ref: 14db5e0145e0942e5cf851d696aebd2347418087
dir: /hat.c/
/* * Code to generate patches of the aperiodic 'hat' tiling discovered * in 2023. * * This uses the 'combinatorial coordinates' system documented in my * public article * https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/aperiodic-tilings/ * * The internal document auxiliary/doc/hats.html also contains an * explanation of the basic ideas of this algorithm (less polished but * containing more detail). * * Neither of those documents can really be put in a source file, * because they just have too many complicated diagrams. So read at * least one of those first; the comments in here will refer to it. * * Discoverers' website: https://cs.uwaterloo.ca/~csk/hat/ * Preprint of paper: https://arxiv.org/abs/2303.10798 */ #include <assert.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "puzzles.h" #include "hat.h" #include "hat-internal.h" void hat_kiteenum_first(KiteEnum *s, int w, int h) { Kite start = { {0,0}, {0, 3}, {3, 0}, {2, 2} }; size_t i; for (i = 0; i < KE_NKEEP; i++) s->recent[i] = start; /* initialise to *something* */ s->curr_index = 0; s->curr = &s->recent[s->curr_index]; s->state = 1; s->w = w; s->h = h; s->x = 0; s->y = 0; } bool hat_kiteenum_next(KiteEnum *s) { unsigned lastbut1 = s->last_index; s->last_index = s->curr_index; s->curr_index = (s->curr_index + 1) % KE_NKEEP; s->curr = &s->recent[s->curr_index]; switch (s->state) { /* States 1,2,3 walk rightwards along the upper side of a * horizontal grid line with a pointy kite end at the start * point */ case 1: s->last_step = KS_F_RIGHT; s->state = 2; break; case 2: if (s->x+1 >= s->w) { s->last_step = KS_F_RIGHT; s->state = 4; break; } s->last_step = KS_RIGHT; s->state = 3; s->x++; break; case 3: s->last_step = KS_RIGHT; s->state = 1; break; /* State 4 is special: we've just moved up into a row below a * grid line, but we can't produce the rightmost tile of that * row because it's not adjacent any tile so far emitted. So * instead, emit the second-rightmost tile, and next time, * we'll emit the rightmost. */ case 4: s->last_step = KS_LEFT; s->state = 5; break; /* And now we have to emit the third-rightmost tile relative * to the last but one tile we emitted (the one from state 2, * not state 4). */ case 5: s->last_step = KS_RIGHT; s->last_index = lastbut1; s->state = 6; break; /* Now states 6-8 handle the general case of walking leftwards * along the lower side of a line, starting from a * right-angled kite end. */ case 6: if (s->x <= 0) { if (s->y+1 >= s->h) { s->state = 0; return false; } s->last_step = KS_RIGHT; s->state = 9; s->y++; break; } s->last_step = KS_F_RIGHT; s->state = 7; s->x--; break; case 7: s->last_step = KS_RIGHT; s->state = 8; break; case 8: s->last_step = KS_RIGHT; s->state = 6; break; /* States 9,10,11 walk rightwards along the upper side of a * horizontal grid line with a right-angled kite end at the * start point. This time there's no awkward transition from * the previous row. */ case 9: s->last_step = KS_RIGHT; s->state = 10; break; case 10: s->last_step = KS_RIGHT; s->state = 11; break; case 11: if (s->x+1 >= s->w) { /* Another awkward transition to the next row, where we * have to generate it based on the previous state-9 tile. * But this time at least we generate the rightmost tile * of the new row, so the next states will be simple. */ s->last_step = KS_F_RIGHT; s->last_index = lastbut1; s->state = 12; break; } s->last_step = KS_F_RIGHT; s->state = 9; s->x++; break; /* States 12,13,14 walk leftwards along the upper edge of a * horizontal grid line with a pointy kite end at the start * point */ case 12: s->last_step = KS_F_RIGHT; s->state = 13; break; case 13: if (s->x <= 0) { if (s->y+1 >= s->h) { s->state = 0; return false; } s->last_step = KS_LEFT; s->state = 1; s->y++; break; } s->last_step = KS_RIGHT; s->state = 14; s->x--; break; case 14: s->last_step = KS_RIGHT; s->state = 12; break; default: return false; } *s->curr = kite_step(s->recent[s->last_index], s->last_step); return true; } /* * The actual tables. */ #include "hat-tables.h" /* * One set of tables that we write by hand: the permitted ways to * extend the coordinate system outwards from a given metatile. * * One obvious approach would be to make a table of all the places * each metatile can appear in the expansion of another (e.g. H can be * subtile 0, 1 or 2 of another H, subtile 0 of a T, or 0 or 1 of a P * or an F), and when we need to decide what our current topmost tile * turns out to be a subtile of, choose equiprobably at random from * those options. * * That's what I did originally, but a better approach is to skew the * probabilities. We'd like to generate our patch of actual tiling * uniformly at random, in the sense that if you selected uniformly * from a very large region of the plane, the distribution of possible * finite patches of tiling would converge to some limit as that * region tended to infinity, and we'd be picking from that limiting * distribution on finite patches. * * For this we have to refer back to the original paper, which * indicates the subset of each metatile's expansion that can be * considered to 'belong' to that metatile, such that every subtile * belongs to exactly one parent metatile, and the overlaps are * eliminated. Reading out the diagrams from their Figure 2.8: * * - H: we discard three of the outer F subtiles, in the symmetric * positions index by our coordinates as 7, 10, 11. So we keep the * remaining subtiles {0,1,2,3,4,5,6,8,9,12}, which consist of * three H, one T, three P and three F. * * - T: only the central H expanded from a T is considered to belong * to it, so we just keep {0}, a single H. * * - P: we discard everything intersected by a long edge of the * parallelogram, leaving the central three tiles and the endmost * pair of F. That is, we keep {0,1,4,5,10}, consisting of two H, * one P and two F. * * - F: looks like P at one end, and we retain the corresponding set * of tiles there, but at the other end we keep the two F on either * side of the endmost one. So we keep {0,1,3,6,8,10}, consisting of * two H, one P and _three_ F. * * Adding up the tile numbers gives us this matrix system: * * (H_1) (3 1 2 2)(H_0) * (T_1) = (1 0 0 0)(T_0) * (P_1) (3 0 1 1)(P_0) * (F_1) (3 0 2 3)(F_0) * * which says that if you have a patch of metatiling consisting of H_0 * H tiles, T_0 T tiles etc, then this matrix shows the number H_1 of * smaller H tiles, etc, expanded from it. * * If you expand _many_ times, that's equivalent to raising the matrix * to a power: * * n * (H_n) (3 1 2 2) (H_0) * (T_n) = (1 0 0 0) (T_0) * (P_n) (3 0 1 1) (P_0) * (F_n) (3 0 2 3) (F_0) * * The limiting distribution of metatiles is obtained by looking at * the four-way ratio between H_n, T_n, P_n and F_n as n tends to * infinity. To calculate this, we find the eigenvalues and * eigenvectors of the matrix, and extract the eigenvector * corresponding to the eigenvalue of largest magnitude. (Things get * more complicated in cases where there isn't a _unique_ eigenvalue * of largest magnitude, but here, there is.) * * That eigenvector is * * [ 1 ] [ 1 ] * [ (7 - 3 sqrt(5)) / 2 ] ~= [ 0.14589803375031545538 ] * [ 3 sqrt(5) - 6 ] [ 0.70820393249936908922 ] * [ (9 - 3 sqrt(5)) / 2 ] [ 1.14589803375031545538 ] * * So those are the limiting relative proportions of metatiles. * * So if we have a particular metatile, how likely is it for its * parent to be one of those? We have to adjust by the number of * metatiles of each type that each tile has as its children. For * example, the P and F tiles have one P child each, but the H has * three P children. So if we have a P, the proportion of H in its * potential ancestry is three times what's shown here. (And T can't * occur at all as a parent.) * * In other words, we should choose _each coordinate_ with probability * corresponding to one of those numbers (scaled down so they all sum * to 1). Continuing to use P as an example, it will be: * * - child 4 of H with relative probability 1 * - child 5 of H with relative probability 1 * - child 6 of H with relative probability 1 * - child 4 of P with relative probability 0.70820393249936908922 * - child 3 of F with relative probability 1.14589803375031545538 * * and then we obtain the true probabilities by scaling those values * down so that they sum to 1. * * The tables below give a reasonable approximation in 32-bit * integers to these proportions. */ typedef struct MetatilePossibleParent { TileType type; unsigned index; unsigned long probability; } MetatilePossibleParent; /* The above probabilities scaled up by 10000000 */ #define PROB_H 10000000 #define PROB_T 1458980 #define PROB_P 7082039 #define PROB_F 11458980 static const MetatilePossibleParent parents_H[] = { { TT_H, 0, PROB_H }, { TT_H, 1, PROB_H }, { TT_H, 2, PROB_H }, { TT_T, 0, PROB_T }, { TT_P, 0, PROB_P }, { TT_P, 1, PROB_P }, { TT_F, 0, PROB_F }, { TT_F, 1, PROB_F }, }; static const MetatilePossibleParent parents_T[] = { { TT_H, 3, PROB_H }, }; static const MetatilePossibleParent parents_P[] = { { TT_H, 4, PROB_H }, { TT_H, 5, PROB_H }, { TT_H, 6, PROB_H }, { TT_P, 4, PROB_P }, { TT_F, 3, PROB_F }, }; static const MetatilePossibleParent parents_F[] = { { TT_H, 8, PROB_H }, { TT_H, 9, PROB_H }, { TT_H, 12, PROB_H }, { TT_P, 5, PROB_P }, { TT_P, 10, PROB_P }, { TT_F, 6, PROB_F }, { TT_F, 8, PROB_F }, { TT_F, 10, PROB_F }, }; static const MetatilePossibleParent *const possible_parents[] = { parents_H, parents_T, parents_P, parents_F, }; static const size_t n_possible_parents[] = { lenof(parents_H), lenof(parents_T), lenof(parents_P), lenof(parents_F), }; /* * Similarly, we also want to choose our absolute starting hat with * close to uniform probability, which again we do by looking at the * limiting ratio of the metatile types, and this time, scaling by the * number of hats in each metatile. * * We cheatingly use the same MetatilePossibleParent struct, because * it's got all the right fields, even if it has an inappropriate * name. */ static const MetatilePossibleParent starting_hats[] = { { TT_H, 0, PROB_H }, { TT_H, 1, PROB_H }, { TT_H, 2, PROB_H }, { TT_H, 3, PROB_H }, { TT_T, 0, PROB_P }, { TT_P, 0, PROB_P }, { TT_P, 1, PROB_P }, { TT_F, 0, PROB_F }, { TT_F, 1, PROB_F }, }; #undef PROB_H #undef PROB_T #undef PROB_P #undef PROB_F HatCoords *hat_coords_new(void) { HatCoords *hc = snew(HatCoords); hc->nc = hc->csize = 0; hc->c = NULL; return hc; } void hat_coords_free(HatCoords *hc) { if (hc) { sfree(hc->c); sfree(hc); } } void hat_coords_make_space(HatCoords *hc, size_t size) { if (hc->csize < size) { hc->csize = hc->csize * 5 / 4 + 16; if (hc->csize < size) hc->csize = size; hc->c = sresize(hc->c, hc->csize, HatCoord); } } HatCoords *hat_coords_copy(HatCoords *hc_in) { HatCoords *hc_out = hat_coords_new(); hat_coords_make_space(hc_out, hc_in->nc); memcpy(hc_out->c, hc_in->c, hc_in->nc * sizeof(*hc_out->c)); hc_out->nc = hc_in->nc; return hc_out; } static const MetatilePossibleParent *choose_mpp( random_state *rs, const MetatilePossibleParent *parents, size_t nparents) { /* * If we needed to do this _efficiently_, we'd rewrite all those * tables above as cumulative frequency tables and use binary * search. But this happens about log n times in a grid of area n, * so it hardly matters, and it's easier to keep the tables * legible. */ unsigned long limit = 0, value; size_t i; for (i = 0; i < nparents; i++) limit += parents[i].probability; value = random_upto(rs, limit); for (i = 0; i+1 < nparents; i++) { if (value < parents[i].probability) return &parents[i]; value -= parents[i].probability; } assert(i == nparents - 1); assert(value < parents[i].probability); return &parents[i]; } void hatctx_init_random(HatContext *ctx, random_state *rs) { const MetatilePossibleParent *starting_hat = choose_mpp( rs, starting_hats, lenof(starting_hats)); ctx->rs = rs; ctx->prototype = hat_coords_new(); hat_coords_make_space(ctx->prototype, 3); ctx->prototype->c[2].type = starting_hat->type; ctx->prototype->c[2].index = -1; ctx->prototype->c[1].type = TT_HAT; ctx->prototype->c[1].index = starting_hat->index; ctx->prototype->c[0].type = TT_KITE; ctx->prototype->c[0].index = random_upto(rs, HAT_KITES); ctx->prototype->nc = 3; } static inline int metatile_char_to_enum(char metatile) { return (metatile == 'H' ? TT_H : metatile == 'T' ? TT_T : metatile == 'P' ? TT_P : metatile == 'F' ? TT_F : -1); } static void init_coords_params(HatContext *ctx, const struct HatPatchParams *hp) { size_t i; ctx->rs = NULL; ctx->prototype = hat_coords_new(); assert(hp->ncoords >= 3); hat_coords_make_space(ctx->prototype, hp->ncoords + 1); ctx->prototype->nc = hp->ncoords + 1; for (i = 0; i < hp->ncoords; i++) ctx->prototype->c[i].index = hp->coords[i]; ctx->prototype->c[hp->ncoords].type = metatile_char_to_enum(hp->final_metatile); ctx->prototype->c[hp->ncoords].index = -1; ctx->prototype->c[0].type = TT_KITE; ctx->prototype->c[1].type = TT_HAT; for (i = hp->ncoords - 1; i > 1; i--) { TileType metatile = ctx->prototype->c[i+1].type; assert(hp->coords[i] < nchildren[metatile]); ctx->prototype->c[i].type = children[metatile][hp->coords[i]]; } assert(hp->coords[0] < 8); } HatCoords *hatctx_initial_coords(HatContext *ctx) { return hat_coords_copy(ctx->prototype); } /* * Extend hc until it has at least n coordinates in, by copying from * ctx->prototype if needed, and extending ctx->prototype if needed in * order to do that. */ void hatctx_extend_coords(HatContext *ctx, HatCoords *hc, size_t n) { if (ctx->prototype->nc < n) { hat_coords_make_space(ctx->prototype, n); while (ctx->prototype->nc < n) { TileType type = ctx->prototype->c[ctx->prototype->nc - 1].type; assert(ctx->prototype->c[ctx->prototype->nc - 1].index == -1); const MetatilePossibleParent *parent; if (ctx->rs) parent = choose_mpp(ctx->rs, possible_parents[type], n_possible_parents[type]); else parent = possible_parents[type]; ctx->prototype->c[ctx->prototype->nc - 1].index = parent->index; ctx->prototype->c[ctx->prototype->nc].index = -1; ctx->prototype->c[ctx->prototype->nc].type = parent->type; ctx->prototype->nc++; } } hat_coords_make_space(hc, n); while (hc->nc < n) { assert(hc->c[hc->nc - 1].index == -1); assert(hc->c[hc->nc - 1].type == ctx->prototype->c[hc->nc - 1].type); hc->c[hc->nc - 1].index = ctx->prototype->c[hc->nc - 1].index; hc->c[hc->nc].index = -1; hc->c[hc->nc].type = ctx->prototype->c[hc->nc].type; hc->nc++; } } void hatctx_cleanup(HatContext *ctx) { hat_coords_free(ctx->prototype); } /* * The actual system for finding the coordinates of an adjacent kite. */ /* * Kitemap step: ensure we have enough coordinates to know two levels * of meta-tiling, and use the kite map for the outer layer to move * around the individual kites. If this fails, return NULL. */ static HatCoords *try_step_coords_kitemap( HatContext *ctx, HatCoords *hc_in, KiteStep step) { hatctx_extend_coords(ctx, hc_in, 4); hat_coords_debug(" try kitemap ", hc_in, "\n"); unsigned kite = hc_in->c[0].index; unsigned hat = hc_in->c[1].index; unsigned meta = hc_in->c[2].index; TileType meta2type = hc_in->c[3].type; const KitemapEntry *ke = &kitemap[meta2type][ kitemap_index(step, kite, hat, meta)]; if (ke->kite >= 0) { /* * Success! We've got coordinates for the next kite in this * direction. */ HatCoords *hc_out = hat_coords_copy(hc_in); hc_out->c[2].index = ke->meta; hc_out->c[2].type = children[meta2type][ke->meta]; hc_out->c[1].index = ke->hat; hc_out->c[1].type = TT_HAT; hc_out->c[0].index = ke->kite; hc_out->c[0].type = TT_KITE; hat_coords_debug(" success! ", hc_out, "\n"); return hc_out; } return NULL; } /* * Recursive metamap step. Try using the metamap to rewrite the * coordinates at hc->c[depth] and hc->c[depth+1] (using the metamap * for the tile type described in hc->c[depth+2]). If successful, * recurse back down to see if this led to a successful step via the * kitemap. If even that fails (so that we need to try a higher-order * metamap rewrite), return NULL. */ static HatCoords *try_step_coords_metamap( HatContext *ctx, HatCoords *hc_in, KiteStep step, size_t depth) { HatCoords *hc_tmp = NULL, *hc_out; hatctx_extend_coords(ctx, hc_in, depth+3); #ifdef HAT_COORDS_DEBUG fprintf(stderr, " try meta %-4d", (int)depth); hat_coords_debug("", hc_in, "\n"); #endif unsigned meta_orig = hc_in->c[depth].index; unsigned meta2_orig = hc_in->c[depth+1].index; TileType meta3type = hc_in->c[depth+2].type; unsigned meta = meta_orig, meta2 = meta2_orig; while (true) { const MetamapEntry *me; HatCoords *hc_curr = hc_tmp ? hc_tmp : hc_in; if (depth > 2) hc_out = try_step_coords_metamap(ctx, hc_curr, step, depth - 1); else hc_out = try_step_coords_kitemap(ctx, hc_curr, step); if (hc_out) { hat_coords_free(hc_tmp); return hc_out; } me = &metamap[meta3type][metamap_index(meta, meta2)]; assert(me->meta != -1); if (me->meta == meta_orig && me->meta2 == meta2_orig) { hat_coords_free(hc_tmp); return NULL; } meta = me->meta; meta2 = me->meta2; /* * We must do the rewrite in a copy of hc_in. It's not * _necessarily_ obvious that that's the case (any successful * rewrite leaves the coordinates still valid and still * referring to the same kite, right?). But the problem is * that we might do a rewrite at this level more than once, * and in between, a metamap rewrite at the next level down * might have modified _one_ of the two coordinates we're * messing about with. So it's easiest to let the recursion * just use a separate copy. */ if (!hc_tmp) hc_tmp = hat_coords_copy(hc_in); hc_tmp->c[depth+1].index = meta2; hc_tmp->c[depth+1].type = children[meta3type][meta2]; hc_tmp->c[depth].index = meta; hc_tmp->c[depth].type = children[hc_tmp->c[depth+1].type][meta]; hat_coords_debug(" rewritten -> ", hc_tmp, "\n"); } } /* * The top-level algorithm for finding the next tile. */ HatCoords *hatctx_step(HatContext *ctx, HatCoords *hc_in, KiteStep step) { HatCoords *hc_out; size_t depth; #ifdef HAT_COORDS_DEBUG static const char *const directions[] = { " left\n", " right\n", " forward left\n", " forward right\n" }; hat_coords_debug("step start ", hc_in, directions[step]); #endif /* * First, just try a kitemap step immediately. If that succeeds, * we're done. */ if ((hc_out = try_step_coords_kitemap(ctx, hc_in, step)) != NULL) return hc_out; /* * Otherwise, try metamap rewrites at successively higher layers * until one works. Each one will recurse back down to the * kitemap, as described above. */ for (depth = 2;; depth++) { if ((hc_out = try_step_coords_metamap( ctx, hc_in, step, depth)) != NULL) return hc_out; } } /* * Generate a random set of parameters for a tiling of a given size. * To do this, we iterate over the whole tiling via hat_kiteenum_first * and hat_kiteenum_next, and for each kite, calculate its * coordinates. But then we throw the coordinates away and don't do * anything with them! * * But the side effect of _calculating_ all those coordinates is that * we found out how far ctx->prototype needed to be extended, and did * so, pulling random choices out of our random_state. So after this * iteration, ctx->prototype contains everything we need to replicate * the same piece of tiling next time. */ void hat_tiling_randomise(struct HatPatchParams *hp, int w, int h, random_state *rs) { HatContext ctx[1]; HatCoords *coords[KE_NKEEP]; KiteEnum s[1]; size_t i; hatctx_init_random(ctx, rs); for (i = 0; i < lenof(coords); i++) coords[i] = NULL; hat_kiteenum_first(s, w, h); coords[s->curr_index] = hatctx_initial_coords(ctx); while (hat_kiteenum_next(s)) { hat_coords_free(coords[s->curr_index]); coords[s->curr_index] = hatctx_step( ctx, coords[s->last_index], s->last_step); } hp->ncoords = ctx->prototype->nc - 1; hp->coords = snewn(hp->ncoords, unsigned char); for (i = 0; i < hp->ncoords; i++) hp->coords[i] = ctx->prototype->c[i].index; hp->final_metatile = tilechars[ctx->prototype->c[hp->ncoords].type]; hatctx_cleanup(ctx); for (i = 0; i < lenof(coords); i++) hat_coords_free(coords[i]); } const char *hat_tiling_params_invalid(const struct HatPatchParams *hp) { TileType metatile; size_t i; if (hp->ncoords < 3) return "Grid parameters require at least three coordinates"; if (metatile_char_to_enum(hp->final_metatile) < 0) return "Grid parameters contain an invalid final metatile"; if (hp->coords[0] >= 8) return "Grid parameters contain an invalid kite index"; metatile = metatile_char_to_enum(hp->final_metatile); for (i = hp->ncoords - 1; i > 1; i--) { if (hp->coords[i] >= nchildren[metatile]) return "Grid parameters contain an invalid metatile index"; metatile = children[metatile][hp->coords[i]]; } if (hp->coords[1] >= hats_in_metatile[metatile]) return "Grid parameters contain an invalid hat index"; return NULL; } void maybe_report_hat(int w, int h, Kite kite, HatCoords *hc, internal_hat_callback_fn cb, void *cbctx) { Kite kite0; Point vertices[14]; size_t i, j; bool reversed = false; int coords[28]; /* Only iterate from kite #0 of a hat */ if (hc->c[0].index != 0) return; kite0 = kite; /* * Identify reflected hats: they are always hat #3 of an H * metatile. If we find one, reflect the starting kite so that the * kite_step operations below will go in the other direction. */ if (hc->c[2].type == TT_H && hc->c[1].index == 3) { reversed = true; Point tmp = kite.left; kite.left = kite.right; kite.right = tmp; } vertices[0] = kite.centre; vertices[1] = kite.right; vertices[2] = kite.outer; vertices[3] = kite.left; kite = kite_left(kite); /* now on kite #1 */ kite = kite_forward_right(kite); /* now on kite #2 */ vertices[4] = kite.centre; kite = kite_right(kite); /* now on kite #3 */ vertices[5] = kite.right; vertices[6] = kite.outer; kite = kite_forward_left(kite); /* now on kite #4 */ vertices[7] = kite.left; vertices[8] = kite.centre; kite = kite_right(kite); /* now on kite #5 */ kite = kite_right(kite); /* now on kite #6 */ kite = kite_right(kite); /* now on kite #7 */ vertices[9] = kite.right; vertices[10] = kite.outer; vertices[11] = kite.left; kite = kite_left(kite); /* now on kite #6 again */ vertices[12] = kite.outer; vertices[13] = kite.left; if (reversed) { /* For a reversed kite, also reverse the vertex order, so that * we report every polygon in a consistent orientation */ for (i = 0, j = 13; i < j; i++, j--) { Point tmp = vertices[i]; vertices[i] = vertices[j]; vertices[j] = tmp; } } /* * Convert from our internal coordinate system into the orthogonal * one used in this module's external API. In the same loop, we * might as well do the bounds check. */ for (i = 0; i < 14; i++) { Point v = vertices[i]; int x = (v.x * 2 + v.y) / 3, y = v.y; if (x < 0 || x > 4*w || y < 0 || y > 6*h) return; /* a vertex of this kite is out of bounds */ coords[2*i] = x; coords[2*i+1] = y; } cb(cbctx, kite0, hc, coords); } struct internal_ctx { hat_tile_callback_fn external_cb; void *external_cbctx; }; static void report_hat(void *vctx, Kite kite0, HatCoords *hc, int *coords) { struct internal_ctx *ctx = (struct internal_ctx *)vctx; ctx->external_cb(ctx->external_cbctx, 14, coords); } /* * Generate a hat tiling from a previously generated set of parameters. */ void hat_tiling_generate(const struct HatPatchParams *hp, int w, int h, hat_tile_callback_fn cb, void *cbctx) { HatContext ctx[1]; HatCoords *coords[KE_NKEEP]; KiteEnum s[1]; size_t i; struct internal_ctx report_hat_ctx[1]; report_hat_ctx->external_cb = cb; report_hat_ctx->external_cbctx = cbctx; init_coords_params(ctx, hp); for (i = 0; i < lenof(coords); i++) coords[i] = NULL; hat_kiteenum_first(s, w, h); coords[s->curr_index] = hatctx_initial_coords(ctx); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], report_hat, report_hat_ctx); while (hat_kiteenum_next(s)) { hat_coords_free(coords[s->curr_index]); coords[s->curr_index] = hatctx_step( ctx, coords[s->last_index], s->last_step); maybe_report_hat(w, h, *s->curr, coords[s->curr_index], report_hat, report_hat_ctx); } hatctx_cleanup(ctx); for (i = 0; i < lenof(coords); i++) hat_coords_free(coords[i]); }