * polyomino. */ if (ncoords > 0 && (x == i%w && y == i/w && dx == -1 && dy == 0)) break; /* * Add to our coordinate list the coordinate * backwards and to the left of where we are. */ if (ncoords + 2 > coordsize) { coordsize = (ncoords * 3 / 2) + 64; coords = sresize(coords, coordsize, int); } coords[ncoords++] = COORD((2*x+1 + dx + dy) / 2); coords[ncoords++] = COORD((2*y+1 + dy - dx) / 2); /* * Follow the edge round. If the square directly in * front of us is not part of the polyomino, we * turn right; if it is and so is the square in * front of (x+dx,y+dy), we turn left; otherwise we * go straight on. */ if (x-dy < 0 || x-dy >= w || y+dx < 0 || y+dx >= h || dsf_canonify(dsf, (y+dx)*w+(x-dy)) != j) { /* Turn right. */ t = dx; dx = -dy; dy = t; } else if (x+dx-dy >= 0 && x+dx-dy < w && y+dy+dx >= 0 && y+dy+dx < h && dsf_canonify(dsf, (y+dy+dx)*w+(x+dx-dy)) == j) { /* Turn left. */ x += dx; y += dy; t = dx; dx = dy; dy = -t; x -= dx; y -= dy; } else { /* Straight on. */ x -= dy; y += dx; } } /* * Now we have our polygon complete, so fill it. */ draw_polygon(dr, coords, ncoords/2, colours[j] == 2 ? blackish : -1, black); /* * And mark this polyomino as done. */ colours[j] = 0; } } /* * Draw the edges. */ for (y = 0; y <= h; y++) for (x = 0; x <= w; x++) { if (x < w && SPACE(state, x*2+1, y*2).flags & F_EDGE_SET) draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS, EDGE_THICKNESS * 2 + TILE_SIZE, EDGE_THICKNESS * 2, black); if (y < h && SPACE(state, x*2, y*2+1).flags & F_EDGE_SET) draw_rect(dr, COORD(x)-EDGE_THICKNESS, COORD(y)-EDGE_THICKNESS, EDGE_THICKNESS * 2, EDGE_THICKNESS * 2 + TILE_SIZE, black); } /* * Draw the dots. */ for (y = 0; y <= 2*h; y++) for (x = 0; x <= 2*w; x++) if (SPACE(state, x, y).flags & F_DOT) { draw_circle(dr, (int)COORD(x/2.0), (int)COORD(y/2.0), DOT_SIZE, (SPACE(state, x, y).flags & F_DOT_BLACK ? black : white), black); } dsf_free(dsf); sfree(colours); sfree(coords); } #endif #ifdef COMBINED #define thegame galaxies #endif const struct game thegame = { "Galaxies", "games.galaxies", "galaxies", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, #ifdef EDITOR false, NULL, #else true, solve_game, #endif true, game_can_format_as_text_now, game_text_format, NULL, NULL, /* get_prefs, set_prefs */ new_ui, free_ui, NULL, /* encode_ui */ NULL, /* decode_ui */ NULL, /* game_request_keys */ game_changed_state, #ifdef EDITOR NULL, #else current_key_label, #endif interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, #ifdef EDITOR false, false, NULL, NULL, true, /* wants_statusbar */ #else true, false, game_print_size, game_print, false, /* wants_statusbar */ #endif false, NULL, /* timing_state */ REQUIRE_RBUTTON, /* flags */ }; #ifdef STANDALONE_SOLVER static const char *quis; #include <time.h> static void usage_exit(const char *msg) { if (msg) fprintf(stderr, "%s: %s\n", quis, msg); fprintf(stderr, "Usage: %s [--seed SEED] --soak <params> | [game_id [game_id ...]]\n", quis); exit(1); } static void dump_state(game_state *state) { char *temp = game_text_format(state); printf("%s\n", temp); sfree(temp); } static int gen(game_params *p, random_state *rs, bool debug) { char *desc; int diff; game_state *state; #ifndef DEBUGGING solver_show_working = debug; #endif printf("Generating a %dx%d %s puzzle.\n", p->w, p->h, galaxies_diffnames[p->diff]); desc = new_game_desc(p, rs, NULL, false); state = new_game(NULL, p, desc); dump_state(state); diff = solver_state(state, DIFF_UNREASONABLE); printf("Generated %s game %dx%d:%s\n", galaxies_diffnames[diff], p->w, p->h, desc); dump_state(state); free_game(state); sfree(desc); return diff; } static void soak(game_params *p, random_state *rs) { time_t tt_start, tt_now, tt_last; char *desc; game_state *st; int diff, n = 0, i, diffs[DIFF_MAX], ndots = 0, nspaces = 0; #ifndef DEBUGGING solver_show_working = false; #endif tt_start = tt_now = time(NULL); for (i = 0; i < DIFF_MAX; i++) diffs[i] = 0; one_try = true; printf("Soak-generating a %dx%d grid, max. diff %s.\n", p->w, p->h, galaxies_diffnames[p->diff]); printf(" ["); for (i = 0; i < DIFF_MAX; i++) printf("%s%s", (i == 0) ? "" : ", ", galaxies_diffnames[i]); printf("]\n"); while (1) { char *aux; desc = new_game_desc(p, rs, &aux, false); sfree(aux); st = new_game(NULL, p, desc); diff = solver_state(st, p->diff); nspaces += st->w*st->h; for (i = 0; i < st->sx*st->sy; i++) if (st->grid[i].flags & F_DOT) ndots++; free_game(st); sfree(desc); diffs[diff]++; n++; tt_last = time(NULL); if (tt_last > tt_now) { tt_now = tt_last; printf("%d total, %3.1f/s, [", n, (double)n / ((double)tt_now - tt_start)); for (i = 0; i < DIFF_MAX; i++) printf("%s%.1f%%", (i == 0) ? "" : ", ", 100.0 * ((double)diffs[i] / (double)n)); printf("], %.1f%% dots\n", 100.0 * ((double)ndots / (double)nspaces)); } } } int main(int argc, char **argv) { game_params *p; char *id = NULL, *desc; const char *err; game_state *s; int diff; bool do_soak = false, verbose = false; random_state *rs; time_t seed = time(NULL); quis = argv[0]; while (--argc > 0) { char *p = *++argv; if (!strcmp(p, "-v")) { verbose = true; } else if (!strcmp(p, "--seed")) { if (argc == 0) usage_exit("--seed needs an argument"); seed = (time_t)atoi(*++argv); argc--; } else if (!strcmp(p, "--soak")) { do_soak = true; } else if (*p == '-') { usage_exit("unrecognised option"); } else { id = p; } } p = default_params(); rs = random_new((void*)&seed, sizeof(time_t)); if (do_soak) { if (!id) usage_exit("need one argument for --soak"); decode_params(p, *argv); soak(p, rs); return 0; } if (!id) { while (1) { p->w = random_upto(rs, 15) + 3; p->h = random_upto(rs, 15) + 3; p->diff = random_upto(rs, DIFF_UNREASONABLE); diff = gen(p, rs, false); } return 0; } desc = strchr(id, ':'); if (!desc) { decode_params(p, id); gen(p, rs, verbose); } else { #ifndef DEBUGGING solver_show_working = true; #endif *desc++ = '\0'; decode_params(p, id); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); exit(1); } s = new_game(NULL, p, desc); diff = solver_state(s, DIFF_UNREASONABLE); dump_state(s); printf("Puzzle is %s.\n", galaxies_diffnames[diff]); free_game(s); } free_params(p); return 0; } #endif #ifdef STANDALONE_PICTURE_GENERATOR /* * Main program for the standalone picture generator. To use it, * simply provide it with an XBM-format bitmap file (note XBM, not * XPM) on standard input, and it will output a game ID in return. * For example: * * $ ./galaxiespicture < badly-drawn-cat.xbm * 11x11:eloMBLzFeEzLNMWifhaWYdDbixCymBbBMLoDdewGg * * If you want a puzzle with a non-standard difficulty level, pass * a partial parameters string as a command-line argument (e.g. * `./galaxiespicture du < foo.xbm', where `du' is the same suffix * which if it appeared in a random-seed game ID would set the * difficulty level to Unreasonable). However, be aware that if the * generator fails to produce an adequately difficult puzzle too * many times then it will give up and return an easier one (just * as it does during normal GUI play). To be sure you really have * the difficulty you asked for, use galaxiessolver to * double-check. * * (Perhaps I ought to include an option to make this standalone * generator carry on looping until it really does get the right * difficulty. Hmmm.) */ #include <time.h> int main(int argc, char **argv) { game_params *par; char *params, *desc; random_state *rs; time_t seed = time(NULL); char buf[4096]; int i; int x, y; par = default_params(); if (argc > 1) decode_params(par, argv[1]); /* get difficulty */ par->w = par->h = -1; /* * Now read an XBM file from standard input. This is simple and * hacky and will do very little error detection, so don't feed * it bogus data. */ picture = NULL; x = y = 0; while (fgets(buf, sizeof(buf), stdin)) { buf[strcspn(buf, "\r\n")] = '\0'; if (!strncmp(buf, "#define", 7)) { /* * Lines starting `#define' give the width and height. */ char *num = buf + strlen(buf); char *symend; while (num > buf && isdigit((unsigned char)num[-1])) num--; symend = num; while (symend > buf && isspace((unsigned char)symend[-1])) symend--; if (symend-5 >= buf && !strncmp(symend-5, "width", 5)) par->w = atoi(num); else if (symend-6 >= buf && !strncmp(symend-6, "height", 6)) par->h = atoi(num); } else { /* * Otherwise, break the string up into words and take * any word of the form `0x' plus hex digits to be a * byte. */ char *p, *wordstart; if (!picture) { if (par->w < 0 || par->h < 0) { printf("failed to read width and height\n"); return 1; } picture = snewn(par->w * par->h, int); for (i = 0; i < par->w * par->h; i++) picture[i] = -1; } p = buf; while (*p) { while (*p && (*p == ',' || isspace((unsigned char)*p))) p++; wordstart = p; while (*p && !(*p == ',' || *p == '}' || isspace((unsigned char)*p))) p++; if (*p) *p++ = '\0'; if (wordstart[0] == '0' && (wordstart[1] == 'x' || wordstart[1] == 'X') && !wordstart[2 + strspn(wordstart+2, "0123456789abcdefABCDEF")]) { unsigned long byte = strtoul(wordstart+2, NULL, 16); for (i = 0; i < 8; i++) { int bit = (byte >> i) & 1; if (y < par->h && x < par->w) picture[y * par->w + x] = bit; x++; } if (x >= par->w) { x = 0; y++; } } } } } for (i = 0; i < par->w * par->h; i++) if (picture[i] < 0) { fprintf(stderr, "failed to read enough bitmap data\n"); return 1; } rs = random_new((void*)&seed, sizeof(time_t)); desc = new_game_desc(par, rs, NULL, false); params = encode_params(par, false); printf("%s:%s\n", params, desc); sfree(desc); sfree(params); free_params(par); random_free(rs); return 0; } #endif /* vim: set shiftwidth=4 tabstop=8: */