ref: 20b56788bc61de5b3d10c90a9fd588d373134aae
dir: /filling.c/
/* -*- tab-width: 8; indent-tabs-mode: t -*- * filling.c: An implementation of the Nikoli game fillomino. * Copyright (C) 2007 Jonas Kölker. See LICENSE for the license. */ /* TODO: * * - use a typedef instead of int for numbers on the board * + replace int with something else (signed short?) * - the type should be signed (for -board[i] and -SENTINEL) * - the type should be somewhat big: board[i] = i * - Using shorts gives us 181x181 puzzles as upper bound. * * - in board generation, after having merged regions such that no * more merges are necessary, try splitting (big) regions. * + it seems that smaller regions make for better puzzles; see * for instance the 7x7 puzzle in this file (grep for 7x7:). * * - symmetric hints (solo-style) * + right now that means including _many_ hints, and the puzzles * won't look any nicer. Not worth it (at the moment). * * - make the solver do recursion/backtracking. * + This is for user-submitted puzzles, not for puzzle * generation (on the other hand, never say never). * * - prove that only w=h=2 needs a special case * * - solo-like pencil marks? * * - a user says that the difficulty is unevenly distributed. * + partition into levels? Will they be non-crap? * * - Allow square contents > 9? * + I could use letters for digits (solo does this), but * letters don't have numeric significance (normal people hate * base36), which is relevant here (much more than in solo). * + [click, 1, 0, enter] => [10 in clicked square]? * + How much information is needed to solve? Does one need to * know the algorithm by which the largest number is set? * * - eliminate puzzle instances with done chunks (1's in particular)? * + that's what the qsort call is all about. * + the 1's don't bother me that much. * + but this takes a LONG time (not always possible)? * - this may be affected by solver (lack of) quality. * - weed them out by construction instead of post-cons check * + but that interleaves make_board and new_game_desc: you * have to alternate between changing the board and * changing the hint set (instead of just creating the * board once, then changing the hint set once -> done). * * - use binary search when discovering the minimal sovable point * + profile to show a need (but when the solver gets slower...) * + 7x9 @ .011s, 9x13 @ .075s, 17x13 @ .661s (all avg with n=100) * + but the hints are independent, not linear, so... what? */ #include <assert.h> #include <ctype.h> #include <math.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "puzzles.h" static unsigned char verbose; static void printv(const char *fmt, ...) { #ifndef PALM if (verbose) { va_list va; va_start(va, fmt); vprintf(fmt, va); va_end(va); } #endif } /***************************************************************************** * GAME CONFIGURATION AND PARAMETERS * *****************************************************************************/ struct game_params { int w, h; }; struct shared_state { struct game_params params; int *clues; int refcnt; }; struct game_state { int *board; struct shared_state *shared; int completed, cheated; }; static const struct game_params filling_defaults[3] = { {9, 7}, {13, 9}, {17, 13} }; static game_params *default_params(void) { game_params *ret = snew(game_params); *ret = filling_defaults[1]; /* struct copy */ return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { char buf[64]; if (i < 0 || i >= lenof(filling_defaults)) return FALSE; *params = snew(game_params); **params = filling_defaults[i]; /* struct copy */ sprintf(buf, "%dx%d", filling_defaults[i].w, filling_defaults[i].h); *name = dupstr(buf); return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* struct copy */ return ret; } static void decode_params(game_params *ret, char const *string) { ret->w = ret->h = atoi(string); while (*string && isdigit((unsigned char) *string)) ++string; if (*string == 'x') ret->h = atoi(++string); } static char *encode_params(const game_params *params, bool full) { char buf[64]; sprintf(buf, "%dx%d", params->w, params->h); return dupstr(buf); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[64]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = NULL; ret[2].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w < 1) return "Width must be at least one"; if (params->h < 1) return "Height must be at least one"; return NULL; } /***************************************************************************** * STRINGIFICATION OF GAME STATE * *****************************************************************************/ #define EMPTY 0 /* Example of plaintext rendering: * +---+---+---+---+---+---+---+ * | 6 | | | 2 | | | 2 | * +---+---+---+---+---+---+---+ * | | 3 | | 6 | | 3 | | * +---+---+---+---+---+---+---+ * | 3 | | | | | | 1 | * +---+---+---+---+---+---+---+ * | | 2 | 3 | | 4 | 2 | | * +---+---+---+---+---+---+---+ * | 2 | | | | | | 3 | * +---+---+---+---+---+---+---+ * | | 5 | | 1 | | 4 | | * +---+---+---+---+---+---+---+ * | 4 | | | 3 | | | 3 | * +---+---+---+---+---+---+---+ * * This puzzle instance is taken from the nikoli website * Encoded (unsolved and solved), the strings are these: * 7x7:6002002030603030000010230420200000305010404003003 * 7x7:6662232336663232331311235422255544325413434443313 */ static char *board_to_string(int *board, int w, int h) { const int sz = w * h; const int chw = (4*w + 2); /* +2 for trailing '+' and '\n' */ const int chh = (2*h + 1); /* +1: n fence segments, n+1 posts */ const int chlen = chw * chh; char *repr = snewn(chlen + 1, char); int i; assert(board); /* build the first line ("^(\+---){n}\+$") */ for (i = 0; i < w; ++i) { repr[4*i + 0] = '+'; repr[4*i + 1] = '-'; repr[4*i + 2] = '-'; repr[4*i + 3] = '-'; } repr[4*i + 0] = '+'; repr[4*i + 1] = '\n'; /* ... and copy it onto the odd-numbered lines */ for (i = 0; i < h; ++i) memcpy(repr + (2*i + 2) * chw, repr, chw); /* build the second line ("^(\|\t){n}\|$") */ for (i = 0; i < w; ++i) { repr[chw + 4*i + 0] = '|'; repr[chw + 4*i + 1] = ' '; repr[chw + 4*i + 2] = ' '; repr[chw + 4*i + 3] = ' '; } repr[chw + 4*i + 0] = '|'; repr[chw + 4*i + 1] = '\n'; /* ... and copy it onto the even-numbered lines */ for (i = 1; i < h; ++i) memcpy(repr + (2*i + 1) * chw, repr + chw, chw); /* fill in the numbers */ for (i = 0; i < sz; ++i) { const int x = i % w; const int y = i / w; if (board[i] == EMPTY) continue; repr[chw*(2*y + 1) + (4*x + 2)] = board[i] + '0'; } repr[chlen] = '\0'; return repr; } static bool game_can_format_as_text_now(const game_params *params) { return TRUE; } static char *game_text_format(const game_state *state) { const int w = state->shared->params.w; const int h = state->shared->params.h; return board_to_string(state->board, w, h); } /***************************************************************************** * GAME GENERATION AND SOLVER * *****************************************************************************/ static const int dx[4] = {-1, 1, 0, 0}; static const int dy[4] = {0, 0, -1, 1}; struct solver_state { int *dsf; int *board; int *connected; int nempty; /* Used internally by learn_bitmap_deductions; kept here to avoid * mallocing/freeing them every time that function is called. */ int *bm, *bmdsf, *bmminsize; }; static void print_board(int *board, int w, int h) { if (verbose) { char *repr = board_to_string(board, w, h); printv("%s\n", repr); free(repr); } } static game_state *new_game(midend *, const game_params *, const char *); static void free_game(game_state *); #define SENTINEL sz static int mark_region(int *board, int w, int h, int i, int n, int m) { int j; board[i] = -1; for (j = 0; j < 4; ++j) { const int x = (i % w) + dx[j], y = (i / w) + dy[j], ii = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (board[ii] == m) return FALSE; if (board[ii] != n) continue; if (!mark_region(board, w, h, ii, n, m)) return FALSE; } return TRUE; } static int region_size(int *board, int w, int h, int i) { const int sz = w * h; int j, size, copy; if (board[i] == 0) return 0; copy = board[i]; mark_region(board, w, h, i, board[i], SENTINEL); for (size = j = 0; j < sz; ++j) { if (board[j] != -1) continue; ++size; board[j] = copy; } return size; } static void merge_ones(int *board, int w, int h) { const int sz = w * h; const int maxsize = min(max(max(w, h), 3), 9); int i, j, k, change; do { change = FALSE; for (i = 0; i < sz; ++i) { if (board[i] != 1) continue; for (j = 0; j < 4; ++j, board[i] = 1) { const int x = (i % w) + dx[j], y = (i / w) + dy[j]; int oldsize, newsize, ok, ii = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (board[ii] == maxsize) continue; oldsize = board[ii]; board[i] = oldsize; newsize = region_size(board, w, h, i); if (newsize > maxsize) continue; ok = mark_region(board, w, h, i, oldsize, newsize); for (k = 0; k < sz; ++k) if (board[k] == -1) board[k] = ok ? newsize : oldsize; if (ok) break; } if (j < 4) change = TRUE; } } while (change); } /* generate a random valid board; uses validate_board. */ static void make_board(int *board, int w, int h, random_state *rs) { const int sz = w * h; /* w=h=2 is a special case which requires a number > max(w, h) */ /* TODO prove that this is the case ONLY for w=h=2. */ const int maxsize = min(max(max(w, h), 3), 9); /* Note that if 1 in {w, h} then it's impossible to have a region * of size > w*h, so the special case only affects w=h=2. */ int i, change, *dsf; assert(w >= 1); assert(h >= 1); assert(board); /* I abuse the board variable: when generating the puzzle, it * contains a shuffled list of numbers {0, ..., sz-1}. */ for (i = 0; i < sz; ++i) board[i] = i; dsf = snewn(sz, int); retry: dsf_init(dsf, sz); shuffle(board, sz, sizeof (int), rs); do { change = FALSE; /* as long as the board potentially has errors */ for (i = 0; i < sz; ++i) { const int square = dsf_canonify(dsf, board[i]); const int size = dsf_size(dsf, square); int merge = SENTINEL, min = maxsize - size + 1, error = FALSE; int neighbour, neighbour_size, j; for (j = 0; j < 4; ++j) { const int x = (board[i] % w) + dx[j]; const int y = (board[i] / w) + dy[j]; if (x < 0 || x >= w || y < 0 || y >= h) continue; neighbour = dsf_canonify(dsf, w*y + x); if (square == neighbour) continue; neighbour_size = dsf_size(dsf, neighbour); if (size == neighbour_size) error = TRUE; /* find the smallest neighbour to merge with, which * wouldn't make the region too large. (This is * guaranteed by the initial value of `min'.) */ if (neighbour_size < min) { min = neighbour_size; merge = neighbour; } } /* if this square is not in error, leave it be */ if (!error) continue; /* if it is, but we can't fix it, retry the whole board. * Maybe we could fix it by merging the conflicting * neighbouring region(s) into some of their neighbours, * but just restarting works out fine. */ if (merge == SENTINEL) goto retry; /* merge with the smallest neighbouring workable region. */ dsf_merge(dsf, square, merge); change = TRUE; } } while (change); for (i = 0; i < sz; ++i) board[i] = dsf_size(dsf, i); merge_ones(board, w, h); sfree(dsf); } static void merge(int *dsf, int *connected, int a, int b) { int c; assert(dsf); assert(connected); a = dsf_canonify(dsf, a); b = dsf_canonify(dsf, b); if (a == b) return; dsf_merge(dsf, a, b); c = connected[a]; connected[a] = connected[b]; connected[b] = c; } static void *memdup(const void *ptr, size_t len, size_t esz) { void *dup = smalloc(len * esz); assert(ptr); memcpy(dup, ptr, len * esz); return dup; } static void expand(struct solver_state *s, int w, int h, int t, int f) { int j; assert(s); assert(s->board[t] == EMPTY); /* expand to empty square */ assert(s->board[f] != EMPTY); /* expand from non-empty square */ printv( "learn: expanding %d from (%d, %d) into (%d, %d)\n", s->board[f], f % w, f / w, t % w, t / w); s->board[t] = s->board[f]; for (j = 0; j < 4; ++j) { const int x = (t % w) + dx[j]; const int y = (t / w) + dy[j]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (s->board[idx] != s->board[t]) continue; merge(s->dsf, s->connected, t, idx); } --s->nempty; } static void clear_count(int *board, int sz) { int i; for (i = 0; i < sz; ++i) { if (board[i] >= 0) continue; else if (board[i] == -SENTINEL) board[i] = EMPTY; else board[i] = -board[i]; } } static void flood_count(int *board, int w, int h, int i, int n, int *c) { const int sz = w * h; int k; if (board[i] == EMPTY) board[i] = -SENTINEL; else if (board[i] == n) board[i] = -board[i]; else return; if (--*c == 0) return; for (k = 0; k < 4; ++k) { const int x = (i % w) + dx[k]; const int y = (i / w) + dy[k]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; flood_count(board, w, h, idx, n, c); if (*c == 0) return; } } static int check_capacity(int *board, int w, int h, int i) { int n = board[i]; flood_count(board, w, h, i, board[i], &n); clear_count(board, w * h); return n == 0; } static int expandsize(const int *board, int *dsf, int w, int h, int i, int n) { int j; int nhits = 0; int hits[4]; int size = 1; for (j = 0; j < 4; ++j) { const int x = (i % w) + dx[j]; const int y = (i / w) + dy[j]; const int idx = w*y + x; int root; int m; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (board[idx] != n) continue; root = dsf_canonify(dsf, idx); for (m = 0; m < nhits && root != hits[m]; ++m); if (m < nhits) continue; printv("\t (%d, %d) contrib %d to size\n", x, y, dsf[root] >> 2); size += dsf_size(dsf, root); assert(dsf_size(dsf, root) >= 1); hits[nhits++] = root; } return size; } /* * +---+---+---+---+---+---+---+ * | 6 | | | 2 | | | 2 | * +---+---+---+---+---+---+---+ * | | 3 | | 6 | | 3 | | * +---+---+---+---+---+---+---+ * | 3 | | | | | | 1 | * +---+---+---+---+---+---+---+ * | | 2 | 3 | | 4 | 2 | | * +---+---+---+---+---+---+---+ * | 2 | | | | | | 3 | * +---+---+---+---+---+---+---+ * | | 5 | | 1 | | 4 | | * +---+---+---+---+---+---+---+ * | 4 | | | 3 | | | 3 | * +---+---+---+---+---+---+---+ */ /* Solving techniques: * * CONNECTED COMPONENT FORCED EXPANSION (too big): * When a CC can only be expanded in one direction, because all the * other ones would make the CC too big. * +---+---+---+---+---+ * | 2 | 2 | | 2 | _ | * +---+---+---+---+---+ * * CONNECTED COMPONENT FORCED EXPANSION (too small): * When a CC must include a particular square, because otherwise there * would not be enough room to complete it. This includes squares not * adjacent to the CC through learn_critical_square. * +---+---+ * | 2 | _ | * +---+---+ * * DROPPING IN A ONE: * When an empty square has no neighbouring empty squares and only a 1 * will go into the square (or other CCs would be too big). * +---+---+---+ * | 2 | 2 | _ | * +---+---+---+ * * TODO: generalise DROPPING IN A ONE: find the size of the CC of * empty squares and a list of all adjacent numbers. See if only one * number in {1, ..., size} u {all adjacent numbers} is possible. * Probably this is only effective for a CC size < n for some n (4?) * * TODO: backtracking. */ static void filled_square(struct solver_state *s, int w, int h, int i) { int j; for (j = 0; j < 4; ++j) { const int x = (i % w) + dx[j]; const int y = (i / w) + dy[j]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (s->board[i] == s->board[idx]) merge(s->dsf, s->connected, i, idx); } } static void init_solver_state(struct solver_state *s, int w, int h) { const int sz = w * h; int i; assert(s); s->nempty = 0; for (i = 0; i < sz; ++i) s->connected[i] = i; for (i = 0; i < sz; ++i) if (s->board[i] == EMPTY) ++s->nempty; else filled_square(s, w, h, i); } static int learn_expand_or_one(struct solver_state *s, int w, int h) { const int sz = w * h; int i; int learn = FALSE; assert(s); for (i = 0; i < sz; ++i) { int j; int one = TRUE; if (s->board[i] != EMPTY) continue; for (j = 0; j < 4; ++j) { const int x = (i % w) + dx[j]; const int y = (i / w) + dy[j]; const int idx = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (s->board[idx] == EMPTY) { one = FALSE; continue; } if (one && (s->board[idx] == 1 || (s->board[idx] >= expandsize(s->board, s->dsf, w, h, i, s->board[idx])))) one = FALSE; if (dsf_size(s->dsf, idx) == s->board[idx]) continue; assert(s->board[i] == EMPTY); s->board[i] = -SENTINEL; if (check_capacity(s->board, w, h, idx)) continue; assert(s->board[i] == EMPTY); printv("learn: expanding in one\n"); expand(s, w, h, i, idx); learn = TRUE; break; } if (j == 4 && one) { printv("learn: one at (%d, %d)\n", i % w, i / w); assert(s->board[i] == EMPTY); s->board[i] = 1; assert(s->nempty); --s->nempty; learn = TRUE; } } return learn; } static int learn_blocked_expansion(struct solver_state *s, int w, int h) { const int sz = w * h; int i; int learn = FALSE; assert(s); /* for every connected component */ for (i = 0; i < sz; ++i) { int exp = SENTINEL; int j; if (s->board[i] == EMPTY) continue; j = dsf_canonify(s->dsf, i); /* (but only for each connected component) */ if (i != j) continue; /* (and not if it's already complete) */ if (dsf_size(s->dsf, j) == s->board[j]) continue; /* for each square j _in_ the connected component */ do { int k; printv(" looking at (%d, %d)\n", j % w, j / w); /* for each neighbouring square (idx) */ for (k = 0; k < 4; ++k) { const int x = (j % w) + dx[k]; const int y = (j / w) + dy[k]; const int idx = w*y + x; int size; /* int l; int nhits = 0; int hits[4]; */ if (x < 0 || x >= w || y < 0 || y >= h) continue; if (s->board[idx] != EMPTY) continue; if (exp == idx) continue; printv("\ttrying to expand onto (%d, %d)\n", x, y); /* find out the would-be size of the new connected * component if we actually expanded into idx */ /* size = 1; for (l = 0; l < 4; ++l) { const int lx = x + dx[l]; const int ly = y + dy[l]; const int idxl = w*ly + lx; int root; int m; if (lx < 0 || lx >= w || ly < 0 || ly >= h) continue; if (board[idxl] != board[j]) continue; root = dsf_canonify(dsf, idxl); for (m = 0; m < nhits && root != hits[m]; ++m); if (m != nhits) continue; // printv("\t (%d, %d) contributed %d to size\n", lx, ly, dsf[root] >> 2); size += dsf_size(dsf, root); assert(dsf_size(dsf, root) >= 1); hits[nhits++] = root; } */ size = expandsize(s->board, s->dsf, w, h, idx, s->board[j]); /* ... and see if that size is too big, or if we * have other expansion candidates. Otherwise * remember the (so far) only candidate. */ printv("\tthat would give a size of %d\n", size); if (size > s->board[j]) continue; /* printv("\tnow knowing %d expansions\n", nexpand + 1); */ if (exp != SENTINEL) goto next_i; assert(exp != idx); exp = idx; } j = s->connected[j]; /* next square in the same CC */ assert(s->board[i] == s->board[j]); } while (j != i); /* end: for each square j _in_ the connected component */ if (exp == SENTINEL) continue; printv("learning to expand\n"); expand(s, w, h, exp, i); learn = TRUE; next_i: ; } /* end: for each connected component */ return learn; } static int learn_critical_square(struct solver_state *s, int w, int h) { const int sz = w * h; int i; int learn = FALSE; assert(s); /* for each connected component */ for (i = 0; i < sz; ++i) { int j, slack; if (s->board[i] == EMPTY) continue; if (i != dsf_canonify(s->dsf, i)) continue; slack = s->board[i] - dsf_size(s->dsf, i); if (slack == 0) continue; assert(s->board[i] != 1); /* for each empty square */ for (j = 0; j < sz; ++j) { if (s->board[j] == EMPTY) { /* if it's too far away from the CC, don't bother */ int k = i, jx = j % w, jy = j / w; do { int kx = k % w, ky = k / w; if (abs(kx - jx) + abs(ky - jy) <= slack) break; k = s->connected[k]; } while (i != k); if (i == k) continue; /* not within range */ } else continue; s->board[j] = -SENTINEL; if (check_capacity(s->board, w, h, i)) continue; /* if not expanding s->board[i] to s->board[j] implies * that s->board[i] can't reach its full size, ... */ assert(s->nempty); printv( "learn: ds %d at (%d, %d) blocking (%d, %d)\n", s->board[i], j % w, j / w, i % w, i / w); --s->nempty; s->board[j] = s->board[i]; filled_square(s, w, h, j); learn = TRUE; } } return learn; } #if 0 static void print_bitmap(int *bitmap, int w, int h) { if (verbose) { int x, y; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { printv(" %03x", bm[y*w+x]); } printv("\n"); } } } #endif static int learn_bitmap_deductions(struct solver_state *s, int w, int h) { const int sz = w * h; int *bm = s->bm; int *dsf = s->bmdsf; int *minsize = s->bmminsize; int x, y, i, j, n; int learn = FALSE; /* * This function does deductions based on building up a bitmap * which indicates the possible numbers that can appear in each * grid square. If we can rule out all but one possibility for a * particular square, then we've found out the value of that * square. In particular, this is one of the few forms of * deduction capable of inferring the existence of a 'ghost * region', i.e. a region which has none of its squares filled in * at all. * * The reasoning goes like this. A currently unfilled square S can * turn out to contain digit n in exactly two ways: either S is * part of an n-region which also includes some currently known * connected component of squares with n in, or S is part of an * n-region separate from _all_ currently known connected * components. If we can rule out both possibilities, then square * S can't contain digit n at all. * * The former possibility: if there's a region of size n * containing both S and some existing component C, then that * means the distance from S to C must be small enough that C * could be extended to include S without becoming too big. So we * can do a breadth-first search out from all existing components * with n in them, to identify all the squares which could be * joined to any of them. * * The latter possibility: if there's a region of size n that * doesn't contain _any_ existing component, then it also can't * contain any square adjacent to an existing component either. So * we can identify all the EMPTY squares not adjacent to any * existing square with n in, and group them into connected * components; then any component of size less than n is ruled * out, because there wouldn't be room to create a completely new * n-region in it. * * In fact we process these possibilities in the other order. * First we find all the squares not adjacent to an existing * square with n in; then we winnow those by removing too-small * connected components, to get the set of squares which could * possibly be part of a brand new n-region; and finally we do the * breadth-first search to add in the set of squares which could * possibly be added to some existing n-region. */ /* * Start by initialising our bitmap to 'all numbers possible in * all squares'. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) bm[y*w+x] = (1 << 10) - (1 << 1); /* bits 1,2,...,9 now set */ #if 0 printv("initial bitmap:\n"); print_bitmap(bm, w, h); #endif /* * Now completely zero out the bitmap for squares that are already * filled in (we aren't interested in those anyway). Also, for any * filled square, eliminate its number from all its neighbours * (because, as discussed above, the neighbours couldn't be part * of a _new_ region with that number in it, and that's the case * we consider first). */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { i = y*w+x; n = s->board[i]; if (n != EMPTY) { bm[i] = 0; if (x > 0) bm[i-1] &= ~(1 << n); if (x+1 < w) bm[i+1] &= ~(1 << n); if (y > 0) bm[i-w] &= ~(1 << n); if (y+1 < h) bm[i+w] &= ~(1 << n); } } } #if 0 printv("bitmap after filled squares:\n"); print_bitmap(bm, w, h); #endif /* * Now, for each n, we separately find the connected components of * squares for which n is still a possibility. Then discard any * component of size < n, because that component is too small to * have a completely new n-region in it. */ for (n = 1; n <= 9; n++) { dsf_init(dsf, sz); /* Build the dsf */ for (y = 0; y < h; y++) for (x = 0; x+1 < w; x++) if (bm[y*w+x] & bm[y*w+(x+1)] & (1 << n)) dsf_merge(dsf, y*w+x, y*w+(x+1)); for (y = 0; y+1 < h; y++) for (x = 0; x < w; x++) if (bm[y*w+x] & bm[(y+1)*w+x] & (1 << n)) dsf_merge(dsf, y*w+x, (y+1)*w+x); /* Query the dsf */ for (i = 0; i < sz; i++) if ((bm[i] & (1 << n)) && dsf_size(dsf, i) < n) bm[i] &= ~(1 << n); } #if 0 printv("bitmap after winnowing small components:\n"); print_bitmap(bm, w, h); #endif /* * Now our bitmap includes every square which could be part of a * completely new region, of any size. Extend it to include * squares which could be part of an existing region. */ for (n = 1; n <= 9; n++) { /* * We're going to do a breadth-first search starting from * existing connected components with cell value n, to find * all cells they might possibly extend into. * * The quantity we compute, for each square, is 'minimum size * that any existing CC would have to have if extended to * include this square'. So squares already _in_ an existing * CC are initialised to the size of that CC; then we search * outwards using the rule that if a square's score is j, then * its neighbours can't score more than j+1. * * Scores are capped at n+1, because if a square scores more * than n then that's enough to know it can't possibly be * reached by extending an existing region - we don't need to * know exactly _how far_ out of reach it is. */ for (i = 0; i < sz; i++) { if (s->board[i] == n) { /* Square is part of an existing CC. */ minsize[i] = dsf_size(s->dsf, i); } else { /* Otherwise, initialise to the maximum score n+1; * we'll reduce this later if we find a neighbouring * square with a lower score. */ minsize[i] = n+1; } } for (j = 1; j < n; j++) { /* * Find neighbours of cells scoring j, and set their score * to at most j+1. * * Doing the BFS this way means we need n passes over the * grid, which isn't entirely optimal but it seems to be * fast enough for the moment. This could probably be * improved by keeping a linked-list queue of cells in * some way, but I think you'd have to be a bit careful to * insert things into the right place in the queue; this * way is easier not to get wrong. */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { i = y*w+x; if (minsize[i] == j) { if (x > 0 && minsize[i-1] > j+1) minsize[i-1] = j+1; if (x+1 < w && minsize[i+1] > j+1) minsize[i+1] = j+1; if (y > 0 && minsize[i-w] > j+1) minsize[i-w] = j+1; if (y+1 < h && minsize[i+w] > j+1) minsize[i+w] = j+1; } } } } /* * Now, every cell scoring at most n should have its 1<<n bit * in the bitmap reinstated, because we've found that it's * potentially reachable by extending an existing CC. */ for (i = 0; i < sz; i++) if (minsize[i] <= n) bm[i] |= 1<<n; } #if 0 printv("bitmap after bfs:\n"); print_bitmap(bm, w, h); #endif /* * Now our bitmap is complete. Look for entries with only one bit * set; those are squares with only one possible number, in which * case we can fill that number in. */ for (i = 0; i < sz; i++) { if (bm[i] && !(bm[i] & (bm[i]-1))) { /* is bm[i] a power of two? */ int val = bm[i]; /* Integer log2, by simple binary search. */ n = 0; if (val >> 8) { val >>= 8; n += 8; } if (val >> 4) { val >>= 4; n += 4; } if (val >> 2) { val >>= 2; n += 2; } if (val >> 1) { val >>= 1; n += 1; } /* Double-check that we ended up with a sensible * answer. */ assert(1 <= n); assert(n <= 9); assert(bm[i] == (1 << n)); if (s->board[i] == EMPTY) { printv("learn: %d is only possibility at (%d, %d)\n", n, i % w, i / w); s->board[i] = n; filled_square(s, w, h, i); assert(s->nempty); --s->nempty; learn = TRUE; } } } return learn; } static int solver(const int *orig, int w, int h, char **solution) { const int sz = w * h; struct solver_state ss; ss.board = memdup(orig, sz, sizeof (int)); ss.dsf = snew_dsf(sz); /* eqv classes: connected components */ ss.connected = snewn(sz, int); /* connected[n] := n.next; */ /* cyclic disjoint singly linked lists, same partitioning as dsf. * The lists lets you iterate over a partition given any member */ ss.bm = snewn(sz, int); ss.bmdsf = snew_dsf(sz); ss.bmminsize = snewn(sz, int); printv("trying to solve this:\n"); print_board(ss.board, w, h); init_solver_state(&ss, w, h); do { if (learn_blocked_expansion(&ss, w, h)) continue; if (learn_expand_or_one(&ss, w, h)) continue; if (learn_critical_square(&ss, w, h)) continue; if (learn_bitmap_deductions(&ss, w, h)) continue; break; } while (ss.nempty); printv("best guess:\n"); print_board(ss.board, w, h); if (solution) { int i; *solution = snewn(sz + 2, char); **solution = 's'; for (i = 0; i < sz; ++i) (*solution)[i + 1] = ss.board[i] + '0'; (*solution)[sz + 1] = '\0'; /* We don't need the \0 for execute_move (the only user) * I'm just being printf-friendly in case I wanna print */ } sfree(ss.dsf); sfree(ss.board); sfree(ss.connected); sfree(ss.bm); sfree(ss.bmdsf); sfree(ss.bmminsize); return !ss.nempty; } static int *make_dsf(int *dsf, int *board, const int w, const int h) { const int sz = w * h; int i; if (!dsf) dsf = snew_dsf(w * h); else dsf_init(dsf, w * h); for (i = 0; i < sz; ++i) { int j; for (j = 0; j < 4; ++j) { const int x = (i % w) + dx[j]; const int y = (i / w) + dy[j]; const int k = w*y + x; if (x < 0 || x >= w || y < 0 || y >= h) continue; if (board[i] == board[k]) dsf_merge(dsf, i, k); } } return dsf; } static void minimize_clue_set(int *board, int w, int h, random_state *rs) { const int sz = w * h; int *shuf = snewn(sz, int), i; int *dsf, *next; for (i = 0; i < sz; ++i) shuf[i] = i; shuffle(shuf, sz, sizeof (int), rs); /* * First, try to eliminate an entire region at a time if possible, * because inferring the existence of a completely unclued region * is a particularly good aspect of this puzzle type and we want * to encourage it to happen. * * Begin by identifying the regions as linked lists of cells using * the 'next' array. */ dsf = make_dsf(NULL, board, w, h); next = snewn(sz, int); for (i = 0; i < sz; ++i) { int j = dsf_canonify(dsf, i); if (i == j) { /* First cell of a region; set next[i] = -1 to indicate * end-of-list. */ next[i] = -1; } else { /* Add this cell to a region which already has a * linked-list head, by pointing the canonical element j * at this one, and pointing this one in turn at wherever * j previously pointed. (This should end up with the * elements linked in the order 1,n,n-1,n-2,...,2, which * is a bit weird-looking, but any order is fine.) */ assert(j < i); next[i] = next[j]; next[j] = i; } } /* * Now loop over the grid cells in our shuffled order, and each * time we encounter a region for the first time, try to remove it * all. Then we set next[canonical index] to -2 rather than -1, to * mark it as already tried. * * Doing this in a loop over _cells_, rather than extracting and * shuffling a list of _regions_, is intended to skew the * probabilities towards trying to remove larger regions first * (but without anything as crudely predictable as enforcing that * we _always_ process regions in descending size order). Region * removals might well be mutually exclusive, and larger ghost * regions are more interesting, so we want to bias towards them * if we can. */ for (i = 0; i < sz; ++i) { int j = dsf_canonify(dsf, shuf[i]); if (next[j] != -2) { int tmp = board[j]; int k; /* Blank out the whole thing. */ for (k = j; k >= 0; k = next[k]) board[k] = EMPTY; if (!solver(board, w, h, NULL)) { /* Wasn't still solvable; reinstate it all */ for (k = j; k >= 0; k = next[k]) board[k] = tmp; } /* Either way, don't try this region again. */ next[j] = -2; } } sfree(next); sfree(dsf); /* * Now go through individual cells, in the same shuffled order, * and try to remove each one by itself. */ for (i = 0; i < sz; ++i) { int tmp = board[shuf[i]]; board[shuf[i]] = EMPTY; if (!solver(board, w, h, NULL)) board[shuf[i]] = tmp; } sfree(shuf); } static int encode_run(char *buffer, int run) { int i = 0; for (; run > 26; run -= 26) buffer[i++] = 'z'; if (run) buffer[i++] = 'a' - 1 + run; return i; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { const int w = params->w, h = params->h, sz = w * h; int *board = snewn(sz, int), i, j, run; char *description = snewn(sz + 1, char); make_board(board, w, h, rs); minimize_clue_set(board, w, h, rs); for (run = j = i = 0; i < sz; ++i) { assert(board[i] >= 0); assert(board[i] < 10); if (board[i] == 0) { ++run; } else { j += encode_run(description + j, run); run = 0; description[j++] = board[i] + '0'; } } j += encode_run(description + j, run); description[j++] = '\0'; sfree(board); return sresize(description, j, char); } static const char *validate_desc(const game_params *params, const char *desc) { const int sz = params->w * params->h; const char m = '0' + max(max(params->w, params->h), 3); int area; for (area = 0; *desc; ++desc) { if (*desc >= 'a' && *desc <= 'z') area += *desc - 'a' + 1; else if (*desc >= '0' && *desc <= m) ++area; else { static char s[] = "Invalid character '%""' in game description"; int n = sprintf(s, "Invalid character '%1c' in game description", *desc); assert(n + 1 <= lenof(s)); /* +1 for the terminating NUL */ return s; } if (area > sz) return "Too much data to fit in grid"; } return (area < sz) ? "Not enough data to fill grid" : NULL; } static key_label *game_request_keys(const game_params *params, int *nkeys) { int i; key_label *keys = snewn(11, key_label); *nkeys = 11; for(i = 0; i < 10; ++i) { keys[i].button = '0' + i; keys[i].label = NULL; } keys[10].button = '\b'; keys[10].label = NULL; return keys; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state = snew(game_state); int sz = params->w * params->h; int i; state->cheated = state->completed = FALSE; state->shared = snew(struct shared_state); state->shared->refcnt = 1; state->shared->params = *params; /* struct copy */ state->shared->clues = snewn(sz, int); for (i = 0; *desc; ++desc) { if (*desc >= 'a' && *desc <= 'z') { int j = *desc - 'a' + 1; assert(i + j <= sz); for (; j; --j) state->shared->clues[i++] = 0; } else state->shared->clues[i++] = *desc - '0'; } state->board = memdup(state->shared->clues, sz, sizeof (int)); return state; } static game_state *dup_game(const game_state *state) { const int sz = state->shared->params.w * state->shared->params.h; game_state *ret = snew(game_state); ret->board = memdup(state->board, sz, sizeof (int)); ret->shared = state->shared; ret->cheated = state->cheated; ret->completed = state->completed; ++ret->shared->refcnt; return ret; } static void free_game(game_state *state) { assert(state); sfree(state->board); if (--state->shared->refcnt == 0) { sfree(state->shared->clues); sfree(state->shared); } sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { if (aux == NULL) { const int w = state->shared->params.w; const int h = state->shared->params.h; char *new_aux; if (!solver(state->board, w, h, &new_aux)) *error = "Sorry, I couldn't find a solution"; return new_aux; } return dupstr(aux); } /***************************************************************************** * USER INTERFACE STATE AND ACTION * *****************************************************************************/ struct game_ui { int *sel; /* w*h highlighted squares, or NULL */ int cur_x, cur_y, cur_visible, keydragging; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->sel = NULL; ui->cur_x = ui->cur_y = ui->cur_visible = ui->keydragging = 0; return ui; } static void free_ui(game_ui *ui) { if (ui->sel) sfree(ui->sel); sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { /* Clear any selection */ if (ui->sel) { sfree(ui->sel); ui->sel = NULL; } ui->keydragging = FALSE; } #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define BORDER (TILE_SIZE / 2) #define BORDER_WIDTH (max(TILE_SIZE / 32, 1)) struct game_drawstate { struct game_params params; int tilesize; int started; int *v, *flags; int *dsf_scratch, *border_scratch; }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { const int w = state->shared->params.w; const int h = state->shared->params.h; const int tx = (x + TILE_SIZE - BORDER) / TILE_SIZE - 1; const int ty = (y + TILE_SIZE - BORDER) / TILE_SIZE - 1; char *move = NULL; int i; assert(ui); assert(ds); button &= ~MOD_MASK; if (button == LEFT_BUTTON || button == LEFT_DRAG) { /* A left-click anywhere will clear the current selection. */ if (button == LEFT_BUTTON) { if (ui->sel) { sfree(ui->sel); ui->sel = NULL; } } if (tx >= 0 && tx < w && ty >= 0 && ty < h) { if (!ui->sel) { ui->sel = snewn(w*h, int); memset(ui->sel, 0, w*h*sizeof(int)); } if (!state->shared->clues[w*ty+tx]) ui->sel[w*ty+tx] = 1; } ui->cur_visible = 0; return UI_UPDATE; } if (IS_CURSOR_MOVE(button)) { ui->cur_visible = 1; move_cursor(button, &ui->cur_x, &ui->cur_y, w, h, 0); if (ui->keydragging) goto select_square; return UI_UPDATE; } if (button == CURSOR_SELECT) { if (!ui->cur_visible) { ui->cur_visible = 1; return UI_UPDATE; } ui->keydragging = !ui->keydragging; if (!ui->keydragging) return UI_UPDATE; select_square: if (!ui->sel) { ui->sel = snewn(w*h, int); memset(ui->sel, 0, w*h*sizeof(int)); } if (!state->shared->clues[w*ui->cur_y + ui->cur_x]) ui->sel[w*ui->cur_y + ui->cur_x] = 1; return UI_UPDATE; } if (button == CURSOR_SELECT2) { if (!ui->cur_visible) { ui->cur_visible = 1; return UI_UPDATE; } if (!ui->sel) { ui->sel = snewn(w*h, int); memset(ui->sel, 0, w*h*sizeof(int)); } ui->keydragging = FALSE; if (!state->shared->clues[w*ui->cur_y + ui->cur_x]) ui->sel[w*ui->cur_y + ui->cur_x] ^= 1; for (i = 0; i < w*h && !ui->sel[i]; i++); if (i == w*h) { sfree(ui->sel); ui->sel = NULL; } return UI_UPDATE; } if (button == '\b' || button == 27) { sfree(ui->sel); ui->sel = NULL; ui->keydragging = FALSE; return UI_UPDATE; } if (button < '0' || button > '9') return NULL; button -= '0'; if (button > (w == 2 && h == 2 ? 3 : max(w, h))) return NULL; ui->keydragging = FALSE; for (i = 0; i < w*h; i++) { char buf[32]; if ((ui->sel && ui->sel[i]) || (!ui->sel && ui->cur_visible && (w*ui->cur_y+ui->cur_x) == i)) { if (state->shared->clues[i] != 0) continue; /* in case cursor is on clue */ if (state->board[i] != button) { sprintf(buf, "%s%d", move ? "," : "", i); if (move) { move = srealloc(move, strlen(move)+strlen(buf)+1); strcat(move, buf); } else { move = smalloc(strlen(buf)+1); strcpy(move, buf); } } } } if (move) { char buf[32]; sprintf(buf, "_%d", button); move = srealloc(move, strlen(move)+strlen(buf)+1); strcat(move, buf); } if (!ui->sel) return move ? move : NULL; sfree(ui->sel); ui->sel = NULL; /* Need to update UI at least, as we cleared the selection */ return move ? move : UI_UPDATE; } static game_state *execute_move(const game_state *state, const char *move) { game_state *new_state = NULL; const int sz = state->shared->params.w * state->shared->params.h; if (*move == 's') { int i = 0; new_state = dup_game(state); for (++move; i < sz; ++i) new_state->board[i] = move[i] - '0'; new_state->cheated = TRUE; } else { int value; char *endptr, *delim = strchr(move, '_'); if (!delim) goto err; value = strtol(delim+1, &endptr, 0); if (*endptr || endptr == delim+1) goto err; if (value < 0 || value > 9) goto err; new_state = dup_game(state); while (*move) { const int i = strtol(move, &endptr, 0); if (endptr == move) goto err; if (i < 0 || i >= sz) goto err; new_state->board[i] = value; if (*endptr == '_') break; if (*endptr != ',') goto err; move = endptr + 1; } } /* * Check for completion. */ if (!new_state->completed) { const int w = new_state->shared->params.w; const int h = new_state->shared->params.h; const int sz = w * h; int *dsf = make_dsf(NULL, new_state->board, w, h); int i; for (i = 0; i < sz && new_state->board[i] == dsf_size(dsf, i); ++i); sfree(dsf); if (i == sz) new_state->completed = TRUE; } return new_state; err: if (new_state) free_game(new_state); return NULL; } /* ---------------------------------------------------------------------- * Drawing routines. */ #define FLASH_TIME 0.4F #define COL_CLUE COL_GRID enum { COL_BACKGROUND, COL_GRID, COL_HIGHLIGHT, COL_CORRECT, COL_ERROR, COL_USER, COL_CURSOR, NCOLOURS }; static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { *x = (params->w + 1) * tilesize; *y = (params->h + 1) * tilesize; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_GRID * 3 + 0] = 0.0F; ret[COL_GRID * 3 + 1] = 0.0F; ret[COL_GRID * 3 + 2] = 0.0F; ret[COL_HIGHLIGHT * 3 + 0] = 0.85F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_HIGHLIGHT * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_HIGHLIGHT * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_CORRECT * 3 + 0] = 0.9F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_CORRECT * 3 + 1] = 0.9F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_CORRECT * 3 + 2] = 0.9F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_CURSOR * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_CURSOR * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_CURSOR * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.85F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_ERROR * 3 + 2] = 0.85F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_USER * 3 + 0] = 0.0F; ret[COL_USER * 3 + 1] = 0.6F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_USER * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->tilesize = PREFERRED_TILE_SIZE; ds->started = 0; ds->params = state->shared->params; ds->v = snewn(ds->params.w * ds->params.h, int); ds->flags = snewn(ds->params.w * ds->params.h, int); for (i = 0; i < ds->params.w * ds->params.h; i++) ds->v[i] = ds->flags[i] = -1; ds->border_scratch = snewn(ds->params.w * ds->params.h, int); ds->dsf_scratch = NULL; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->v); sfree(ds->flags); sfree(ds->border_scratch); sfree(ds->dsf_scratch); sfree(ds); } #define BORDER_U 0x001 #define BORDER_D 0x002 #define BORDER_L 0x004 #define BORDER_R 0x008 #define BORDER_UR 0x010 #define BORDER_DR 0x020 #define BORDER_UL 0x040 #define BORDER_DL 0x080 #define HIGH_BG 0x100 #define CORRECT_BG 0x200 #define ERROR_BG 0x400 #define USER_COL 0x800 #define CURSOR_SQ 0x1000 static void draw_square(drawing *dr, game_drawstate *ds, int x, int y, int n, int flags) { assert(dr); assert(ds); /* * Clip to the grid square. */ clip(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, TILE_SIZE, TILE_SIZE); /* * Clear the square. */ draw_rect(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, TILE_SIZE, TILE_SIZE, (flags & HIGH_BG ? COL_HIGHLIGHT : flags & ERROR_BG ? COL_ERROR : flags & CORRECT_BG ? COL_CORRECT : COL_BACKGROUND)); /* * Draw the grid lines. */ draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, BORDER + (x+1)*TILE_SIZE, BORDER + y*TILE_SIZE, COL_GRID); draw_line(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, BORDER + x*TILE_SIZE, BORDER + (y+1)*TILE_SIZE, COL_GRID); /* * Draw the number. */ if (n) { char buf[2]; buf[0] = n + '0'; buf[1] = '\0'; draw_text(dr, (x + 1) * TILE_SIZE, (y + 1) * TILE_SIZE, FONT_VARIABLE, TILE_SIZE / 2, ALIGN_VCENTRE | ALIGN_HCENTRE, flags & USER_COL ? COL_USER : COL_CLUE, buf); } /* * Draw bold lines around the borders. */ if (flags & BORDER_L) draw_rect(dr, BORDER + x*TILE_SIZE + 1, BORDER + y*TILE_SIZE + 1, BORDER_WIDTH, TILE_SIZE - 1, COL_GRID); if (flags & BORDER_U) draw_rect(dr, BORDER + x*TILE_SIZE + 1, BORDER + y*TILE_SIZE + 1, TILE_SIZE - 1, BORDER_WIDTH, COL_GRID); if (flags & BORDER_R) draw_rect(dr, BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH, BORDER + y*TILE_SIZE + 1, BORDER_WIDTH, TILE_SIZE - 1, COL_GRID); if (flags & BORDER_D) draw_rect(dr, BORDER + x*TILE_SIZE + 1, BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH, TILE_SIZE - 1, BORDER_WIDTH, COL_GRID); if (flags & BORDER_UL) draw_rect(dr, BORDER + x*TILE_SIZE + 1, BORDER + y*TILE_SIZE + 1, BORDER_WIDTH, BORDER_WIDTH, COL_GRID); if (flags & BORDER_UR) draw_rect(dr, BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH, BORDER + y*TILE_SIZE + 1, BORDER_WIDTH, BORDER_WIDTH, COL_GRID); if (flags & BORDER_DL) draw_rect(dr, BORDER + x*TILE_SIZE + 1, BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH, BORDER_WIDTH, BORDER_WIDTH, COL_GRID); if (flags & BORDER_DR) draw_rect(dr, BORDER + (x+1)*TILE_SIZE - BORDER_WIDTH, BORDER + (y+1)*TILE_SIZE - BORDER_WIDTH, BORDER_WIDTH, BORDER_WIDTH, COL_GRID); if (flags & CURSOR_SQ) { int coff = TILE_SIZE/8; draw_rect_outline(dr, BORDER + x*TILE_SIZE + coff, BORDER + y*TILE_SIZE + coff, TILE_SIZE - coff*2, TILE_SIZE - coff*2, COL_CURSOR); } unclip(dr); draw_update(dr, BORDER + x*TILE_SIZE, BORDER + y*TILE_SIZE, TILE_SIZE, TILE_SIZE); } static void draw_grid(drawing *dr, game_drawstate *ds, const game_state *state, const game_ui *ui, int flashy, int borders, int shading) { const int w = state->shared->params.w; const int h = state->shared->params.h; int x; int y; /* * Build a dsf for the board in its current state, to use for * highlights and hints. */ ds->dsf_scratch = make_dsf(ds->dsf_scratch, state->board, w, h); /* * Work out where we're putting borders between the cells. */ for (y = 0; y < w*h; y++) ds->border_scratch[y] = 0; for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int dx, dy; int v1, s1, v2, s2; for (dx = 0; dx <= 1; dx++) { int border = FALSE; dy = 1 - dx; if (x+dx >= w || y+dy >= h) continue; v1 = state->board[y*w+x]; v2 = state->board[(y+dy)*w+(x+dx)]; s1 = dsf_size(ds->dsf_scratch, y*w+x); s2 = dsf_size(ds->dsf_scratch, (y+dy)*w+(x+dx)); /* * We only ever draw a border between two cells if * they don't have the same contents. */ if (v1 != v2) { /* * But in that situation, we don't always draw * a border. We do if the two cells both * contain actual numbers... */ if (v1 && v2) border = TRUE; /* * ... or if at least one of them is a * completed or overfull omino. */ if (v1 && s1 >= v1) border = TRUE; if (v2 && s2 >= v2) border = TRUE; } if (border) ds->border_scratch[y*w+x] |= (dx ? 1 : 2); } } /* * Actually do the drawing. */ for (y = 0; y < h; ++y) for (x = 0; x < w; ++x) { /* * Determine what we need to draw in this square. */ int i = y*w+x, v = state->board[i]; int flags = 0; if (flashy || !shading) { /* clear all background flags */ } else if (ui && ui->sel && ui->sel[i]) { flags |= HIGH_BG; } else if (v) { int size = dsf_size(ds->dsf_scratch, i); if (size == v) flags |= CORRECT_BG; else if (size > v) flags |= ERROR_BG; else { int rt = dsf_canonify(ds->dsf_scratch, i), j; for (j = 0; j < w*h; ++j) { int k; if (dsf_canonify(ds->dsf_scratch, j) != rt) continue; for (k = 0; k < 4; ++k) { const int xx = j % w + dx[k], yy = j / w + dy[k]; if (xx >= 0 && xx < w && yy >= 0 && yy < h && state->board[yy*w + xx] == EMPTY) goto noflag; } } flags |= ERROR_BG; noflag: ; } } if (ui && ui->cur_visible && x == ui->cur_x && y == ui->cur_y) flags |= CURSOR_SQ; /* * Borders at the very edges of the grid are * independent of the `borders' flag. */ if (x == 0) flags |= BORDER_L; if (y == 0) flags |= BORDER_U; if (x == w-1) flags |= BORDER_R; if (y == h-1) flags |= BORDER_D; if (borders) { if (x == 0 || (ds->border_scratch[y*w+(x-1)] & 1)) flags |= BORDER_L; if (y == 0 || (ds->border_scratch[(y-1)*w+x] & 2)) flags |= BORDER_U; if (x == w-1 || (ds->border_scratch[y*w+x] & 1)) flags |= BORDER_R; if (y == h-1 || (ds->border_scratch[y*w+x] & 2)) flags |= BORDER_D; if (y > 0 && x > 0 && (ds->border_scratch[(y-1)*w+(x-1)])) flags |= BORDER_UL; if (y > 0 && x < w-1 && ((ds->border_scratch[(y-1)*w+x] & 1) || (ds->border_scratch[(y-1)*w+(x+1)] & 2))) flags |= BORDER_UR; if (y < h-1 && x > 0 && ((ds->border_scratch[y*w+(x-1)] & 2) || (ds->border_scratch[(y+1)*w+(x-1)] & 1))) flags |= BORDER_DL; if (y < h-1 && x < w-1 && ((ds->border_scratch[y*w+(x+1)] & 2) || (ds->border_scratch[(y+1)*w+x] & 1))) flags |= BORDER_DR; } if (!state->shared->clues[y*w+x]) flags |= USER_COL; if (ds->v[y*w+x] != v || ds->flags[y*w+x] != flags) { draw_square(dr, ds, x, y, v, flags); ds->v[y*w+x] = v; ds->flags[y*w+x] = flags; } } } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { const int w = state->shared->params.w; const int h = state->shared->params.h; const int flashy = flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3); if (!ds->started) { /* * The initial contents of the window are not guaranteed and * can vary with front ends. To be on the safe side, all games * should start by drawing a big background-colour rectangle * covering the whole window. */ draw_rect(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER, COL_BACKGROUND); /* * Smaller black rectangle which is the main grid. */ draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH, w*TILE_SIZE + 2*BORDER_WIDTH + 1, h*TILE_SIZE + 2*BORDER_WIDTH + 1, COL_GRID); draw_update(dr, 0, 0, w*TILE_SIZE + 2*BORDER, h*TILE_SIZE + 2*BORDER); ds->started = TRUE; } draw_grid(dr, ds, state, ui, flashy, TRUE, TRUE); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { assert(oldstate); assert(newstate); assert(newstate->shared); assert(oldstate->shared == newstate->shared); if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { return TRUE; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 6mm squares by default. */ game_compute_size(params, 600, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, int tilesize) { const int w = state->shared->params.w; const int h = state->shared->params.h; int c, i, borders; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate *ds = game_new_drawstate(dr, state); game_set_size(dr, ds, NULL, tilesize); c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND); c = print_mono_colour(dr, 0); assert(c == COL_GRID); c = print_mono_colour(dr, 1); assert(c == COL_HIGHLIGHT); c = print_mono_colour(dr, 1); assert(c == COL_CORRECT); c = print_mono_colour(dr, 1); assert(c == COL_ERROR); c = print_mono_colour(dr, 0); assert(c == COL_USER); /* * Border. */ draw_rect(dr, BORDER - BORDER_WIDTH, BORDER - BORDER_WIDTH, w*TILE_SIZE + 2*BORDER_WIDTH + 1, h*TILE_SIZE + 2*BORDER_WIDTH + 1, COL_GRID); /* * We'll draw borders between the ominoes iff the grid is not * pristine. So scan it to see if it is. */ borders = FALSE; for (i = 0; i < w*h; i++) if (state->board[i] && !state->shared->clues[i]) borders = TRUE; /* * Draw grid. */ print_line_width(dr, TILE_SIZE / 64); draw_grid(dr, ds, state, NULL, FALSE, borders, FALSE); /* * Clean up. */ game_free_drawstate(dr, ds); } #ifdef COMBINED #define thegame filling #endif const struct game thegame = { "Filling", "games.filling", "filling", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, TRUE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_request_keys, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_status, TRUE, FALSE, game_print_size, game_print, FALSE, /* wants_statusbar */ FALSE, game_timing_state, REQUIRE_NUMPAD, /* flags */ }; #ifdef STANDALONE_SOLVER /* solver? hah! */ int main(int argc, char **argv) { while (*++argv) { game_params *params; game_state *state; char *par; char *desc; for (par = desc = *argv; *desc != '\0' && *desc != ':'; ++desc); if (*desc == '\0') { fprintf(stderr, "bad puzzle id: %s", par); continue; } *desc++ = '\0'; params = snew(game_params); decode_params(params, par); state = new_game(NULL, params, desc); if (solver(state->board, params->w, params->h, NULL)) printf("%s:%s: solvable\n", par, desc); else printf("%s:%s: not solvable\n", par, desc); } return 0; } #endif /* vim: set shiftwidth=4 tabstop=8: */