ref: 2be0e4a242421840b2a36d18f6a4193e4fc67432
dir: /cube.c/
/* * cube.c: Cube game. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include "puzzles.h" #define MAXVERTICES 20 #define MAXFACES 20 #define MAXORDER 4 struct solid { int nvertices; float vertices[MAXVERTICES * 3]; /* 3*npoints coordinates */ int order; int nfaces; int faces[MAXFACES * MAXORDER]; /* order*nfaces point indices */ float normals[MAXFACES * 3]; /* 3*npoints vector components */ float shear; /* isometric shear for nice drawing */ float border; /* border required around arena */ }; static const struct solid s_tetrahedron = { 4, { 0.0F, -0.57735026919F, -0.20412414523F, -0.5F, 0.28867513459F, -0.20412414523F, 0.0F, -0.0F, 0.6123724357F, 0.5F, 0.28867513459F, -0.20412414523F, }, 3, 4, { 0,2,1, 3,1,2, 2,0,3, 1,3,0 }, { -0.816496580928F, -0.471404520791F, 0.333333333334F, 0.0F, 0.942809041583F, 0.333333333333F, 0.816496580928F, -0.471404520791F, 0.333333333334F, 0.0F, 0.0F, -1.0F, }, 0.0F, 0.3F }; static const struct solid s_cube = { 8, { -0.5F,-0.5F,-0.5F, -0.5F,-0.5F,+0.5F, -0.5F,+0.5F,-0.5F, -0.5F,+0.5F,+0.5F, +0.5F,-0.5F,-0.5F, +0.5F,-0.5F,+0.5F, +0.5F,+0.5F,-0.5F, +0.5F,+0.5F,+0.5F, }, 4, 6, { 0,1,3,2, 1,5,7,3, 5,4,6,7, 4,0,2,6, 0,4,5,1, 3,7,6,2 }, { -1.0F,0.0F,0.0F, 0.0F,0.0F,+1.0F, +1.0F,0.0F,0.0F, 0.0F,0.0F,-1.0F, 0.0F,-1.0F,0.0F, 0.0F,+1.0F,0.0F }, 0.3F, 0.5F }; static const struct solid s_octahedron = { 6, { -0.5F, -0.28867513459472505F, 0.4082482904638664F, 0.5F, 0.28867513459472505F, -0.4082482904638664F, -0.5F, 0.28867513459472505F, -0.4082482904638664F, 0.5F, -0.28867513459472505F, 0.4082482904638664F, 0.0F, -0.57735026918945009F, -0.4082482904638664F, 0.0F, 0.57735026918945009F, 0.4082482904638664F, }, 3, 8, { 4,0,2, 0,5,2, 0,4,3, 5,0,3, 1,4,2, 5,1,2, 4,1,3, 1,5,3 }, { -0.816496580928F, -0.471404520791F, -0.333333333334F, -0.816496580928F, 0.471404520791F, 0.333333333334F, 0.0F, -0.942809041583F, 0.333333333333F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F, -1.0F, 0.0F, 0.942809041583F, -0.333333333333F, 0.816496580928F, -0.471404520791F, -0.333333333334F, 0.816496580928F, 0.471404520791F, 0.333333333334F, }, 0.0F, 0.5F }; static const struct solid s_icosahedron = { 12, { 0.0F, 0.57735026919F, 0.75576131408F, 0.0F, -0.93417235896F, 0.17841104489F, 0.0F, 0.93417235896F, -0.17841104489F, 0.0F, -0.57735026919F, -0.75576131408F, -0.5F, -0.28867513459F, 0.75576131408F, -0.5F, 0.28867513459F, -0.75576131408F, 0.5F, -0.28867513459F, 0.75576131408F, 0.5F, 0.28867513459F, -0.75576131408F, -0.80901699437F, 0.46708617948F, 0.17841104489F, 0.80901699437F, 0.46708617948F, 0.17841104489F, -0.80901699437F, -0.46708617948F, -0.17841104489F, 0.80901699437F, -0.46708617948F, -0.17841104489F, }, 3, 20, { 8,0,2, 0,9,2, 1,10,3, 11,1,3, 0,4,6, 4,1,6, 5,2,7, 3,5,7, 4,8,10, 8,5,10, 9,6,11, 7,9,11, 0,8,4, 9,0,6, 10,1,4, 1,11,6, 8,2,5, 2,9,7, 3,10,5, 11,3,7, }, { -0.356822089773F, 0.87267799625F, 0.333333333333F, 0.356822089773F, 0.87267799625F, 0.333333333333F, -0.356822089773F, -0.87267799625F, -0.333333333333F, 0.356822089773F, -0.87267799625F, -0.333333333333F, -0.0F, 0.0F, 1.0F, 0.0F, -0.666666666667F, 0.745355992501F, 0.0F, 0.666666666667F, -0.745355992501F, 0.0F, 0.0F, -1.0F, -0.934172358963F, -0.12732200375F, 0.333333333333F, -0.934172358963F, 0.12732200375F, -0.333333333333F, 0.934172358963F, -0.12732200375F, 0.333333333333F, 0.934172358963F, 0.12732200375F, -0.333333333333F, -0.57735026919F, 0.333333333334F, 0.745355992501F, 0.57735026919F, 0.333333333334F, 0.745355992501F, -0.57735026919F, -0.745355992501F, 0.333333333334F, 0.57735026919F, -0.745355992501F, 0.333333333334F, -0.57735026919F, 0.745355992501F, -0.333333333334F, 0.57735026919F, 0.745355992501F, -0.333333333334F, -0.57735026919F, -0.333333333334F, -0.745355992501F, 0.57735026919F, -0.333333333334F, -0.745355992501F, }, 0.0F, 0.8F }; enum { TETRAHEDRON, CUBE, OCTAHEDRON, ICOSAHEDRON }; static const struct solid *solids[] = { &s_tetrahedron, &s_cube, &s_octahedron, &s_icosahedron }; enum { COL_BACKGROUND, COL_BORDER, COL_BLUE, NCOLOURS }; enum { LEFT, RIGHT, UP, DOWN, UP_LEFT, UP_RIGHT, DOWN_LEFT, DOWN_RIGHT }; #define PREFERRED_GRID_SCALE 48 #define GRID_SCALE (ds->gridscale) #define ROLLTIME 0.13F #define SQ(x) ( (x) * (x) ) #define MATMUL(ra,m,a) do { \ float rx, ry, rz, xx = (a)[0], yy = (a)[1], zz = (a)[2], *mat = (m); \ rx = mat[0] * xx + mat[3] * yy + mat[6] * zz; \ ry = mat[1] * xx + mat[4] * yy + mat[7] * zz; \ rz = mat[2] * xx + mat[5] * yy + mat[8] * zz; \ (ra)[0] = rx; (ra)[1] = ry; (ra)[2] = rz; \ } while (0) #define APPROXEQ(x,y) ( SQ(x-y) < 0.1F ) struct grid_square { float x, y; int npoints; float points[8]; /* maximum */ int directions[8]; /* bit masks showing point pairs */ bool flip; int tetra_class; }; struct game_params { int solid; /* * Grid dimensions. For a square grid these are width and * height respectively; otherwise the grid is a hexagon, with * the top side and the two lower diagonals having length d1 * and the remaining three sides having length d2 (so that * d1==d2 gives a regular hexagon, and d2==0 gives a triangle). */ int d1, d2; }; typedef struct game_grid game_grid; struct game_grid { int refcount; struct grid_square *squares; int nsquares; }; #define SET_SQUARE(state, i, val) \ ((state)->bluemask[(i)/32] &= ~(1UL << ((i)%32)), \ (state)->bluemask[(i)/32] |= ((unsigned long)(!!val) << ((i)%32))) #define GET_SQUARE(state, i) \ (((state)->bluemask[(i)/32] >> ((i)%32)) & 1) struct game_state { struct game_params params; const struct solid *solid; int *facecolours; game_grid *grid; unsigned long *bluemask; int current; /* index of current grid square */ int sgkey[2]; /* key-point indices into grid sq */ int dgkey[2]; /* key-point indices into grid sq */ int spkey[2]; /* key-point indices into polyhedron */ int dpkey[2]; /* key-point indices into polyhedron */ int previous; float angle; int completed; /* stores move count at completion */ int movecount; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->solid = CUBE; ret->d1 = 4; ret->d2 = 4; return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret = snew(game_params); const char *str; switch (i) { case 0: str = "Cube"; ret->solid = CUBE; ret->d1 = 4; ret->d2 = 4; break; case 1: str = "Tetrahedron"; ret->solid = TETRAHEDRON; ret->d1 = 1; ret->d2 = 2; break; case 2: str = "Octahedron"; ret->solid = OCTAHEDRON; ret->d1 = 2; ret->d2 = 2; break; case 3: str = "Icosahedron"; ret->solid = ICOSAHEDRON; ret->d1 = 3; ret->d2 = 3; break; default: sfree(ret); return false; } *name = dupstr(str); *params = ret; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { switch (*string) { case 't': ret->solid = TETRAHEDRON; string++; break; case 'c': ret->solid = CUBE; string++; break; case 'o': ret->solid = OCTAHEDRON; string++; break; case 'i': ret->solid = ICOSAHEDRON; string++; break; default: break; } ret->d1 = ret->d2 = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'x') { string++; ret->d2 = atoi(string); } } static char *encode_params(const game_params *params, bool full) { char data[256]; assert(params->solid >= 0 && params->solid < 4); sprintf(data, "%c%dx%d", "tcoi"[params->solid], params->d1, params->d2); return dupstr(data); } typedef void (*egc_callback)(void *, struct grid_square *); static void enum_grid_squares(const game_params *params, egc_callback callback, void *ctx) { const struct solid *solid = solids[params->solid]; if (solid->order == 4) { int x, y; for (y = 0; y < params->d2; y++) for (x = 0; x < params->d1; x++) { struct grid_square sq; sq.x = (float)x; sq.y = (float)y; sq.points[0] = x - 0.5F; sq.points[1] = y - 0.5F; sq.points[2] = x - 0.5F; sq.points[3] = y + 0.5F; sq.points[4] = x + 0.5F; sq.points[5] = y + 0.5F; sq.points[6] = x + 0.5F; sq.points[7] = y - 0.5F; sq.npoints = 4; sq.directions[LEFT] = 0x03; /* 0,1 */ sq.directions[RIGHT] = 0x0C; /* 2,3 */ sq.directions[UP] = 0x09; /* 0,3 */ sq.directions[DOWN] = 0x06; /* 1,2 */ sq.directions[UP_LEFT] = 0; /* no diagonals in a square */ sq.directions[UP_RIGHT] = 0; /* no diagonals in a square */ sq.directions[DOWN_LEFT] = 0; /* no diagonals in a square */ sq.directions[DOWN_RIGHT] = 0; /* no diagonals in a square */ sq.flip = false; /* * This is supremely irrelevant, but just to avoid * having any uninitialised structure members... */ sq.tetra_class = 0; callback(ctx, &sq); } } else { int row, rowlen, other, i, firstix = -1; float theight = (float)(sqrt(3) / 2.0); for (row = 0; row < params->d1 + params->d2; row++) { if (row < params->d2) { other = +1; rowlen = row + params->d1; } else { other = -1; rowlen = 2*params->d2 + params->d1 - row; } /* * There are `rowlen' down-pointing triangles. */ for (i = 0; i < rowlen; i++) { struct grid_square sq; int ix; float x, y; ix = (2 * i - (rowlen-1)); x = ix * 0.5F; y = theight * row; sq.x = x; sq.y = y + theight / 3; sq.points[0] = x - 0.5F; sq.points[1] = y; sq.points[2] = x; sq.points[3] = y + theight; sq.points[4] = x + 0.5F; sq.points[5] = y; sq.npoints = 3; sq.directions[LEFT] = 0x03; /* 0,1 */ sq.directions[RIGHT] = 0x06; /* 1,2 */ sq.directions[UP] = 0x05; /* 0,2 */ sq.directions[DOWN] = 0; /* invalid move */ /* * Down-pointing triangle: both the up diagonals go * up, and the down ones go left and right. */ sq.directions[UP_LEFT] = sq.directions[UP_RIGHT] = sq.directions[UP]; sq.directions[DOWN_LEFT] = sq.directions[LEFT]; sq.directions[DOWN_RIGHT] = sq.directions[RIGHT]; sq.flip = true; if (firstix < 0) firstix = ix & 3; ix -= firstix; sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3); callback(ctx, &sq); } /* * There are `rowlen+other' up-pointing triangles. */ for (i = 0; i < rowlen+other; i++) { struct grid_square sq; int ix; float x, y; ix = (2 * i - (rowlen+other-1)); x = ix * 0.5F; y = theight * row; sq.x = x; sq.y = y + 2*theight / 3; sq.points[0] = x + 0.5F; sq.points[1] = y + theight; sq.points[2] = x; sq.points[3] = y; sq.points[4] = x - 0.5F; sq.points[5] = y + theight; sq.npoints = 3; sq.directions[LEFT] = 0x06; /* 1,2 */ sq.directions[RIGHT] = 0x03; /* 0,1 */ sq.directions[DOWN] = 0x05; /* 0,2 */ sq.directions[UP] = 0; /* invalid move */ /* * Up-pointing triangle: both the down diagonals go * down, and the up ones go left and right. */ sq.directions[DOWN_LEFT] = sq.directions[DOWN_RIGHT] = sq.directions[DOWN]; sq.directions[UP_LEFT] = sq.directions[LEFT]; sq.directions[UP_RIGHT] = sq.directions[RIGHT]; sq.flip = false; if (firstix < 0) firstix = (ix - 1) & 3; ix -= firstix; sq.tetra_class = ((row+(ix&1)) & 2) ^ (ix & 3); callback(ctx, &sq); } } } } static int grid_area(int d1, int d2, int order) { /* * An NxM grid of squares has NM squares in it. * * A grid of triangles with dimensions A and B has a total of * A^2 + B^2 + 4AB triangles in it. (You can divide it up into * a side-A triangle containing A^2 subtriangles, a side-B * triangle containing B^2, and two congruent parallelograms, * each with side lengths A and B, each therefore containing AB * two-triangle rhombuses.) */ if (order == 4) return d1 * d2; else return d1*d1 + d2*d2 + 4*d1*d2; } static config_item *game_configure(const game_params *params) { config_item *ret = snewn(4, config_item); char buf[80]; ret[0].name = "Type of solid"; ret[0].type = C_CHOICES; ret[0].u.choices.choicenames = ":Tetrahedron:Cube:Octahedron:Icosahedron"; ret[0].u.choices.selected = params->solid; ret[1].name = "Width / top"; ret[1].type = C_STRING; sprintf(buf, "%d", params->d1); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Height / bottom"; ret[2].type = C_STRING; sprintf(buf, "%d", params->d2); ret[2].u.string.sval = dupstr(buf); ret[3].name = NULL; ret[3].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->solid = cfg[0].u.choices.selected; ret->d1 = atoi(cfg[1].u.string.sval); ret->d2 = atoi(cfg[2].u.string.sval); return ret; } static void count_grid_square_callback(void *ctx, struct grid_square *sq) { int *classes = (int *)ctx; int thisclass; if (classes[4] == 4) thisclass = sq->tetra_class; else if (classes[4] == 2) thisclass = sq->flip; else thisclass = 0; classes[thisclass]++; } static const char *validate_params(const game_params *params, bool full) { int classes[5]; int i; if (params->solid < 0 || params->solid >= lenof(solids)) return "Unrecognised solid type"; if (params->d1 < 0 || params->d2 < 0) return "Grid dimensions may not be negative"; if (solids[params->solid]->order == 4) { if (params->d1 <= 1 || params->d2 <= 1) return "Both grid dimensions must be greater than one"; if (params->d2 > INT_MAX / params->d1) return "Grid area must not be unreasonably large"; } else { if (params->d1 <= 0 && params->d2 <= 0) return "At least one grid dimension must be greater than zero"; /* * Check whether d1^2 + d2^2 + 4 d1 d2 > INT_MAX, without overflow: * * First check d1^2 doesn't overflow by itself. * * Then check d2^2 doesn't exceed the remaining space between * d1^2 and INT_MAX. * * If that's all OK then we know both d1 and d2 are * individually less than the square root of INT_MAX, so we * can safely multiply them and compare against the * _remaining_ space. */ if ((params->d1 > 0 && params->d1 > INT_MAX / params->d1) || (params->d2 > 0 && params->d2 > (INT_MAX - params->d1*params->d1) / params->d2) || (params->d2 > 0 && params->d1*params->d2 > (INT_MAX - params->d1*params->d1 - params->d2*params->d2) / params->d2)) return "Grid area must not be unreasonably large"; } for (i = 0; i < 4; i++) classes[i] = 0; if (params->solid == TETRAHEDRON) classes[4] = 4; else if (params->solid == OCTAHEDRON) classes[4] = 2; else classes[4] = 1; enum_grid_squares(params, count_grid_square_callback, classes); for (i = 0; i < classes[4]; i++) if (classes[i] < solids[params->solid]->nfaces / classes[4]) return "Not enough grid space to place all blue faces"; if (grid_area(params->d1, params->d2, solids[params->solid]->order) < solids[params->solid]->nfaces + 1) return "Not enough space to place the solid on an empty square"; return NULL; } struct grid_data { int *gridptrs[4]; int nsquares[4]; int nclasses; int squareindex; }; static void classify_grid_square_callback(void *ctx, struct grid_square *sq) { struct grid_data *data = (struct grid_data *)ctx; int thisclass; if (data->nclasses == 4) thisclass = sq->tetra_class; else if (data->nclasses == 2) thisclass = sq->flip; else thisclass = 0; data->gridptrs[thisclass][data->nsquares[thisclass]++] = data->squareindex++; } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { struct grid_data data; int i, j, k, m, area, facesperclass; bool *flags; char *desc, *p; /* * Enumerate the grid squares, dividing them into equivalence * classes as appropriate. (For the tetrahedron, there is one * equivalence class for each face; for the octahedron there * are two classes; for the other two solids there's only one.) */ area = grid_area(params->d1, params->d2, solids[params->solid]->order); if (params->solid == TETRAHEDRON) data.nclasses = 4; else if (params->solid == OCTAHEDRON) data.nclasses = 2; else data.nclasses = 1; data.gridptrs[0] = snewn(data.nclasses * area, int); for (i = 0; i < data.nclasses; i++) { data.gridptrs[i] = data.gridptrs[0] + i * area; data.nsquares[i] = 0; } data.squareindex = 0; enum_grid_squares(params, classify_grid_square_callback, &data); facesperclass = solids[params->solid]->nfaces / data.nclasses; for (i = 0; i < data.nclasses; i++) assert(data.nsquares[i] >= facesperclass); assert(data.squareindex == area); /* * So now we know how many faces to allocate in each class. Get * on with it. */ flags = snewn(area, bool); for (i = 0; i < area; i++) flags[i] = false; for (i = 0; i < data.nclasses; i++) { for (j = 0; j < facesperclass; j++) { int n = random_upto(rs, data.nsquares[i]); assert(!flags[data.gridptrs[i][n]]); flags[data.gridptrs[i][n]] = true; /* * Move everything else up the array. I ought to use a * better data structure for this, but for such small * numbers it hardly seems worth the effort. */ while (n < data.nsquares[i]-1) { data.gridptrs[i][n] = data.gridptrs[i][n+1]; n++; } data.nsquares[i]--; } } /* * Now we know precisely which squares are blue. Encode this * information in hex. While we're looping over this, collect * the non-blue squares into a list in the now-unused gridptrs * array. */ desc = snewn(area / 4 + 40, char); p = desc; j = 0; k = 8; m = 0; for (i = 0; i < area; i++) { if (flags[i]) { j |= k; } else { data.gridptrs[0][m++] = i; } k >>= 1; if (!k) { *p++ = "0123456789ABCDEF"[j]; k = 8; j = 0; } } if (k != 8) *p++ = "0123456789ABCDEF"[j]; /* * Choose a non-blue square for the polyhedron. */ sprintf(p, ",%d", data.gridptrs[0][random_upto(rs, m)]); sfree(data.gridptrs[0]); sfree(flags); return desc; } static void add_grid_square_callback(void *ctx, struct grid_square *sq) { game_grid *grid = (game_grid *)ctx; grid->squares[grid->nsquares++] = *sq; /* structure copy */ } static int lowest_face(const struct solid *solid) { int i, j, best; float zmin; best = 0; zmin = 0.0; for (i = 0; i < solid->nfaces; i++) { float z = 0; for (j = 0; j < solid->order; j++) { int f = solid->faces[i*solid->order + j]; z += solid->vertices[f*3+2]; } if (i == 0 || zmin > z) { zmin = z; best = i; } } return best; } static bool align_poly(const struct solid *solid, struct grid_square *sq, int *pkey) { float zmin; int i, j; int flip = (sq->flip ? -1 : +1); /* * First, find the lowest z-coordinate present in the solid. */ zmin = 0.0; for (i = 0; i < solid->nvertices; i++) if (zmin > solid->vertices[i*3+2]) zmin = solid->vertices[i*3+2]; /* * Now go round the grid square. For each point in the grid * square, we're looking for a point of the polyhedron with the * same x- and y-coordinates (relative to the square's centre), * and z-coordinate equal to zmin (near enough). */ for (j = 0; j < sq->npoints; j++) { int matches, index; matches = 0; index = -1; for (i = 0; i < solid->nvertices; i++) { float dist = 0; dist += SQ(solid->vertices[i*3+0] * flip - sq->points[j*2+0] + sq->x); dist += SQ(solid->vertices[i*3+1] * flip - sq->points[j*2+1] + sq->y); dist += SQ(solid->vertices[i*3+2] - zmin); if (dist < 0.1F) { matches++; index = i; } } if (matches != 1 || index < 0) return false; pkey[j] = index; } return true; } static void flip_poly(struct solid *solid, bool flip) { int i; if (flip) { for (i = 0; i < solid->nvertices; i++) { solid->vertices[i*3+0] *= -1; solid->vertices[i*3+1] *= -1; } for (i = 0; i < solid->nfaces; i++) { solid->normals[i*3+0] *= -1; solid->normals[i*3+1] *= -1; } } } static struct solid *transform_poly(const struct solid *solid, bool flip, int key0, int key1, float angle) { struct solid *ret = snew(struct solid); float vx, vy, ax, ay; float vmatrix[9], amatrix[9], vmatrix2[9]; int i; *ret = *solid; /* structure copy */ flip_poly(ret, flip); /* * Now rotate the polyhedron through the given angle. We must * rotate about the Z-axis to bring the two vertices key0 and * key1 into horizontal alignment, then rotate about the * X-axis, then rotate back again. */ vx = ret->vertices[key1*3+0] - ret->vertices[key0*3+0]; vy = ret->vertices[key1*3+1] - ret->vertices[key0*3+1]; assert(APPROXEQ(vx*vx + vy*vy, 1.0F)); vmatrix[0] = vx; vmatrix[3] = vy; vmatrix[6] = 0; vmatrix[1] = -vy; vmatrix[4] = vx; vmatrix[7] = 0; vmatrix[2] = 0; vmatrix[5] = 0; vmatrix[8] = 1; ax = (float)cos(angle); ay = (float)sin(angle); amatrix[0] = 1; amatrix[3] = 0; amatrix[6] = 0; amatrix[1] = 0; amatrix[4] = ax; amatrix[7] = ay; amatrix[2] = 0; amatrix[5] = -ay; amatrix[8] = ax; memcpy(vmatrix2, vmatrix, sizeof(vmatrix)); vmatrix2[1] = vy; vmatrix2[3] = -vy; for (i = 0; i < ret->nvertices; i++) { MATMUL(ret->vertices + 3*i, vmatrix, ret->vertices + 3*i); MATMUL(ret->vertices + 3*i, amatrix, ret->vertices + 3*i); MATMUL(ret->vertices + 3*i, vmatrix2, ret->vertices + 3*i); } for (i = 0; i < ret->nfaces; i++) { MATMUL(ret->normals + 3*i, vmatrix, ret->normals + 3*i); MATMUL(ret->normals + 3*i, amatrix, ret->normals + 3*i); MATMUL(ret->normals + 3*i, vmatrix2, ret->normals + 3*i); } return ret; } static const char *validate_desc(const game_params *params, const char *desc) { int area = grid_area(params->d1, params->d2, solids[params->solid]->order); int i, j; i = (area + 3) / 4; for (j = 0; j < i; j++) { int c = desc[j]; if (c >= '0' && c <= '9') continue; if (c >= 'A' && c <= 'F') continue; if (c >= 'a' && c <= 'f') continue; return "Not enough hex digits at start of string"; /* NB if desc[j]=='\0' that will also be caught here, so we're safe */ } if (desc[i] != ',') return "Expected ',' after hex digits"; i++; do { if (desc[i] < '0' || desc[i] > '9') return "Expected decimal integer after ','"; i++; } while (desc[i]); return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_grid *grid = snew(game_grid); game_state *state = snew(game_state); int area; state->params = *params; /* structure copy */ state->solid = solids[params->solid]; area = grid_area(params->d1, params->d2, state->solid->order); grid->squares = snewn(area, struct grid_square); grid->nsquares = 0; enum_grid_squares(params, add_grid_square_callback, grid); assert(grid->nsquares == area); state->grid = grid; grid->refcount = 1; state->facecolours = snewn(state->solid->nfaces, int); memset(state->facecolours, 0, state->solid->nfaces * sizeof(int)); state->bluemask = snewn((state->grid->nsquares + 31) / 32, unsigned long); memset(state->bluemask, 0, (state->grid->nsquares + 31) / 32 * sizeof(unsigned long)); /* * Set up the blue squares and polyhedron position according to * the game description. */ { const char *p = desc; int i, j, v; j = 8; v = 0; for (i = 0; i < state->grid->nsquares; i++) { if (j == 8) { v = *p++; if (v >= '0' && v <= '9') v -= '0'; else if (v >= 'A' && v <= 'F') v -= 'A' - 10; else if (v >= 'a' && v <= 'f') v -= 'a' - 10; else break; } if (v & j) SET_SQUARE(state, i, true); j >>= 1; if (j == 0) j = 8; } if (*p == ',') p++; state->current = atoi(p); if (state->current < 0 || state->current >= state->grid->nsquares) state->current = 0; /* got to do _something_ */ } /* * Align the polyhedron with its grid square and determine * initial key points. */ { int pkey[4]; bool ret; ret = align_poly(state->solid, &state->grid->squares[state->current], pkey); assert(ret); state->dpkey[0] = state->spkey[0] = pkey[0]; state->dpkey[1] = state->spkey[0] = pkey[1]; state->dgkey[0] = state->sgkey[0] = 0; state->dgkey[1] = state->sgkey[0] = 1; } state->previous = state->current; state->angle = 0.0; state->completed = 0; state->movecount = 0; return state; } static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); ret->params = state->params; /* structure copy */ ret->solid = state->solid; ret->facecolours = snewn(ret->solid->nfaces, int); memcpy(ret->facecolours, state->facecolours, ret->solid->nfaces * sizeof(int)); ret->current = state->current; ret->grid = state->grid; ret->grid->refcount++; ret->bluemask = snewn((ret->grid->nsquares + 31) / 32, unsigned long); memcpy(ret->bluemask, state->bluemask, (ret->grid->nsquares + 31) / 32 * sizeof(unsigned long)); ret->dpkey[0] = state->dpkey[0]; ret->dpkey[1] = state->dpkey[1]; ret->dgkey[0] = state->dgkey[0]; ret->dgkey[1] = state->dgkey[1]; ret->spkey[0] = state->spkey[0]; ret->spkey[1] = state->spkey[1]; ret->sgkey[0] = state->sgkey[0]; ret->sgkey[1] = state->sgkey[1]; ret->previous = state->previous; ret->angle = state->angle; ret->completed = state->completed; ret->movecount = state->movecount; return ret; } static void free_game(game_state *state) { if (--state->grid->refcount <= 0) { sfree(state->grid->squares); sfree(state->grid); } sfree(state->bluemask); sfree(state->facecolours); sfree(state); } static game_ui *new_ui(const game_state *state) { return NULL; } static void free_ui(game_ui *ui) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } struct game_drawstate { float gridscale; int ox, oy; /* pixel position of float origin */ }; /* * Code shared between interpret_move() and execute_move(). */ static int find_move_dest(const game_state *from, int direction, int *skey, int *dkey) { int mask, dest, i, j; float points[4]; /* * Find the two points in the current grid square which * correspond to this move. */ mask = from->grid->squares[from->current].directions[direction]; if (mask == 0) return -1; for (i = j = 0; i < from->grid->squares[from->current].npoints; i++) if (mask & (1 << i)) { points[j*2] = from->grid->squares[from->current].points[i*2]; points[j*2+1] = from->grid->squares[from->current].points[i*2+1]; skey[j] = i; j++; } assert(j == 2); /* * Now find the other grid square which shares those points. * This is our move destination. */ dest = -1; for (i = 0; i < from->grid->nsquares; i++) if (i != from->current) { int match = 0; float dist; for (j = 0; j < from->grid->squares[i].npoints; j++) { dist = (SQ(from->grid->squares[i].points[j*2] - points[0]) + SQ(from->grid->squares[i].points[j*2+1] - points[1])); if (dist < 0.1F) dkey[match++] = j; dist = (SQ(from->grid->squares[i].points[j*2] - points[2]) + SQ(from->grid->squares[i].points[j*2+1] - points[3])); if (dist < 0.1F) dkey[match++] = j; } if (match == 2) { dest = i; break; } } return dest; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int direction, mask, i; int skey[2], dkey[2]; button = button & (~MOD_MASK | MOD_NUM_KEYPAD); /* * Moves can be made with the cursor keys or numeric keypad, or * alternatively you can left-click and the polyhedron will * move in the general direction of the mouse pointer. */ if (button == CURSOR_UP || button == (MOD_NUM_KEYPAD | '8')) direction = UP; else if (button == CURSOR_DOWN || button == (MOD_NUM_KEYPAD | '2')) direction = DOWN; else if (button == CURSOR_LEFT || button == (MOD_NUM_KEYPAD | '4')) direction = LEFT; else if (button == CURSOR_RIGHT || button == (MOD_NUM_KEYPAD | '6')) direction = RIGHT; else if (button == (MOD_NUM_KEYPAD | '7')) direction = UP_LEFT; else if (button == (MOD_NUM_KEYPAD | '1')) direction = DOWN_LEFT; else if (button == (MOD_NUM_KEYPAD | '9')) direction = UP_RIGHT; else if (button == (MOD_NUM_KEYPAD | '3')) direction = DOWN_RIGHT; else if (button == LEFT_BUTTON) { /* * Find the bearing of the click point from the current * square's centre. */ int cx, cy; double angle; cx = (int)(state->grid->squares[state->current].x * GRID_SCALE) + ds->ox; cy = (int)(state->grid->squares[state->current].y * GRID_SCALE) + ds->oy; if (x == cx && y == cy) return MOVE_NO_EFFECT; /* clicked in exact centre! */ angle = atan2(y - cy, x - cx); /* * There are three possibilities. * * - This square is a square, so we choose between UP, * DOWN, LEFT and RIGHT by dividing the available angle * at the 45-degree points. * * - This square is an up-pointing triangle, so we choose * between DOWN, LEFT and RIGHT by dividing into * 120-degree arcs. * * - This square is a down-pointing triangle, so we choose * between UP, LEFT and RIGHT in the inverse manner. * * Don't forget that since our y-coordinates increase * downwards, `angle' is measured _clockwise_ from the * x-axis, not anticlockwise as most mathematicians would * instinctively assume. */ if (state->grid->squares[state->current].npoints == 4) { /* Square. */ if (fabs(angle) > 3*PI/4) direction = LEFT; else if (fabs(angle) < PI/4) direction = RIGHT; else if (angle > 0) direction = DOWN; else direction = UP; } else if (state->grid->squares[state->current].directions[UP] == 0) { /* Up-pointing triangle. */ if (angle < -PI/2 || angle > 5*PI/6) direction = LEFT; else if (angle > PI/6) direction = DOWN; else direction = RIGHT; } else { /* Down-pointing triangle. */ assert(state->grid->squares[state->current].directions[DOWN] == 0); if (angle > PI/2 || angle < -5*PI/6) direction = LEFT; else if (angle < -PI/6) direction = UP; else direction = RIGHT; } } else return MOVE_UNUSED; mask = state->grid->squares[state->current].directions[direction]; if (mask == 0) return MOVE_NO_EFFECT; /* * Translate diagonal directions into orthogonal ones. */ if (direction > DOWN) { for (i = LEFT; i <= DOWN; i++) if (state->grid->squares[state->current].directions[i] == mask) { direction = i; break; } assert(direction <= DOWN); } if (find_move_dest(state, direction, skey, dkey) < 0) return MOVE_NO_EFFECT; if (direction == LEFT) return dupstr("L"); if (direction == RIGHT) return dupstr("R"); if (direction == UP) return dupstr("U"); if (direction == DOWN) return dupstr("D"); return MOVE_NO_EFFECT; /* should never happen */ } static game_state *execute_move(const game_state *from, const char *move) { game_state *ret; float angle; struct solid *poly; int pkey[2]; int skey[2], dkey[2]; int i, j, dest; int direction; switch (*move) { case 'L': direction = LEFT; break; case 'R': direction = RIGHT; break; case 'U': direction = UP; break; case 'D': direction = DOWN; break; default: return NULL; } dest = find_move_dest(from, direction, skey, dkey); if (dest < 0) return NULL; ret = dup_game(from); ret->current = dest; /* * So we know what grid square we're aiming for, and we also * know the two key points (as indices in both the source and * destination grid squares) which are invariant between source * and destination. * * Next we must roll the polyhedron on to that square. So we * find the indices of the key points within the polyhedron's * vertex array, then use those in a call to transform_poly, * and align the result on the new grid square. */ { int all_pkey[4]; align_poly(from->solid, &from->grid->squares[from->current], all_pkey); pkey[0] = all_pkey[skey[0]]; pkey[1] = all_pkey[skey[1]]; /* * Now pkey[0] corresponds to skey[0] and dkey[0], and * likewise [1]. */ } /* * Now find the angle through which to rotate the polyhedron. * Do this by finding the two faces that share the two vertices * we've found, and taking the dot product of their normals. */ { int f[2], nf = 0; float dp; for (i = 0; i < from->solid->nfaces; i++) { int match = 0; for (j = 0; j < from->solid->order; j++) if (from->solid->faces[i*from->solid->order + j] == pkey[0] || from->solid->faces[i*from->solid->order + j] == pkey[1]) match++; if (match == 2) { assert(nf < 2); f[nf++] = i; } } assert(nf == 2); dp = 0; for (i = 0; i < 3; i++) dp += (from->solid->normals[f[0]*3+i] * from->solid->normals[f[1]*3+i]); angle = (float)acos(dp); } /* * Now transform the polyhedron. We aren't entirely sure * whether we need to rotate through angle or -angle, and the * simplest way round this is to try both and see which one * aligns successfully! * * Unfortunately, _both_ will align successfully if this is a * cube, which won't tell us anything much. So for that * particular case, I resort to gross hackery: I simply negate * the angle before trying the alignment, depending on the * direction. Which directions work which way is determined by * pure trial and error. I said it was gross :-/ */ { int all_pkey[4]; bool success; if (from->solid->order == 4 && direction == UP) angle = -angle; /* HACK */ poly = transform_poly(from->solid, from->grid->squares[from->current].flip, pkey[0], pkey[1], angle); flip_poly(poly, from->grid->squares[ret->current].flip); success = align_poly(poly, &from->grid->squares[ret->current], all_pkey); if (!success) { sfree(poly); angle = -angle; poly = transform_poly(from->solid, from->grid->squares[from->current].flip, pkey[0], pkey[1], angle); flip_poly(poly, from->grid->squares[ret->current].flip); success = align_poly(poly, &from->grid->squares[ret->current], all_pkey); } assert(success); } /* * Now we have our rotated polyhedron, which we expect to be * exactly congruent to the one we started with - but with the * faces permuted. So we map that congruence and thereby figure * out how to permute the faces as a result of the polyhedron * having rolled. */ { int *newcolours = snewn(from->solid->nfaces, int); for (i = 0; i < from->solid->nfaces; i++) newcolours[i] = -1; for (i = 0; i < from->solid->nfaces; i++) { int nmatch = 0; /* * Now go through the transformed polyhedron's faces * and figure out which one's normal is approximately * equal to this one. */ for (j = 0; j < poly->nfaces; j++) { float dist; int k; dist = 0; for (k = 0; k < 3; k++) dist += SQ(poly->normals[j*3+k] - from->solid->normals[i*3+k]); if (APPROXEQ(dist, 0)) { nmatch++; newcolours[i] = ret->facecolours[j]; } } assert(nmatch == 1); } for (i = 0; i < from->solid->nfaces; i++) assert(newcolours[i] != -1); sfree(ret->facecolours); ret->facecolours = newcolours; } ret->movecount++; /* * And finally, swap the colour between the bottom face of the * polyhedron and the face we've just landed on. * * We don't do this if the game is already complete, since we * allow the user to roll the fully blue polyhedron around the * grid as a feeble reward. */ if (!ret->completed) { i = lowest_face(from->solid); j = ret->facecolours[i]; ret->facecolours[i] = GET_SQUARE(ret, ret->current); SET_SQUARE(ret, ret->current, j); /* * Detect game completion. */ j = 0; for (i = 0; i < ret->solid->nfaces; i++) if (ret->facecolours[i]) j++; if (j == ret->solid->nfaces) ret->completed = ret->movecount; } sfree(poly); /* * Align the normal polyhedron with its grid square, to get key * points for non-animated display. */ { int pkey[4]; bool success; success = align_poly(ret->solid, &ret->grid->squares[ret->current], pkey); assert(success); ret->dpkey[0] = pkey[0]; ret->dpkey[1] = pkey[1]; ret->dgkey[0] = 0; ret->dgkey[1] = 1; } ret->spkey[0] = pkey[0]; ret->spkey[1] = pkey[1]; ret->sgkey[0] = skey[0]; ret->sgkey[1] = skey[1]; ret->previous = from->current; ret->angle = angle; return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ struct bbox { float l, r, u, d; }; static void find_bbox_callback(void *ctx, struct grid_square *sq) { struct bbox *bb = (struct bbox *)ctx; int i; for (i = 0; i < sq->npoints; i++) { if (bb->l > sq->points[i*2]) bb->l = sq->points[i*2]; if (bb->r < sq->points[i*2]) bb->r = sq->points[i*2]; if (bb->u > sq->points[i*2+1]) bb->u = sq->points[i*2+1]; if (bb->d < sq->points[i*2+1]) bb->d = sq->points[i*2+1]; } } static struct bbox find_bbox(const game_params *params) { struct bbox bb; /* * These should be hugely more than the real bounding box will * be. */ bb.l = 2.0F * (params->d1 + params->d2); bb.r = -2.0F * (params->d1 + params->d2); bb.u = 2.0F * (params->d1 + params->d2); bb.d = -2.0F * (params->d1 + params->d2); enum_grid_squares(params, find_bbox_callback, &bb); return bb; } #define XSIZE(gs, bb, solid) \ ((int)(((bb).r - (bb).l + 2*(solid)->border) * gs)) #define YSIZE(gs, bb, solid) \ ((int)(((bb).d - (bb).u + 2*(solid)->border) * gs)) static void game_compute_size(const game_params *params, int tilesize, const game_ui *ui, int *x, int *y) { struct bbox bb = find_bbox(params); *x = XSIZE(tilesize, bb, solids[params->solid]); *y = YSIZE(tilesize, bb, solids[params->solid]); } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { struct bbox bb = find_bbox(params); ds->gridscale = (float)tilesize; ds->ox = (int)(-(bb.l - solids[params->solid]->border) * ds->gridscale); ds->oy = (int)(-(bb.u - solids[params->solid]->border) * ds->gridscale); } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_BORDER * 3 + 0] = 0.0; ret[COL_BORDER * 3 + 1] = 0.0; ret[COL_BORDER * 3 + 2] = 0.0; ret[COL_BLUE * 3 + 0] = 0.0; ret[COL_BLUE * 3 + 1] = 0.0; ret[COL_BLUE * 3 + 2] = 1.0; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->ox = ds->oy = 0; ds->gridscale = 0.0F; /* not decided yet */ return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds); } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { struct bbox bb; bb.l = 2.0F * (params->d1 + params->d2); bb.r = -2.0F * (params->d1 + params->d2); bb.u = 2.0F * (params->d1 + params->d2); bb.d = -2.0F * (params->d1 + params->d2); find_bbox_callback(&bb, state->grid->squares + state->current); *x = ((int)(bb.l * GRID_SCALE) + ds->ox); *y = ((int)(bb.u * GRID_SCALE) + ds->oy); *w = (bb.r - bb.l) * GRID_SCALE; *h = (bb.d - bb.u) * GRID_SCALE; } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int i, j; struct bbox bb = find_bbox(&state->params); struct solid *poly; const int *pkey, *gkey; float t[3]; float angle; int square; draw_rect(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid), YSIZE(GRID_SCALE, bb, state->solid), COL_BACKGROUND); if (dir < 0) { const game_state *t; /* * This is an Undo. So reverse the order of the states, and * run the roll timer backwards. */ assert(oldstate); t = oldstate; oldstate = state; state = t; animtime = ROLLTIME - animtime; } if (!oldstate) { oldstate = state; angle = 0.0; square = state->current; pkey = state->dpkey; gkey = state->dgkey; } else { angle = state->angle * animtime / ROLLTIME; square = state->previous; pkey = state->spkey; gkey = state->sgkey; } state = oldstate; for (i = 0; i < state->grid->nsquares; i++) { int coords[8]; for (j = 0; j < state->grid->squares[i].npoints; j++) { coords[2*j] = ((int)(state->grid->squares[i].points[2*j] * GRID_SCALE) + ds->ox); coords[2*j+1] = ((int)(state->grid->squares[i].points[2*j+1]*GRID_SCALE) + ds->oy); } draw_polygon(dr, coords, state->grid->squares[i].npoints, GET_SQUARE(state, i) ? COL_BLUE : COL_BACKGROUND, COL_BORDER); } /* * Now compute and draw the polyhedron. */ poly = transform_poly(state->solid, state->grid->squares[square].flip, pkey[0], pkey[1], angle); /* * Compute the translation required to align the two key points * on the polyhedron with the same key points on the current * face. */ for (i = 0; i < 3; i++) { float tc = 0.0; for (j = 0; j < 2; j++) { float grid_coord; if (i < 2) { grid_coord = state->grid->squares[square].points[gkey[j]*2+i]; } else { grid_coord = 0.0; } tc += (grid_coord - poly->vertices[pkey[j]*3+i]); } t[i] = tc / 2; } for (i = 0; i < poly->nvertices; i++) for (j = 0; j < 3; j++) poly->vertices[i*3+j] += t[j]; /* * Now actually draw each face. */ for (i = 0; i < poly->nfaces; i++) { float points[8]; int coords[8]; for (j = 0; j < poly->order; j++) { int f = poly->faces[i*poly->order + j]; points[j*2] = (poly->vertices[f*3+0] - poly->vertices[f*3+2] * poly->shear); points[j*2+1] = (poly->vertices[f*3+1] - poly->vertices[f*3+2] * poly->shear); } for (j = 0; j < poly->order; j++) { coords[j*2] = (int)floor(points[j*2] * GRID_SCALE) + ds->ox; coords[j*2+1] = (int)floor(points[j*2+1] * GRID_SCALE) + ds->oy; } /* * Find out whether these points are in a clockwise or * anticlockwise arrangement. If the latter, discard the * face because it's facing away from the viewer. * * This would involve fiddly winding-number stuff for a * general polygon, but for the simple parallelograms we'll * be seeing here, all we have to do is check whether the * corners turn right or left. So we'll take the vector * from point 0 to point 1, turn it right 90 degrees, * and check the sign of the dot product with that and the * next vector (point 1 to point 2). */ { float v1x = points[2]-points[0]; float v1y = points[3]-points[1]; float v2x = points[4]-points[2]; float v2y = points[5]-points[3]; float dp = v1x * v2y - v1y * v2x; if (dp <= 0) continue; } draw_polygon(dr, coords, poly->order, state->facecolours[i] ? COL_BLUE : COL_BACKGROUND, COL_BORDER); } sfree(poly); draw_update(dr, 0, 0, XSIZE(GRID_SCALE, bb, state->solid), YSIZE(GRID_SCALE, bb, state->solid)); /* * Update the status bar. */ { char statusbuf[256]; sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->movecount)); status_bar(dr, statusbuf); } } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return ROLLTIME; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } #ifdef COMBINED #define thegame cube #endif const struct game thegame = { "Cube", "games.cube", "cube", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, false, NULL, /* solve */ false, NULL, NULL, /* can_format_as_text_now, text_format */ NULL, NULL, /* get_prefs, set_prefs */ new_ui, free_ui, NULL, /* encode_ui */ NULL, /* decode_ui */ NULL, /* game_request_keys */ game_changed_state, NULL, /* current_key_label */ interpret_move, execute_move, PREFERRED_GRID_SCALE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, false, false, NULL, NULL, /* print_size, print */ true, /* wants_statusbar */ false, NULL, /* timing_state */ 0, /* flags */ };