ref: 36c282aaa92bd42d570cdc76fe3b9e76d8da1ff1
dir: /map.c/
/* * map.c: Game involving four-colouring a map. */ /* * TODO: * * - clue marking * - better four-colouring algorithm? */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <limits.h> #include <math.h> #include "puzzles.h" /* * In standalone solver mode, `verbose' is a variable which can be * set by command-line option; in debugging mode it's simply always * true. */ #if defined STANDALONE_SOLVER #define SOLVER_DIAGNOSTICS static bool verbose = false; #elif defined SOLVER_DIAGNOSTICS #define verbose true #endif /* * I don't seriously anticipate wanting to change the number of * colours used in this game, but it doesn't cost much to use a * #define just in case :-) */ #define FOUR 4 #define THREE (FOUR-1) #define FIVE (FOUR+1) #define SIX (FOUR+2) /* * Ghastly run-time configuration option, just for Gareth (again). */ static int flash_type = -1; static float flash_length; /* * Difficulty levels. I do some macro ickery here to ensure that my * enum and the various forms of my name list always match up. */ #define DIFFLIST(A) \ A(EASY,Easy,e) \ A(NORMAL,Normal,n) \ A(HARD,Hard,h) \ A(RECURSE,Unreasonable,u) #define ENUM(upper,title,lower) DIFF_ ## upper, #define TITLE(upper,title,lower) #title, #define ENCODE(upper,title,lower) #lower #define CONFIG(upper,title,lower) ":" #title enum { DIFFLIST(ENUM) DIFFCOUNT }; static char const *const map_diffnames[] = { DIFFLIST(TITLE) }; static char const map_diffchars[] = DIFFLIST(ENCODE); #define DIFFCONFIG DIFFLIST(CONFIG) enum { TE, BE, LE, RE }; /* top/bottom/left/right edges */ enum { COL_BACKGROUND, COL_GRID, COL_0, COL_1, COL_2, COL_3, COL_ERROR, COL_ERRTEXT, NCOLOURS }; struct game_params { int w, h, n, diff; }; struct map { int refcount; int *map; int *graph; int n; int ngraph; bool *immutable; int *edgex, *edgey; /* position of a point on each edge */ int *regionx, *regiony; /* position of a point in each region */ }; struct game_state { game_params p; struct map *map; int *colouring, *pencil; bool completed, cheated; }; static game_params *default_params(void) { game_params *ret = snew(game_params); #ifdef PORTRAIT_SCREEN ret->w = 16; ret->h = 18; #else ret->w = 20; ret->h = 15; #endif ret->n = 30; ret->diff = DIFF_NORMAL; return ret; } static const struct game_params map_presets[] = { #ifdef PORTRAIT_SCREEN {16, 18, 30, DIFF_EASY}, {16, 18, 30, DIFF_NORMAL}, {16, 18, 30, DIFF_HARD}, {16, 18, 30, DIFF_RECURSE}, {25, 30, 75, DIFF_NORMAL}, {25, 30, 75, DIFF_HARD}, #else {20, 15, 30, DIFF_EASY}, {20, 15, 30, DIFF_NORMAL}, {20, 15, 30, DIFF_HARD}, {20, 15, 30, DIFF_RECURSE}, {30, 25, 75, DIFF_NORMAL}, {30, 25, 75, DIFF_HARD}, #endif }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(map_presets)) return false; ret = snew(game_params); *ret = map_presets[i]; sprintf(str, "%dx%d, %d regions, %s", ret->w, ret->h, ret->n, map_diffnames[ret->diff]); *name = dupstr(str); *params = ret; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { char const *p = string; params->w = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; params->h = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; } else { params->h = params->w; } if (*p == 'n') { p++; params->n = atoi(p); while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++; } else { if (params->h > 0 && params->w > 0 && params->w <= INT_MAX / params->h) params->n = params->w * params->h / 8; } if (*p == 'd') { int i; p++; for (i = 0; i < DIFFCOUNT; i++) if (*p == map_diffchars[i]) params->diff = i; if (*p) p++; } } static char *encode_params(const game_params *params, bool full) { char ret[400]; sprintf(ret, "%dx%dn%d", params->w, params->h, params->n); if (full) sprintf(ret + strlen(ret), "d%c", map_diffchars[params->diff]); return dupstr(ret); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(5, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Regions"; ret[2].type = C_STRING; sprintf(buf, "%d", params->n); ret[2].u.string.sval = dupstr(buf); ret[3].name = "Difficulty"; ret[3].type = C_CHOICES; ret[3].u.choices.choicenames = DIFFCONFIG; ret[3].u.choices.selected = params->diff; ret[4].name = NULL; ret[4].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); ret->n = atoi(cfg[2].u.string.sval); ret->diff = cfg[3].u.choices.selected; return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w < 2 || params->h < 2) return "Width and height must be at least two"; if (params->w > INT_MAX / 2 / params->h) return "Width times height must not be unreasonably large"; if (params->n < 5) return "Must have at least five regions"; if (params->n > params->w * params->h) return "Too many regions to fit in grid"; return NULL; } /* ---------------------------------------------------------------------- * Cumulative frequency table functions. */ /* * Initialise a cumulative frequency table. (Hardly worth writing * this function; all it does is to initialise everything in the * array to zero.) */ static void cf_init(int *table, int n) { int i; for (i = 0; i < n; i++) table[i] = 0; } /* * Increment the count of symbol `sym' by `count'. */ static void cf_add(int *table, int n, int sym, int count) { int bit; bit = 1; while (sym != 0) { if (sym & bit) { table[sym] += count; sym &= ~bit; } bit <<= 1; } table[0] += count; } /* * Cumulative frequency lookup: return the total count of symbols * with value less than `sym'. */ static int cf_clookup(int *table, int n, int sym) { int bit, index, limit, count; if (sym == 0) return 0; assert(0 < sym && sym <= n); count = table[0]; /* start with the whole table size */ bit = 1; while (bit < n) bit <<= 1; limit = n; while (bit > 0) { /* * Find the least number with its lowest set bit in this * position which is greater than or equal to sym. */ index = ((sym + bit - 1) &~ (bit * 2 - 1)) + bit; if (index < limit) { count -= table[index]; limit = index; } bit >>= 1; } return count; } /* * Single frequency lookup: return the count of symbol `sym'. */ static int cf_slookup(int *table, int n, int sym) { int count, bit; assert(0 <= sym && sym < n); count = table[sym]; for (bit = 1; sym+bit < n && !(sym & bit); bit <<= 1) count -= table[sym+bit]; return count; } /* * Return the largest symbol index such that the cumulative * frequency up to that symbol is less than _or equal to_ count. */ static int cf_whichsym(int *table, int n, int count) { int bit, sym, top; assert(count >= 0 && count < table[0]); bit = 1; while (bit < n) bit <<= 1; sym = 0; top = table[0]; while (bit > 0) { if (sym+bit < n) { if (count >= top - table[sym+bit]) sym += bit; else top -= table[sym+bit]; } bit >>= 1; } return sym; } /* ---------------------------------------------------------------------- * Map generation. * * FIXME: this isn't entirely optimal at present, because it * inherently prioritises growing the largest region since there * are more squares adjacent to it. This acts as a destabilising * influence leading to a few large regions and mostly small ones. * It might be better to do it some other way. */ #define WEIGHT_INCREASED 2 /* for increased perimeter */ #define WEIGHT_DECREASED 4 /* for decreased perimeter */ #define WEIGHT_UNCHANGED 3 /* for unchanged perimeter */ /* * Look at a square and decide which colours can be extended into * it. * * If called with index < 0, it adds together one of * WEIGHT_INCREASED, WEIGHT_DECREASED or WEIGHT_UNCHANGED for each * colour that has a valid extension (according to the effect that * it would have on the perimeter of the region being extended) and * returns the overall total. * * If called with index >= 0, it returns one of the possible * colours depending on the value of index, in such a way that the * number of possible inputs which would give rise to a given * return value correspond to the weight of that value. */ static int extend_options(int w, int h, int n, int *map, int x, int y, int index) { int c, i, dx, dy; int col[8]; int total = 0; if (map[y*w+x] >= 0) { assert(index < 0); return 0; /* can't do this square at all */ } /* * Fetch the eight neighbours of this square, in order around * the square. */ for (dy = -1; dy <= +1; dy++) for (dx = -1; dx <= +1; dx++) { int index = (dy < 0 ? 6-dx : dy > 0 ? 2+dx : 2*(1+dx)); if (x+dx >= 0 && x+dx < w && y+dy >= 0 && y+dy < h) col[index] = map[(y+dy)*w+(x+dx)]; else col[index] = -1; } /* * Iterate over each colour that might be feasible. * * FIXME: this routine currently has O(n) running time. We * could turn it into O(FOUR) by only bothering to iterate over * the colours mentioned in the four neighbouring squares. */ for (c = 0; c < n; c++) { int count, neighbours, runs; /* * One of the even indices of col (representing the * orthogonal neighbours of this square) must be equal to * c, or else this square is not adjacent to region c and * obviously cannot become an extension of it at this time. */ neighbours = 0; for (i = 0; i < 8; i += 2) if (col[i] == c) neighbours++; if (!neighbours) continue; /* * Now we know this square is adjacent to region c. The * next question is, would extending it cause the region to * become non-simply-connected? If so, we mustn't do it. * * We determine this by looking around col to see if we can * find more than one separate run of colour c. */ runs = 0; for (i = 0; i < 8; i++) if (col[i] == c && col[(i+1) & 7] != c) runs++; if (runs > 1) continue; assert(runs == 1); /* * This square is a possibility. Determine its effect on * the region's perimeter (computed from the number of * orthogonal neighbours - 1 means a perimeter increase, 3 * a decrease, 2 no change; 4 is impossible because the * region would already not be simply connected) and we're * done. */ assert(neighbours > 0 && neighbours < 4); count = (neighbours == 1 ? WEIGHT_INCREASED : neighbours == 2 ? WEIGHT_UNCHANGED : WEIGHT_DECREASED); total += count; if (index >= 0 && index < count) return c; else index -= count; } assert(index < 0); return total; } static void genmap(int w, int h, int n, int *map, random_state *rs) { int wh = w*h; int x, y, i, k; int *tmp; assert(n <= wh); tmp = snewn(wh, int); /* * Clear the map, and set up `tmp' as a list of grid indices. */ for (i = 0; i < wh; i++) { map[i] = -1; tmp[i] = i; } /* * Place the region seeds by selecting n members from `tmp'. */ k = wh; for (i = 0; i < n; i++) { int j = random_upto(rs, k); map[tmp[j]] = i; tmp[j] = tmp[--k]; } /* * Re-initialise `tmp' as a cumulative frequency table. This * will store the number of possible region colours we can * extend into each square. */ cf_init(tmp, wh); /* * Go through the grid and set up the initial cumulative * frequencies. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) cf_add(tmp, wh, y*w+x, extend_options(w, h, n, map, x, y, -1)); /* * Now repeatedly choose a square we can extend a region into, * and do so. */ while (tmp[0] > 0) { int k = random_upto(rs, tmp[0]); int sq; int colour; int xx, yy; sq = cf_whichsym(tmp, wh, k); k -= cf_clookup(tmp, wh, sq); x = sq % w; y = sq / w; colour = extend_options(w, h, n, map, x, y, k); map[sq] = colour; /* * Re-scan the nine cells around the one we've just * modified. */ for (yy = max(y-1, 0); yy < min(y+2, h); yy++) for (xx = max(x-1, 0); xx < min(x+2, w); xx++) { cf_add(tmp, wh, yy*w+xx, -cf_slookup(tmp, wh, yy*w+xx) + extend_options(w, h, n, map, xx, yy, -1)); } } /* * Finally, go through and normalise the region labels into * order, meaning that indistinguishable maps are actually * identical. */ for (i = 0; i < n; i++) tmp[i] = -1; k = 0; for (i = 0; i < wh; i++) { assert(map[i] >= 0); if (tmp[map[i]] < 0) tmp[map[i]] = k++; map[i] = tmp[map[i]]; } sfree(tmp); } /* ---------------------------------------------------------------------- * Functions to handle graphs. */ /* * Having got a map in a square grid, convert it into a graph * representation. */ static int gengraph(int w, int h, int n, int *map, int *graph) { int i, j, x, y; /* * Start by setting the graph up as an adjacency matrix. We'll * turn it into a list later. */ for (i = 0; i < n*n; i++) graph[i] = 0; /* * Iterate over the map looking for all adjacencies. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int v, vx, vy; v = map[y*w+x]; if (x+1 < w && (vx = map[y*w+(x+1)]) != v) graph[v*n+vx] = graph[vx*n+v] = 1; if (y+1 < h && (vy = map[(y+1)*w+x]) != v) graph[v*n+vy] = graph[vy*n+v] = 1; } /* * Turn the matrix into a list. */ for (i = j = 0; i < n*n; i++) if (graph[i]) graph[j++] = i; return j; } static int graph_edge_index(int *graph, int n, int ngraph, int i, int j) { int v = i*n+j; int top, bot, mid; bot = -1; top = ngraph; while (top - bot > 1) { mid = (top + bot) / 2; if (graph[mid] == v) return mid; else if (graph[mid] < v) bot = mid; else top = mid; } return -1; } #define graph_adjacent(graph, n, ngraph, i, j) \ (graph_edge_index((graph), (n), (ngraph), (i), (j)) >= 0) static int graph_vertex_start(int *graph, int n, int ngraph, int i) { int v = i*n; int top, bot, mid; bot = -1; top = ngraph; while (top - bot > 1) { mid = (top + bot) / 2; if (graph[mid] < v) bot = mid; else top = mid; } return top; } /* ---------------------------------------------------------------------- * Generate a four-colouring of a graph. * * FIXME: it would be nice if we could convert this recursion into * pseudo-recursion using some sort of explicit stack array, for * the sake of the Palm port and its limited stack. */ static bool fourcolour_recurse(int *graph, int n, int ngraph, int *colouring, int *scratch, random_state *rs) { int nfree, nvert, start, i, j, k, c, ci; int cs[FOUR]; /* * Find the smallest number of free colours in any uncoloured * vertex, and count the number of such vertices. */ nfree = FIVE; /* start off bigger than FOUR! */ nvert = 0; for (i = 0; i < n; i++) if (colouring[i] < 0 && scratch[i*FIVE+FOUR] <= nfree) { if (nfree > scratch[i*FIVE+FOUR]) { nfree = scratch[i*FIVE+FOUR]; nvert = 0; } nvert++; } /* * If there aren't any uncoloured vertices at all, we're done. */ if (nvert == 0) return true; /* we've got a colouring! */ /* * Pick a random vertex in that set. */ j = random_upto(rs, nvert); for (i = 0; i < n; i++) if (colouring[i] < 0 && scratch[i*FIVE+FOUR] == nfree) if (j-- == 0) break; assert(i < n); start = graph_vertex_start(graph, n, ngraph, i); /* * Loop over the possible colours for i, and recurse for each * one. */ ci = 0; for (c = 0; c < FOUR; c++) if (scratch[i*FIVE+c] == 0) cs[ci++] = c; shuffle(cs, ci, sizeof(*cs), rs); while (ci-- > 0) { c = cs[ci]; /* * Fill in this colour. */ colouring[i] = c; /* * Update the scratch space to reflect a new neighbour * of this colour for each neighbour of vertex i. */ for (j = start; j < ngraph && graph[j] < n*(i+1); j++) { k = graph[j] - i*n; if (scratch[k*FIVE+c] == 0) scratch[k*FIVE+FOUR]--; scratch[k*FIVE+c]++; } /* * Recurse. */ if (fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs)) return true; /* got one! */ /* * If that didn't work, clean up and try again with a * different colour. */ for (j = start; j < ngraph && graph[j] < n*(i+1); j++) { k = graph[j] - i*n; scratch[k*FIVE+c]--; if (scratch[k*FIVE+c] == 0) scratch[k*FIVE+FOUR]++; } colouring[i] = -1; } /* * If we reach here, we were unable to find a colouring at all. * (This doesn't necessarily mean the Four Colour Theorem is * violated; it might just mean we've gone down a dead end and * need to back up and look somewhere else. It's only an FCT * violation if we get all the way back up to the top level and * still fail.) */ return false; } static void fourcolour(int *graph, int n, int ngraph, int *colouring, random_state *rs) { int *scratch; int i; bool retd; /* * For each vertex and each colour, we store the number of * neighbours that have that colour. Also, we store the number * of free colours for the vertex. */ scratch = snewn(n * FIVE, int); for (i = 0; i < n * FIVE; i++) scratch[i] = (i % FIVE == FOUR ? FOUR : 0); /* * Clear the colouring to start with. */ for (i = 0; i < n; i++) colouring[i] = -1; retd = fourcolour_recurse(graph, n, ngraph, colouring, scratch, rs); assert(retd); /* by the Four Colour Theorem :-) */ sfree(scratch); } /* ---------------------------------------------------------------------- * Non-recursive solver. */ struct solver_scratch { unsigned char *possible; /* bitmap of colours for each region */ int *graph; int n; int ngraph; int *bfsqueue; int *bfscolour; #ifdef SOLVER_DIAGNOSTICS int *bfsprev; #endif int depth; }; static struct solver_scratch *new_scratch(int *graph, int n, int ngraph) { struct solver_scratch *sc; sc = snew(struct solver_scratch); sc->graph = graph; sc->n = n; sc->ngraph = ngraph; sc->possible = snewn(n, unsigned char); sc->depth = 0; sc->bfsqueue = snewn(n, int); sc->bfscolour = snewn(n, int); #ifdef SOLVER_DIAGNOSTICS sc->bfsprev = snewn(n, int); #endif return sc; } static void free_scratch(struct solver_scratch *sc) { sfree(sc->possible); sfree(sc->bfsqueue); sfree(sc->bfscolour); #ifdef SOLVER_DIAGNOSTICS sfree(sc->bfsprev); #endif sfree(sc); } /* * Count the bits in a word. Only needs to cope with FOUR bits. */ static int bitcount(int word) { assert(FOUR <= 4); /* or this needs changing */ word = ((word & 0xA) >> 1) + (word & 0x5); word = ((word & 0xC) >> 2) + (word & 0x3); return word; } #ifdef SOLVER_DIAGNOSTICS static const char colnames[FOUR] = { 'R', 'Y', 'G', 'B' }; #endif static bool place_colour(struct solver_scratch *sc, int *colouring, int index, int colour #ifdef SOLVER_DIAGNOSTICS , const char *verb #endif ) { int *graph = sc->graph, n = sc->n, ngraph = sc->ngraph; int j, k; if (!(sc->possible[index] & (1 << colour))) { #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*scannot place %c in region %d\n", 2*sc->depth, "", colnames[colour], index); #endif return false; /* can't do it */ } sc->possible[index] = 1 << colour; colouring[index] = colour; #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*s%s %c in region %d\n", 2*sc->depth, "", verb, colnames[colour], index); #endif /* * Rule out this colour from all the region's neighbours. */ for (j = graph_vertex_start(graph, n, ngraph, index); j < ngraph && graph[j] < n*(index+1); j++) { k = graph[j] - index*n; #ifdef SOLVER_DIAGNOSTICS if (verbose && (sc->possible[k] & (1 << colour))) printf("%*s ruling out %c in region %d\n", 2*sc->depth, "", colnames[colour], k); #endif sc->possible[k] &= ~(1 << colour); } return true; } #ifdef SOLVER_DIAGNOSTICS static char *colourset(char *buf, int set) { int i; char *p = buf; const char *sep = ""; for (i = 0; i < FOUR; i++) if (set & (1 << i)) { p += sprintf(p, "%s%c", sep, colnames[i]); sep = ","; } return buf; } #endif /* * Returns 0 for impossible, 1 for success, 2 for failure to * converge (i.e. puzzle is either ambiguous or just too * difficult). */ static int map_solver(struct solver_scratch *sc, int *graph, int n, int ngraph, int *colouring, int difficulty) { int i; if (sc->depth == 0) { /* * Initialise scratch space. */ for (i = 0; i < n; i++) sc->possible[i] = (1 << FOUR) - 1; /* * Place clues. */ for (i = 0; i < n; i++) if (colouring[i] >= 0) { if (!place_colour(sc, colouring, i, colouring[i] #ifdef SOLVER_DIAGNOSTICS , "initial clue:" #endif )) { #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*sinitial clue set is inconsistent\n", 2*sc->depth, ""); #endif return 0; /* the clues aren't even consistent! */ } } } /* * Now repeatedly loop until we find nothing further to do. */ while (1) { bool done_something = false; if (difficulty < DIFF_EASY) break; /* can't do anything at all! */ /* * Simplest possible deduction: find a region with only one * possible colour. */ for (i = 0; i < n; i++) if (colouring[i] < 0) { int p = sc->possible[i]; if (p == 0) { #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*sregion %d has no possible colours left\n", 2*sc->depth, "", i); #endif return 0; /* puzzle is inconsistent */ } if ((p & (p-1)) == 0) { /* p is a power of two */ int c; bool ret; for (c = 0; c < FOUR; c++) if (p == (1 << c)) break; assert(c < FOUR); ret = place_colour(sc, colouring, i, c #ifdef SOLVER_DIAGNOSTICS , "placing" #endif ); /* * place_colour() can only fail if colour c was not * even a _possibility_ for region i, and we're * pretty sure it was because we checked before * calling place_colour(). So we can safely assert * here rather than having to return a nice * friendly error code. */ assert(ret); done_something = true; } } if (done_something) continue; if (difficulty < DIFF_NORMAL) break; /* can't do anything harder */ /* * Failing that, go up one level. Look for pairs of regions * which (a) both have the same pair of possible colours, * (b) are adjacent to one another, (c) are adjacent to the * same region, and (d) that region still thinks it has one * or both of those possible colours. * * Simplest way to do this is by going through the graph * edge by edge, so that we start with property (b) and * then look for (a) and finally (c) and (d). */ for (i = 0; i < ngraph; i++) { int j1 = graph[i] / n, j2 = graph[i] % n; int j, k, v, v2; #ifdef SOLVER_DIAGNOSTICS bool started = false; #endif if (j1 > j2) continue; /* done it already, other way round */ if (colouring[j1] >= 0 || colouring[j2] >= 0) continue; /* they're not undecided */ if (sc->possible[j1] != sc->possible[j2]) continue; /* they don't have the same possibles */ v = sc->possible[j1]; /* * See if v contains exactly two set bits. */ v2 = v & -v; /* find lowest set bit */ v2 = v & ~v2; /* clear it */ if (v2 == 0 || (v2 & (v2-1)) != 0) /* not power of 2 */ continue; /* * We've found regions j1 and j2 satisfying properties * (a) and (b): they have two possible colours between * them, and since they're adjacent to one another they * must use _both_ those colours between them. * Therefore, if they are both adjacent to any other * region then that region cannot be either colour. * * Go through the neighbours of j1 and see if any are * shared with j2. */ for (j = graph_vertex_start(graph, n, ngraph, j1); j < ngraph && graph[j] < n*(j1+1); j++) { k = graph[j] - j1*n; if (graph_adjacent(graph, n, ngraph, k, j2) && (sc->possible[k] & v)) { #ifdef SOLVER_DIAGNOSTICS if (verbose) { char buf[80]; if (!started) printf("%*sadjacent regions %d,%d share colours" " %s\n", 2*sc->depth, "", j1, j2, colourset(buf, v)); started = true; printf("%*s ruling out %s in region %d\n",2*sc->depth, "", colourset(buf, sc->possible[k] & v), k); } #endif sc->possible[k] &= ~v; done_something = true; } } } if (done_something) continue; if (difficulty < DIFF_HARD) break; /* can't do anything harder */ /* * Right; now we get creative. Now we're going to look for * `forcing chains'. A forcing chain is a path through the * graph with the following properties: * * (a) Each vertex on the path has precisely two possible * colours. * * (b) Each pair of vertices which are adjacent on the * path share at least one possible colour in common. * * (c) Each vertex in the middle of the path shares _both_ * of its colours with at least one of its neighbours * (not the same one with both neighbours). * * These together imply that at least one of the possible * colour choices at one end of the path forces _all_ the * rest of the colours along the path. In order to make * real use of this, we need further properties: * * (c) Ruling out some colour C from the vertex at one end * of the path forces the vertex at the other end to * take colour C. * * (d) The two end vertices are mutually adjacent to some * third vertex. * * (e) That third vertex currently has C as a possibility. * * If we can find all of that lot, we can deduce that at * least one of the two ends of the forcing chain has * colour C, and that therefore the mutually adjacent third * vertex does not. * * To find forcing chains, we're going to start a bfs at * each suitable vertex of the graph, once for each of its * two possible colours. */ for (i = 0; i < n; i++) { int c; if (colouring[i] >= 0 || bitcount(sc->possible[i]) != 2) continue; for (c = 0; c < FOUR; c++) if (sc->possible[i] & (1 << c)) { int j, k, gi, origc, currc, head, tail; /* * Try a bfs from this vertex, ruling out * colour c. * * Within this loop, we work in colour bitmaps * rather than actual colours, because * converting back and forth is a needless * computational expense. */ origc = 1 << c; for (j = 0; j < n; j++) { sc->bfscolour[j] = -1; #ifdef SOLVER_DIAGNOSTICS sc->bfsprev[j] = -1; #endif } head = tail = 0; sc->bfsqueue[tail++] = i; sc->bfscolour[i] = sc->possible[i] &~ origc; while (head < tail) { j = sc->bfsqueue[head++]; currc = sc->bfscolour[j]; /* * Try neighbours of j. */ for (gi = graph_vertex_start(graph, n, ngraph, j); gi < ngraph && graph[gi] < n*(j+1); gi++) { k = graph[gi] - j*n; /* * To continue with the bfs in vertex * k, we need k to be * (a) not already visited * (b) have two possible colours * (c) those colours include currc. */ if (sc->bfscolour[k] < 0 && colouring[k] < 0 && bitcount(sc->possible[k]) == 2 && (sc->possible[k] & currc)) { sc->bfsqueue[tail++] = k; sc->bfscolour[k] = sc->possible[k] &~ currc; #ifdef SOLVER_DIAGNOSTICS sc->bfsprev[k] = j; #endif } /* * One other possibility is that k * might be the region in which we can * make a real deduction: if it's * adjacent to i, contains currc as a * possibility, and currc is equal to * the original colour we ruled out. */ if (currc == origc && graph_adjacent(graph, n, ngraph, k, i) && (sc->possible[k] & currc)) { #ifdef SOLVER_DIAGNOSTICS if (verbose) { char buf[80]; const char *sep = ""; int r; printf("%*sforcing chain, colour %s, ", 2*sc->depth, "", colourset(buf, origc)); for (r = j; r != -1; r = sc->bfsprev[r]) { printf("%s%d", sep, r); sep = "-"; } printf("\n%*s ruling out %s in region" " %d\n", 2*sc->depth, "", colourset(buf, origc), k); } #endif sc->possible[k] &= ~origc; done_something = true; } } } assert(tail <= n); } } if (!done_something) break; } /* * See if we've got a complete solution, and return if so. */ for (i = 0; i < n; i++) if (colouring[i] < 0) break; if (i == n) { #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*sone solution found\n", 2*sc->depth, ""); #endif return 1; /* success! */ } /* * If recursion is not permissible, we now give up. */ if (difficulty < DIFF_RECURSE) { #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*sunable to proceed further without recursion\n", 2*sc->depth, ""); #endif return 2; /* unable to complete */ } /* * Now we've got to do something recursive. So first hunt for a * currently-most-constrained region. */ { int best, bestc; struct solver_scratch *rsc; int *subcolouring, *origcolouring; int ret, subret; bool we_already_got_one; best = -1; bestc = FIVE; for (i = 0; i < n; i++) if (colouring[i] < 0) { int p = sc->possible[i]; enum { compile_time_assertion = 1 / (FOUR <= 4) }; int c; /* Count the set bits. */ c = (p & 5) + ((p >> 1) & 5); c = (c & 3) + ((c >> 2) & 3); assert(c > 1); /* or colouring[i] would be >= 0 */ if (c < bestc) { best = i; bestc = c; } } assert(best >= 0); /* or we'd be solved already */ #ifdef SOLVER_DIAGNOSTICS if (verbose) printf("%*srecursing on region %d\n", 2*sc->depth, "", best); #endif /* * Now iterate over the possible colours for this region. */ rsc = new_scratch(graph, n, ngraph); rsc->depth = sc->depth + 1; origcolouring = snewn(n, int); memcpy(origcolouring, colouring, n * sizeof(int)); subcolouring = snewn(n, int); we_already_got_one = false; ret = 0; for (i = 0; i < FOUR; i++) { if (!(sc->possible[best] & (1 << i))) continue; memcpy(rsc->possible, sc->possible, n); memcpy(subcolouring, origcolouring, n * sizeof(int)); place_colour(rsc, subcolouring, best, i #ifdef SOLVER_DIAGNOSTICS , "trying" #endif ); subret = map_solver(rsc, graph, n, ngraph, subcolouring, difficulty); #ifdef SOLVER_DIAGNOSTICS if (verbose) { printf("%*sretracting %c in region %d; found %s\n", 2*sc->depth, "", colnames[i], best, subret == 0 ? "no solutions" : subret == 1 ? "one solution" : "multiple solutions"); } #endif /* * If this possibility turned up more than one valid * solution, or if it turned up one and we already had * one, we're definitely ambiguous. */ if (subret == 2 || (subret == 1 && we_already_got_one)) { ret = 2; break; } /* * If this possibility turned up one valid solution and * it's the first we've seen, copy it into the output. */ if (subret == 1) { memcpy(colouring, subcolouring, n * sizeof(int)); we_already_got_one = true; ret = 1; } /* * Otherwise, this guess led to a contradiction, so we * do nothing. */ } sfree(origcolouring); sfree(subcolouring); free_scratch(rsc); #ifdef SOLVER_DIAGNOSTICS if (verbose && sc->depth == 0) { printf("%*s%s found\n", 2*sc->depth, "", ret == 0 ? "no solutions" : ret == 1 ? "one solution" : "multiple solutions"); } #endif return ret; } } /* ---------------------------------------------------------------------- * Game generation main function. */ static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { struct solver_scratch *sc = NULL; int *map, *graph, ngraph, *colouring, *colouring2, *regions; int i, j, w, h, n, solveret, cfreq[FOUR]; int wh; int mindiff, tries; #ifdef GENERATION_DIAGNOSTICS int x, y; #endif char *ret, buf[80]; int retlen, retsize; w = params->w; h = params->h; n = params->n; wh = w*h; *aux = NULL; map = snewn(wh, int); graph = snewn(n*n, int); colouring = snewn(n, int); colouring2 = snewn(n, int); regions = snewn(n, int); /* * This is the minimum difficulty below which we'll completely * reject a map design. Normally we set this to one below the * requested difficulty, ensuring that we have the right * result. However, for particularly dense maps or maps with * particularly few regions it might not be possible to get the * desired difficulty, so we will eventually drop this down to * -1 to indicate that any old map will do. */ mindiff = params->diff; tries = 50; while (1) { /* * Create the map. */ genmap(w, h, n, map, rs); #ifdef GENERATION_DIAGNOSTICS for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = map[y*w+x]; if (v >= 62) putchar('!'); else if (v >= 36) putchar('a' + v-36); else if (v >= 10) putchar('A' + v-10); else putchar('0' + v); } putchar('\n'); } #endif /* * Convert the map into a graph. */ ngraph = gengraph(w, h, n, map, graph); #ifdef GENERATION_DIAGNOSTICS for (i = 0; i < ngraph; i++) printf("%d-%d\n", graph[i]/n, graph[i]%n); #endif /* * Colour the map. */ fourcolour(graph, n, ngraph, colouring, rs); #ifdef GENERATION_DIAGNOSTICS for (i = 0; i < n; i++) printf("%d: %d\n", i, colouring[i]); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int v = colouring[map[y*w+x]]; if (v >= 36) putchar('a' + v-36); else if (v >= 10) putchar('A' + v-10); else putchar('0' + v); } putchar('\n'); } #endif /* * Encode the solution as an aux string. */ if (*aux) /* in case we've come round again */ sfree(*aux); retlen = retsize = 0; ret = NULL; for (i = 0; i < n; i++) { int len; if (colouring[i] < 0) continue; len = sprintf(buf, "%s%d:%d", i ? ";" : "S;", colouring[i], i); if (retlen + len >= retsize) { retsize = retlen + len + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += len; } *aux = ret; /* * Remove the region colours one by one, keeping * solubility. Also ensure that there always remains at * least one region of every colour, so that the user can * drag from somewhere. */ for (i = 0; i < FOUR; i++) cfreq[i] = 0; for (i = 0; i < n; i++) { regions[i] = i; cfreq[colouring[i]]++; } for (i = 0; i < FOUR; i++) if (cfreq[i] == 0) continue; shuffle(regions, n, sizeof(*regions), rs); if (sc) free_scratch(sc); sc = new_scratch(graph, n, ngraph); for (i = 0; i < n; i++) { j = regions[i]; if (cfreq[colouring[j]] == 1) continue; /* can't remove last region of colour */ memcpy(colouring2, colouring, n*sizeof(int)); colouring2[j] = -1; solveret = map_solver(sc, graph, n, ngraph, colouring2, params->diff); assert(solveret >= 0); /* mustn't be impossible! */ if (solveret == 1) { cfreq[colouring[j]]--; colouring[j] = -1; } } #ifdef GENERATION_DIAGNOSTICS for (i = 0; i < n; i++) if (colouring[i] >= 0) { if (i >= 62) putchar('!'); else if (i >= 36) putchar('a' + i-36); else if (i >= 10) putchar('A' + i-10); else putchar('0' + i); printf(": %d\n", colouring[i]); } #endif /* * Finally, check that the puzzle is _at least_ as hard as * required, and indeed that it isn't already solved. * (Calling map_solver with negative difficulty ensures the * latter - if a solver which _does nothing_ can solve it, * it's too easy!) */ memcpy(colouring2, colouring, n*sizeof(int)); if (map_solver(sc, graph, n, ngraph, colouring2, mindiff - 1) == 1) { /* * Drop minimum difficulty if necessary. */ if (mindiff > 0 && (n < 9 || n > 2*wh/3)) { if (tries-- <= 0) mindiff = 0; /* give up and go for Easy */ } continue; } break; } /* * Encode as a game ID. We do this by: * * - first going along the horizontal edges row by row, and * then the vertical edges column by column * - encoding the lengths of runs of edges and runs of * non-edges * - the decoder will reconstitute the region boundaries from * this and automatically number them the same way we did * - then we encode the initial region colours in a Slant-like * fashion (digits 0-3 interspersed with letters giving * lengths of runs of empty spaces). */ retlen = retsize = 0; ret = NULL; { int run; bool pv; /* * Start with a notional non-edge, so that there'll be an * explicit `a' to distinguish the case where we start with * an edge. */ run = 1; pv = false; for (i = 0; i < w*(h-1) + (w-1)*h; i++) { int x, y, dx, dy; bool v; if (i < w*(h-1)) { /* Horizontal edge. */ y = i / w; x = i % w; dx = 0; dy = 1; } else { /* Vertical edge. */ x = (i - w*(h-1)) / h; y = (i - w*(h-1)) % h; dx = 1; dy = 0; } if (retlen + 10 >= retsize) { retsize = retlen + 256; ret = sresize(ret, retsize, char); } v = (map[y*w+x] != map[(y+dy)*w+(x+dx)]); if (pv != v) { ret[retlen++] = 'a'-1 + run; run = 1; pv = v; } else { /* * 'z' is a special case in this encoding. Rather * than meaning a run of 26 and a state switch, it * means a run of 25 and _no_ state switch, because * otherwise there'd be no way to encode runs of * more than 26. */ if (run == 25) { ret[retlen++] = 'z'; run = 0; } run++; } } if (retlen + 10 >= retsize) { retsize = retlen + 256; ret = sresize(ret, retsize, char); } ret[retlen++] = 'a'-1 + run; ret[retlen++] = ','; run = 0; for (i = 0; i < n; i++) { if (retlen + 10 >= retsize) { retsize = retlen + 256; ret = sresize(ret, retsize, char); } if (colouring[i] < 0) { /* * In _this_ encoding, 'z' is a run of 26, since * there's no implicit state switch after each run. * Confusingly different, but more compact. */ if (run == 26) { ret[retlen++] = 'z'; run = 0; } run++; } else { if (run > 0) ret[retlen++] = 'a'-1 + run; ret[retlen++] = '0' + colouring[i]; run = 0; } } if (run > 0) ret[retlen++] = 'a'-1 + run; ret[retlen] = '\0'; assert(retlen < retsize); } free_scratch(sc); sfree(regions); sfree(colouring2); sfree(colouring); sfree(graph); sfree(map); return ret; } static const char *parse_edge_list(const game_params *params, const char **desc, int *map) { int w = params->w, h = params->h, wh = w*h, n = params->n; int i, k, pos; bool state; const char *p = *desc; dsf_init(map+wh, wh); pos = -1; state = false; /* * Parse the game description to get the list of edges, and * build up a disjoint set forest as we go (by identifying * pairs of squares whenever the edge list shows a non-edge). */ while (*p && *p != ',') { if (*p < 'a' || *p > 'z') return "Unexpected character in edge list"; if (*p == 'z') k = 25; else k = *p - 'a' + 1; while (k-- > 0) { int x, y, dx, dy; if (pos < 0) { pos++; continue; } else if (pos < w*(h-1)) { /* Horizontal edge. */ y = pos / w; x = pos % w; dx = 0; dy = 1; } else if (pos < 2*wh-w-h) { /* Vertical edge. */ x = (pos - w*(h-1)) / h; y = (pos - w*(h-1)) % h; dx = 1; dy = 0; } else return "Too much data in edge list"; if (!state) dsf_merge(map+wh, y*w+x, (y+dy)*w+(x+dx)); pos++; } if (*p != 'z') state = !state; p++; } assert(pos <= 2*wh-w-h); if (pos < 2*wh-w-h) return "Too little data in edge list"; /* * Now go through again and allocate region numbers. */ pos = 0; for (i = 0; i < wh; i++) map[i] = -1; for (i = 0; i < wh; i++) { k = dsf_canonify(map+wh, i); if (map[k] < 0) map[k] = pos++; map[i] = map[k]; } if (pos != n) return "Edge list defines the wrong number of regions"; *desc = p; return NULL; } static const char *validate_desc(const game_params *params, const char *desc) { int w = params->w, h = params->h, wh = w*h, n = params->n; int area; int *map; const char *ret; map = snewn(2*wh, int); ret = parse_edge_list(params, &desc, map); sfree(map); if (ret) return ret; if (*desc != ',') return "Expected comma before clue list"; desc++; /* eat comma */ area = 0; while (*desc) { if (*desc >= '0' && *desc < '0'+FOUR) area++; else if (*desc >= 'a' && *desc <= 'z') area += *desc - 'a' + 1; else return "Unexpected character in clue list"; desc++; } if (area < n) return "Too little data in clue list"; else if (area > n) return "Too much data in clue list"; return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int w = params->w, h = params->h, wh = w*h, n = params->n; int i, pos; const char *p; game_state *state = snew(game_state); state->p = *params; state->colouring = snewn(n, int); for (i = 0; i < n; i++) state->colouring[i] = -1; state->pencil = snewn(n, int); for (i = 0; i < n; i++) state->pencil[i] = 0; state->completed = false; state->cheated = false; state->map = snew(struct map); state->map->refcount = 1; state->map->map = snewn(wh*4, int); state->map->graph = snewn(n*n, int); state->map->n = n; state->map->immutable = snewn(n, bool); for (i = 0; i < n; i++) state->map->immutable[i] = false; p = desc; { const char *ret; ret = parse_edge_list(params, &p, state->map->map); assert(!ret); } /* * Set up the other three quadrants in `map'. */ for (i = wh; i < 4*wh; i++) state->map->map[i] = state->map->map[i % wh]; assert(*p == ','); p++; /* * Now process the clue list. */ pos = 0; while (*p) { if (*p >= '0' && *p < '0'+FOUR) { state->colouring[pos] = *p - '0'; state->map->immutable[pos] = true; pos++; } else { assert(*p >= 'a' && *p <= 'z'); pos += *p - 'a' + 1; } p++; } assert(pos == n); state->map->ngraph = gengraph(w, h, n, state->map->map, state->map->graph); /* * Attempt to smooth out some of the more jagged region * outlines by the judicious use of diagonally divided squares. */ { random_state *rs = random_new(desc, strlen(desc)); int *squares = snewn(wh, int); bool done_something; for (i = 0; i < wh; i++) squares[i] = i; shuffle(squares, wh, sizeof(*squares), rs); do { done_something = false; for (i = 0; i < wh; i++) { int y = squares[i] / w, x = squares[i] % w; int c = state->map->map[y*w+x]; int tc, bc, lc, rc; if (x == 0 || x == w-1 || y == 0 || y == h-1) continue; if (state->map->map[TE * wh + y*w+x] != state->map->map[BE * wh + y*w+x]) continue; tc = state->map->map[BE * wh + (y-1)*w+x]; bc = state->map->map[TE * wh + (y+1)*w+x]; lc = state->map->map[RE * wh + y*w+(x-1)]; rc = state->map->map[LE * wh + y*w+(x+1)]; /* * If this square is adjacent on two sides to one * region and on the other two sides to the other * region, and is itself one of the two regions, we can * adjust it so that it's a diagonal. */ if (tc != bc && (tc == c || bc == c)) { if ((lc == tc && rc == bc) || (lc == bc && rc == tc)) { state->map->map[TE * wh + y*w+x] = tc; state->map->map[BE * wh + y*w+x] = bc; state->map->map[LE * wh + y*w+x] = lc; state->map->map[RE * wh + y*w+x] = rc; done_something = true; } } } } while (done_something); sfree(squares); random_free(rs); } /* * Analyse the map to find a canonical line segment * corresponding to each edge, and a canonical point * corresponding to each region. The former are where we'll * eventually put error markers; the latter are where we'll put * per-region flags such as numbers (when in diagnostic mode). */ { int *bestx, *besty, *an, pass; float *ax, *ay, *best; ax = snewn(state->map->ngraph + n, float); ay = snewn(state->map->ngraph + n, float); an = snewn(state->map->ngraph + n, int); bestx = snewn(state->map->ngraph + n, int); besty = snewn(state->map->ngraph + n, int); best = snewn(state->map->ngraph + n, float); for (i = 0; i < state->map->ngraph + n; i++) { bestx[i] = besty[i] = -1; best[i] = (float)(2*(w+h)+1); ax[i] = ay[i] = 0.0F; an[i] = 0; } /* * We make two passes over the map, finding all the line * segments separating regions and all the suitable points * within regions. In the first pass, we compute the * _average_ x and y coordinate of all the points in a * given class; in the second pass, for each such average * point, we find the candidate closest to it and call that * canonical. * * Line segments are considered to have coordinates in * their centre. Thus, at least one coordinate for any line * segment is always something-and-a-half; so we store our * coordinates as twice their normal value. */ for (pass = 0; pass < 2; pass++) { int x, y; for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int ex[4], ey[4], ea[4], eb[4], en = 0; /* * Look for an edge to the right of this * square, an edge below it, and an edge in the * middle of it. Also look to see if the point * at the bottom right of this square is on an * edge (and isn't a place where more than two * regions meet). */ if (x+1 < w) { /* right edge */ ea[en] = state->map->map[RE * wh + y*w+x]; eb[en] = state->map->map[LE * wh + y*w+(x+1)]; ex[en] = (x+1)*2; ey[en] = y*2+1; en++; } if (y+1 < h) { /* bottom edge */ ea[en] = state->map->map[BE * wh + y*w+x]; eb[en] = state->map->map[TE * wh + (y+1)*w+x]; ex[en] = x*2+1; ey[en] = (y+1)*2; en++; } /* diagonal edge */ ea[en] = state->map->map[TE * wh + y*w+x]; eb[en] = state->map->map[BE * wh + y*w+x]; ex[en] = x*2+1; ey[en] = y*2+1; en++; if (x+1 < w && y+1 < h) { /* bottom right corner */ int oct[8], othercol, nchanges; oct[0] = state->map->map[RE * wh + y*w+x]; oct[1] = state->map->map[LE * wh + y*w+(x+1)]; oct[2] = state->map->map[BE * wh + y*w+(x+1)]; oct[3] = state->map->map[TE * wh + (y+1)*w+(x+1)]; oct[4] = state->map->map[LE * wh + (y+1)*w+(x+1)]; oct[5] = state->map->map[RE * wh + (y+1)*w+x]; oct[6] = state->map->map[TE * wh + (y+1)*w+x]; oct[7] = state->map->map[BE * wh + y*w+x]; othercol = -1; nchanges = 0; for (i = 0; i < 8; i++) { if (oct[i] != oct[0]) { if (othercol < 0) othercol = oct[i]; else if (othercol != oct[i]) break; /* three colours at this point */ } if (oct[i] != oct[(i+1) & 7]) nchanges++; } /* * Now if there are exactly two regions at * this point (not one, and not three or * more), and only two changes around the * loop, then this is a valid place to put * an error marker. */ if (i == 8 && othercol >= 0 && nchanges == 2) { ea[en] = oct[0]; eb[en] = othercol; ex[en] = (x+1)*2; ey[en] = (y+1)*2; en++; } /* * If there's exactly _one_ region at this * point, on the other hand, it's a valid * place to put a region centre. */ if (othercol < 0) { ea[en] = eb[en] = oct[0]; ex[en] = (x+1)*2; ey[en] = (y+1)*2; en++; } } /* * Now process the points we've found, one by * one. */ for (i = 0; i < en; i++) { int emin = min(ea[i], eb[i]); int emax = max(ea[i], eb[i]); int gindex; if (emin != emax) { /* Graph edge */ gindex = graph_edge_index(state->map->graph, n, state->map->ngraph, emin, emax); } else { /* Region number */ gindex = state->map->ngraph + emin; } assert(gindex >= 0); if (pass == 0) { /* * In pass 0, accumulate the values * we'll use to compute the average * positions. */ ax[gindex] += ex[i]; ay[gindex] += ey[i]; an[gindex] += 1; } else { /* * In pass 1, work out whether this * point is closer to the average than * the last one we've seen. */ float dx, dy, d; assert(an[gindex] > 0); dx = ex[i] - ax[gindex]; dy = ey[i] - ay[gindex]; d = (float)sqrt(dx*dx + dy*dy); if (d < best[gindex]) { best[gindex] = d; bestx[gindex] = ex[i]; besty[gindex] = ey[i]; } } } } if (pass == 0) { for (i = 0; i < state->map->ngraph + n; i++) if (an[i] > 0) { ax[i] /= an[i]; ay[i] /= an[i]; } } } state->map->edgex = snewn(state->map->ngraph, int); state->map->edgey = snewn(state->map->ngraph, int); memcpy(state->map->edgex, bestx, state->map->ngraph * sizeof(int)); memcpy(state->map->edgey, besty, state->map->ngraph * sizeof(int)); state->map->regionx = snewn(n, int); state->map->regiony = snewn(n, int); memcpy(state->map->regionx, bestx + state->map->ngraph, n*sizeof(int)); memcpy(state->map->regiony, besty + state->map->ngraph, n*sizeof(int)); for (i = 0; i < state->map->ngraph; i++) if (state->map->edgex[i] < 0) { /* Find the other representation of this edge. */ int e = state->map->graph[i]; int iprime = graph_edge_index(state->map->graph, n, state->map->ngraph, e%n, e/n); assert(state->map->edgex[iprime] >= 0); state->map->edgex[i] = state->map->edgex[iprime]; state->map->edgey[i] = state->map->edgey[iprime]; } sfree(ax); sfree(ay); sfree(an); sfree(best); sfree(bestx); sfree(besty); } return state; } static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); ret->p = state->p; ret->colouring = snewn(state->p.n, int); memcpy(ret->colouring, state->colouring, state->p.n * sizeof(int)); ret->pencil = snewn(state->p.n, int); memcpy(ret->pencil, state->pencil, state->p.n * sizeof(int)); ret->map = state->map; ret->map->refcount++; ret->completed = state->completed; ret->cheated = state->cheated; return ret; } static void free_game(game_state *state) { if (--state->map->refcount <= 0) { sfree(state->map->map); sfree(state->map->graph); sfree(state->map->immutable); sfree(state->map->edgex); sfree(state->map->edgey); sfree(state->map->regionx); sfree(state->map->regiony); sfree(state->map); } sfree(state->pencil); sfree(state->colouring); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { if (!aux) { /* * Use the solver. */ int *colouring; struct solver_scratch *sc; int sret; int i; char *ret, buf[80]; int retlen, retsize; colouring = snewn(state->map->n, int); memcpy(colouring, state->colouring, state->map->n * sizeof(int)); sc = new_scratch(state->map->graph, state->map->n, state->map->ngraph); sret = map_solver(sc, state->map->graph, state->map->n, state->map->ngraph, colouring, DIFFCOUNT-1); free_scratch(sc); if (sret != 1) { sfree(colouring); if (sret == 0) *error = "Puzzle is inconsistent"; else *error = "Unable to find a unique solution for this puzzle"; return NULL; } retsize = 64; ret = snewn(retsize, char); strcpy(ret, "S"); retlen = 1; for (i = 0; i < state->map->n; i++) { int len; assert(colouring[i] >= 0); if (colouring[i] == currstate->colouring[i]) continue; assert(!state->map->immutable[i]); len = sprintf(buf, ";%d:%d", colouring[i], i); if (retlen + len >= retsize) { retsize = retlen + len + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += len; } sfree(colouring); return ret; } return dupstr(aux); } struct game_ui { /* * drag_colour: * * - -2 means no drag currently active. * - >=0 means we're dragging a solid colour. * - -1 means we're dragging a blank space, and drag_pencil * might or might not add some pencil-mark stipples to that. */ int drag_colour; int drag_pencil; int dragx, dragy; bool show_numbers; int cur_x, cur_y, cur_lastmove; bool cur_visible, cur_moved; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->dragx = ui->dragy = -1; ui->drag_colour = -2; ui->drag_pencil = 0; ui->show_numbers = false; ui->cur_x = ui->cur_y = 0; ui->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false); ui->cur_moved = false; ui->cur_lastmove = 0; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } struct game_drawstate { int tilesize; unsigned long *drawn, *todraw; bool started; int dragx, dragy; bool drag_visible; blitter *bl; }; /* Flags in `drawn'. */ #define ERR_BASE 0x00800000L #define ERR_MASK 0xFF800000L #define PENCIL_T_BASE 0x00080000L #define PENCIL_T_MASK 0x00780000L #define PENCIL_B_BASE 0x00008000L #define PENCIL_B_MASK 0x00078000L #define PENCIL_MASK 0x007F8000L #define SHOW_NUMBERS 0x00004000L #define TILESIZE (ds->tilesize) #define BORDER (TILESIZE) #define COORD(x) ( (x) * TILESIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 ) /* * EPSILON_FOO are epsilons added to absolute cursor position by * cursor movement, such that in pathological cases (e.g. a very * small diamond-shaped area) it's relatively easy to select the * region you wanted. */ #define EPSILON_X(button) (((button) == CURSOR_RIGHT) ? +1 : \ ((button) == CURSOR_LEFT) ? -1 : 0) #define EPSILON_Y(button) (((button) == CURSOR_DOWN) ? +1 : \ ((button) == CURSOR_UP) ? -1 : 0) /* * Return the map region containing a point in tile (tx,ty), offset by * (x_eps,y_eps) from the centre of the tile. */ static int region_from_logical_coords(const game_state *state, int tx, int ty, int x_eps, int y_eps) { int w = state->p.w, h = state->p.h, wh = w*h /*, n = state->p.n */; int quadrant; if (tx < 0 || tx >= w || ty < 0 || ty >= h) return -1; /* border */ quadrant = 2 * (x_eps > y_eps) + (-x_eps > y_eps); quadrant = (quadrant == 0 ? BE : quadrant == 1 ? LE : quadrant == 2 ? RE : TE); return state->map->map[quadrant * wh + ty*w+tx]; } static int region_from_coords(const game_state *state, const game_drawstate *ds, int x, int y) { int tx = FROMCOORD(x), ty = FROMCOORD(y); return region_from_logical_coords( state, tx, ty, x - COORD(tx) - TILESIZE/2, y - COORD(ty) - TILESIZE/2); } static int region_from_ui_cursor(const game_state *state, const game_ui *ui) { assert(ui->cur_visible); return region_from_logical_coords(state, ui->cur_x, ui->cur_y, EPSILON_X(ui->cur_lastmove), EPSILON_Y(ui->cur_lastmove)); } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { int r; if (IS_CURSOR_SELECT(button) && ui->cur_visible) { if (ui->drag_colour == -2) return "Pick"; r = region_from_ui_cursor(state, ui); if (state->map->immutable[r]) return "Cancel"; if (!ui->cur_moved) return ui->drag_pencil ? "Cancel" : "Clear"; if (button == CURSOR_SELECT2) { if (state->colouring[r] >= 0) return "Cancel"; if (ui->drag_colour >= 0) return "Stipple"; } if (ui->drag_pencil) return "Stipple"; return ui->drag_colour >= 0 ? "Fill" : "Clear"; } return ""; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { char *bufp, buf[256]; bool alt_button; int drop_region; /* * Enable or disable numeric labels on regions. */ if (button == 'l' || button == 'L') { ui->show_numbers = !ui->show_numbers; return UI_UPDATE; } if (IS_CURSOR_MOVE(button)) { move_cursor(button, &ui->cur_x, &ui->cur_y, state->p.w, state->p.h, false); ui->cur_visible = true; ui->cur_moved = true; ui->cur_lastmove = button; return UI_UPDATE; } if (IS_CURSOR_SELECT(button)) { if (!ui->cur_visible) { ui->cur_visible = true; return UI_UPDATE; } if (ui->drag_colour == -2) { /* not currently cursor-dragging, start. */ int r = region_from_ui_cursor(state, ui); if (r >= 0) { ui->drag_colour = state->colouring[r]; ui->drag_pencil = (ui->drag_colour >= 0) ? 0 : state->pencil[r]; } else { ui->drag_colour = -1; ui->drag_pencil = 0; } ui->cur_moved = false; return UI_UPDATE; } else { /* currently cursor-dragging; drop the colour in the new region. */ alt_button = (button == CURSOR_SELECT2); /* Double-select removes current colour. */ if (!ui->cur_moved) ui->drag_colour = -1; drop_region = region_from_ui_cursor(state, ui); goto drag_dropped; } } if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { int r = region_from_coords(state, ds, x, y); if (r >= 0) { ui->drag_colour = state->colouring[r]; ui->drag_pencil = state->pencil[r]; if (ui->drag_colour >= 0) ui->drag_pencil = 0; /* should be already, but double-check */ } else { ui->drag_colour = -1; ui->drag_pencil = 0; } ui->dragx = x; ui->dragy = y; ui->cur_visible = false; return UI_UPDATE; } if ((button == LEFT_DRAG || button == RIGHT_DRAG) && ui->drag_colour > -2) { ui->dragx = x; ui->dragy = y; return UI_UPDATE; } if ((button == LEFT_RELEASE || button == RIGHT_RELEASE) && ui->drag_colour > -2) { alt_button = (button == RIGHT_RELEASE); drop_region = region_from_coords(state, ds, x, y); goto drag_dropped; } return NULL; drag_dropped: { int r = drop_region; int c = ui->drag_colour; int p = ui->drag_pencil; int oldp; /* * Cancel the drag, whatever happens. */ ui->drag_colour = -2; if (r < 0) return UI_UPDATE; /* drag into border; do nothing else */ if (state->map->immutable[r]) return UI_UPDATE; /* can't change this region */ if (state->colouring[r] == c && state->pencil[r] == p) return UI_UPDATE; /* don't _need_ to change this region */ if (alt_button) { if (state->colouring[r] >= 0) { /* Can't pencil on a coloured region */ return UI_UPDATE; } else if (c >= 0) { /* Right-dragging from colour to blank toggles one pencil */ p = state->pencil[r] ^ (1 << c); c = -1; } /* Otherwise, right-dragging from blank to blank is equivalent * to left-dragging. */ } bufp = buf; oldp = state->pencil[r]; if (c != state->colouring[r]) { bufp += sprintf(bufp, ";%c:%d", (int)(c < 0 ? 'C' : '0' + c), r); if (c >= 0) oldp = 0; } if (p != oldp) { int i; for (i = 0; i < FOUR; i++) if ((oldp ^ p) & (1 << i)) bufp += sprintf(bufp, ";p%c:%d", (int)('0' + i), r); } return dupstr(buf+1); /* ignore first semicolon */ } } static game_state *execute_move(const game_state *state, const char *move) { int n = state->p.n; game_state *ret = dup_game(state); int c, k, adv, i; while (*move) { bool pencil = false; c = *move; if (c == 'p') { pencil = true; c = *++move; } if ((c == 'C' || (c >= '0' && c < '0'+FOUR)) && sscanf(move+1, ":%d%n", &k, &adv) == 1 && k >= 0 && k < state->p.n) { move += 1 + adv; if (pencil) { if (ret->colouring[k] >= 0) { free_game(ret); return NULL; } if (c == 'C') ret->pencil[k] = 0; else ret->pencil[k] ^= 1 << (c - '0'); } else { ret->colouring[k] = (c == 'C' ? -1 : c - '0'); ret->pencil[k] = 0; } } else if (*move == 'S') { move++; ret->cheated = true; } else { free_game(ret); return NULL; } if (*move && *move != ';') { free_game(ret); return NULL; } if (*move) move++; } /* * Check for completion. */ if (!ret->completed) { bool ok = true; for (i = 0; i < n; i++) if (ret->colouring[i] < 0) { ok = false; break; } if (ok) { for (i = 0; i < ret->map->ngraph; i++) { int j = ret->map->graph[i] / n; int k = ret->map->graph[i] % n; if (ret->colouring[j] == ret->colouring[k]) { ok = false; break; } } } if (ok) ret->completed = true; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = params->w * TILESIZE + 2 * BORDER + 1; *y = params->h * TILESIZE + 2 * BORDER + 1; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; assert(!ds->bl); /* set_size is never called twice */ ds->bl = blitter_new(dr, TILESIZE+3, TILESIZE+3); } static const float map_colours[FOUR][3] = { #ifdef VIVID_COLOURS /* Use more vivid colours (e.g. on the Pocket PC) */ {0.75F, 0.25F, 0.25F}, {0.3F, 0.7F, 0.3F}, {0.3F, 0.3F, 0.7F}, {0.85F, 0.85F, 0.1F}, #else {0.7F, 0.5F, 0.4F}, {0.8F, 0.7F, 0.4F}, {0.5F, 0.6F, 0.4F}, {0.55F, 0.45F, 0.35F}, #endif }; static const int map_hatching[FOUR] = { HATCH_VERT, HATCH_SLASH, HATCH_HORIZ, HATCH_BACKSLASH }; static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_GRID * 3 + 0] = 0.0F; ret[COL_GRID * 3 + 1] = 0.0F; ret[COL_GRID * 3 + 2] = 0.0F; memcpy(ret + COL_0 * 3, map_colours[0], 3 * sizeof(float)); memcpy(ret + COL_1 * 3, map_colours[1], 3 * sizeof(float)); memcpy(ret + COL_2 * 3, map_colours[2], 3 * sizeof(float)); memcpy(ret + COL_3 * 3, map_colours[3], 3 * sizeof(float)); ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.0F; ret[COL_ERROR * 3 + 2] = 0.0F; ret[COL_ERRTEXT * 3 + 0] = 1.0F; ret[COL_ERRTEXT * 3 + 1] = 1.0F; ret[COL_ERRTEXT * 3 + 2] = 1.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->tilesize = 0; ds->drawn = snewn(state->p.w * state->p.h, unsigned long); for (i = 0; i < state->p.w * state->p.h; i++) ds->drawn[i] = 0xFFFFL; ds->todraw = snewn(state->p.w * state->p.h, unsigned long); ds->started = false; ds->bl = NULL; ds->drag_visible = false; ds->dragx = ds->dragy = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->drawn); sfree(ds->todraw); if (ds->bl) blitter_free(dr, ds->bl); sfree(ds); } static void draw_error(drawing *dr, game_drawstate *ds, int x, int y) { int coords[8]; int yext, xext; /* * Draw a diamond. */ coords[0] = x - TILESIZE*2/5; coords[1] = y; coords[2] = x; coords[3] = y - TILESIZE*2/5; coords[4] = x + TILESIZE*2/5; coords[5] = y; coords[6] = x; coords[7] = y + TILESIZE*2/5; draw_polygon(dr, coords, 4, COL_ERROR, COL_GRID); /* * Draw an exclamation mark in the diamond. This turns out to * look unpleasantly off-centre if done via draw_text, so I do * it by hand on the basis that exclamation marks aren't that * difficult to draw... */ xext = TILESIZE/16; yext = TILESIZE*2/5 - (xext*2+2); draw_rect(dr, x-xext, y-yext, xext*2+1, yext*2+1 - (xext*3), COL_ERRTEXT); draw_rect(dr, x-xext, y+yext-xext*2+1, xext*2+1, xext*2, COL_ERRTEXT); } static void draw_square(drawing *dr, game_drawstate *ds, const game_params *params, struct map *map, int x, int y, unsigned long v) { int w = params->w, h = params->h, wh = w*h; int tv, bv, xo, yo, i, j, oldj; unsigned long errs, pencil, show_numbers; errs = v & ERR_MASK; v &= ~ERR_MASK; pencil = v & PENCIL_MASK; v &= ~PENCIL_MASK; show_numbers = v & SHOW_NUMBERS; v &= ~SHOW_NUMBERS; tv = v / FIVE; bv = v % FIVE; clip(dr, COORD(x), COORD(y), TILESIZE, TILESIZE); /* * Draw the region colour. */ draw_rect(dr, COORD(x), COORD(y), TILESIZE, TILESIZE, (tv == FOUR ? COL_BACKGROUND : COL_0 + tv)); /* * Draw the second region colour, if this is a diagonally * divided square. */ if (map->map[TE * wh + y*w+x] != map->map[BE * wh + y*w+x]) { int coords[6]; coords[0] = COORD(x)-1; coords[1] = COORD(y+1)+1; if (map->map[LE * wh + y*w+x] == map->map[TE * wh + y*w+x]) coords[2] = COORD(x+1)+1; else coords[2] = COORD(x)-1; coords[3] = COORD(y)-1; coords[4] = COORD(x+1)+1; coords[5] = COORD(y+1)+1; draw_polygon(dr, coords, 3, (bv == FOUR ? COL_BACKGROUND : COL_0 + bv), COL_GRID); } /* * Draw `pencil marks'. Currently we arrange these in a square * formation, which means we may be in trouble if the value of * FOUR changes later... */ assert(FOUR == 4); for (yo = 0; yo < 4; yo++) for (xo = 0; xo < 4; xo++) { int te = map->map[TE * wh + y*w+x]; int e, ee, c; e = (yo < xo && yo < 3-xo ? TE : yo > xo && yo > 3-xo ? BE : xo < 2 ? LE : RE); ee = map->map[e * wh + y*w+x]; if (xo != (yo * 2 + 1) % 5) continue; c = yo; if (!(pencil & ((ee == te ? PENCIL_T_BASE : PENCIL_B_BASE) << c))) continue; if (yo == xo && (map->map[TE * wh + y*w+x] != map->map[LE * wh + y*w+x])) continue; /* avoid TL-BR diagonal line */ if (yo == 3-xo && (map->map[TE * wh + y*w+x] != map->map[RE * wh + y*w+x])) continue; /* avoid BL-TR diagonal line */ draw_circle(dr, COORD(x) + (xo+1)*TILESIZE/5, COORD(y) + (yo+1)*TILESIZE/5, TILESIZE/7, COL_0 + c, COL_0 + c); } /* * Draw the grid lines, if required. */ if (x <= 0 || map->map[RE*wh+y*w+(x-1)] != map->map[LE*wh+y*w+x]) draw_rect(dr, COORD(x), COORD(y), 1, TILESIZE, COL_GRID); if (y <= 0 || map->map[BE*wh+(y-1)*w+x] != map->map[TE*wh+y*w+x]) draw_rect(dr, COORD(x), COORD(y), TILESIZE, 1, COL_GRID); if (x <= 0 || y <= 0 || map->map[RE*wh+(y-1)*w+(x-1)] != map->map[TE*wh+y*w+x] || map->map[BE*wh+(y-1)*w+(x-1)] != map->map[LE*wh+y*w+x]) draw_rect(dr, COORD(x), COORD(y), 1, 1, COL_GRID); /* * Draw error markers. */ for (yo = 0; yo < 3; yo++) for (xo = 0; xo < 3; xo++) if (errs & (ERR_BASE << (yo*3+xo))) draw_error(dr, ds, (COORD(x)*2+TILESIZE*xo)/2, (COORD(y)*2+TILESIZE*yo)/2); /* * Draw region numbers, if desired. */ if (show_numbers) { oldj = -1; for (i = 0; i < 2; i++) { j = map->map[(i?BE:TE)*wh+y*w+x]; if (oldj == j) continue; oldj = j; xo = map->regionx[j] - 2*x; yo = map->regiony[j] - 2*y; if (xo >= 0 && xo <= 2 && yo >= 0 && yo <= 2) { char buf[80]; sprintf(buf, "%d", j); draw_text(dr, (COORD(x)*2+TILESIZE*xo)/2, (COORD(y)*2+TILESIZE*yo)/2, FONT_VARIABLE, 3*TILESIZE/5, ALIGN_HCENTRE|ALIGN_VCENTRE, COL_GRID, buf); } } } unclip(dr); draw_update(dr, COORD(x), COORD(y), TILESIZE, TILESIZE); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n; int x, y, i; int flash; if (ds->drag_visible) { blitter_load(dr, ds->bl, ds->dragx, ds->dragy); draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3); ds->drag_visible = false; } if (!ds->started) { draw_rect(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1, COL_GRID); draw_update(dr, COORD(0), COORD(0), w*TILESIZE+1, h*TILESIZE+1); ds->started = true; } if (flashtime) { if (flash_type == 1) flash = (int)(flashtime * FOUR / flash_length); else flash = 1 + (int)(flashtime * THREE / flash_length); } else flash = -1; /* * Set up the `todraw' array. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int tv = state->colouring[state->map->map[TE * wh + y*w+x]]; int bv = state->colouring[state->map->map[BE * wh + y*w+x]]; unsigned long v; if (tv < 0) tv = FOUR; if (bv < 0) bv = FOUR; if (flash >= 0) { if (flash_type == 1) { if (tv == flash) tv = FOUR; if (bv == flash) bv = FOUR; } else if (flash_type == 2) { if (flash % 2) tv = bv = FOUR; } else { if (tv != FOUR) tv = (tv + flash) % FOUR; if (bv != FOUR) bv = (bv + flash) % FOUR; } } v = tv * FIVE + bv; /* * Add pencil marks. */ for (i = 0; i < FOUR; i++) { if (state->colouring[state->map->map[TE * wh + y*w+x]] < 0 && (state->pencil[state->map->map[TE * wh + y*w+x]] & (1<<i))) v |= PENCIL_T_BASE << i; if (state->colouring[state->map->map[BE * wh + y*w+x]] < 0 && (state->pencil[state->map->map[BE * wh + y*w+x]] & (1<<i))) v |= PENCIL_B_BASE << i; } if (ui->show_numbers) v |= SHOW_NUMBERS; ds->todraw[y*w+x] = v; } /* * Add error markers to the `todraw' array. */ for (i = 0; i < state->map->ngraph; i++) { int v1 = state->map->graph[i] / n; int v2 = state->map->graph[i] % n; int xo, yo; if (state->colouring[v1] < 0 || state->colouring[v2] < 0) continue; if (state->colouring[v1] != state->colouring[v2]) continue; x = state->map->edgex[i]; y = state->map->edgey[i]; xo = x % 2; x /= 2; yo = y % 2; y /= 2; ds->todraw[y*w+x] |= ERR_BASE << (yo*3+xo); if (xo == 0) { assert(x > 0); ds->todraw[y*w+(x-1)] |= ERR_BASE << (yo*3+2); } if (yo == 0) { assert(y > 0); ds->todraw[(y-1)*w+x] |= ERR_BASE << (2*3+xo); } if (xo == 0 && yo == 0) { assert(x > 0 && y > 0); ds->todraw[(y-1)*w+(x-1)] |= ERR_BASE << (2*3+2); } } /* * Now actually draw everything. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { unsigned long v = ds->todraw[y*w+x]; if (ds->drawn[y*w+x] != v) { draw_square(dr, ds, &state->p, state->map, x, y, v); ds->drawn[y*w+x] = v; } } /* * Draw the dragged colour blob if any. */ if ((ui->drag_colour > -2) || ui->cur_visible) { int bg, cursor_x, cursor_y; bool iscur = false; if (ui->drag_colour >= 0) bg = COL_0 + ui->drag_colour; else if (ui->drag_colour == -1) { bg = COL_BACKGROUND; } else { int r = region_from_ui_cursor(state, ui); int c = (r < 0) ? -1 : state->colouring[r]; /*bg = COL_GRID;*/ bg = (c < 0) ? COL_BACKGROUND : COL_0 + c; iscur = true; } if (ui->cur_visible) { cursor_x = COORD(ui->cur_x) + TILESIZE/2 + EPSILON_X(ui->cur_lastmove); cursor_y = COORD(ui->cur_y) + TILESIZE/2 + EPSILON_Y(ui->cur_lastmove); } else { cursor_x = ui->dragx; cursor_y = ui->dragy; } ds->dragx = cursor_x - TILESIZE/2 - 2; ds->dragy = cursor_y - TILESIZE/2 - 2; blitter_save(dr, ds->bl, ds->dragx, ds->dragy); draw_circle(dr, cursor_x, cursor_y, iscur ? TILESIZE/4 : TILESIZE/2, bg, COL_GRID); for (i = 0; i < FOUR; i++) if (ui->drag_pencil & (1 << i)) draw_circle(dr, cursor_x + ((i*4+2)%10-3) * TILESIZE/10, cursor_y + (i*2-3) * TILESIZE/10, TILESIZE/8, COL_0 + i, COL_0 + i); draw_update(dr, ds->dragx, ds->dragy, TILESIZE + 3, TILESIZE + 3); ds->drag_visible = true; } } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) { if (flash_type < 0) { char *env = getenv("MAP_ALTERNATIVE_FLASH"); if (env) flash_type = atoi(env); else flash_type = 0; flash_length = (flash_type == 1 ? 0.50F : 0.30F); } return flash_length; } else return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cur_visible) { *x = COORD(ui->cur_x); *y = COORD(ui->cur_y); *w = *h = TILESIZE; } } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 4mm squares by default, I think. Simplest way to * compute this size is to compute the pixel puzzle size at a * given tile size and then scale. */ game_compute_size(params, 400, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, int tilesize) { int w = state->p.w, h = state->p.h, wh = w*h, n = state->p.n; int ink, c[FOUR], i; int x, y, r; int *coords, ncoords, coordsize; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; /* We can't call game_set_size() here because we don't want a blitter */ ads.tilesize = tilesize; ink = print_mono_colour(dr, 0); for (i = 0; i < FOUR; i++) c[i] = print_rgb_hatched_colour(dr, map_colours[i][0], map_colours[i][1], map_colours[i][2], map_hatching[i]); coordsize = 0; coords = NULL; print_line_width(dr, TILESIZE / 16); /* * Draw a single filled polygon around each region. */ for (r = 0; r < n; r++) { int octants[8], lastdir, d1, d2, ox, oy; /* * Start by finding a point on the region boundary. Any * point will do. To do this, we'll search for a square * containing the region and then decide which corner of it * to use. */ x = w; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { if (state->map->map[wh*0+y*w+x] == r || state->map->map[wh*1+y*w+x] == r || state->map->map[wh*2+y*w+x] == r || state->map->map[wh*3+y*w+x] == r) break; } if (x < w) break; } assert(y < h && x < w); /* we must have found one somewhere */ /* * This is the first square in lexicographic order which * contains part of this region. Therefore, one of the top * two corners of the square must be what we're after. The * only case in which it isn't the top left one is if the * square is diagonally divided and the region is in the * bottom right half. */ if (state->map->map[wh*TE+y*w+x] != r && state->map->map[wh*LE+y*w+x] != r) x++; /* could just as well have done y++ */ /* * Now we have a point on the region boundary. Trace around * the region until we come back to this point, * accumulating coordinates for a polygon draw operation as * we go. */ lastdir = -1; ox = x; oy = y; ncoords = 0; do { /* * There are eight possible directions we could head in * from here. We identify them by octant numbers, and * we also use octant numbers to identify the spaces * between them: * * 6 7 0 * \ 7|0 / * \ | / * 6 \|/ 1 * 5-----+-----1 * 5 /|\ 2 * / | \ * / 4|3 \ * 4 3 2 */ octants[0] = x<w && y>0 ? state->map->map[wh*LE+(y-1)*w+x] : -1; octants[1] = x<w && y>0 ? state->map->map[wh*BE+(y-1)*w+x] : -1; octants[2] = x<w && y<h ? state->map->map[wh*TE+y*w+x] : -1; octants[3] = x<w && y<h ? state->map->map[wh*LE+y*w+x] : -1; octants[4] = x>0 && y<h ? state->map->map[wh*RE+y*w+(x-1)] : -1; octants[5] = x>0 && y<h ? state->map->map[wh*TE+y*w+(x-1)] : -1; octants[6] = x>0 && y>0 ? state->map->map[wh*BE+(y-1)*w+(x-1)] :-1; octants[7] = x>0 && y>0 ? state->map->map[wh*RE+(y-1)*w+(x-1)] :-1; d1 = d2 = -1; for (i = 0; i < 8; i++) if ((octants[i] == r) ^ (octants[(i+1)%8] == r)) { assert(d2 == -1); if (d1 == -1) d1 = i; else d2 = i; } assert(d1 != -1 && d2 != -1); if (d1 == lastdir) d1 = d2; /* * Now we're heading in direction d1. Save the current * coordinates. */ if (ncoords + 2 > coordsize) { coordsize += 128; coords = sresize(coords, coordsize, int); } coords[ncoords++] = COORD(x); coords[ncoords++] = COORD(y); /* * Compute the new coordinates. */ x += (d1 % 4 == 3 ? 0 : d1 < 4 ? +1 : -1); y += (d1 % 4 == 1 ? 0 : d1 > 1 && d1 < 5 ? +1 : -1); assert(x >= 0 && x <= w && y >= 0 && y <= h); lastdir = d1 ^ 4; } while (x != ox || y != oy); draw_polygon(dr, coords, ncoords/2, state->colouring[r] >= 0 ? c[state->colouring[r]] : -1, ink); } sfree(coords); } #ifdef COMBINED #define thegame map #endif const struct game thegame = { "Map", "games.map", "map", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, false, NULL, NULL, /* can_format_as_text_now, text_format */ new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, 20, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, true, true, game_print_size, game_print, false, /* wants_statusbar */ false, NULL, /* timing_state */ 0, /* flags */ }; #ifdef STANDALONE_SOLVER int main(int argc, char **argv) { game_params *p; game_state *s; char *id = NULL, *desc; const char *err; bool grade = false; int ret, diff; bool really_verbose = false; struct solver_scratch *sc; int i; while (--argc > 0) { char *p = *++argv; if (!strcmp(p, "-v")) { really_verbose = true; } else if (!strcmp(p, "-g")) { grade = true; } else if (*p == '-') { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); return 1; } else { id = p; } } if (!id) { fprintf(stderr, "usage: %s [-g | -v] <game_id>\n", argv[0]); return 1; } desc = strchr(id, ':'); if (!desc) { fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); return 1; } *desc++ = '\0'; p = default_params(); decode_params(p, id); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); return 1; } s = new_game(NULL, p, desc); sc = new_scratch(s->map->graph, s->map->n, s->map->ngraph); /* * When solving an Easy puzzle, we don't want to bother the * user with Hard-level deductions. For this reason, we grade * the puzzle internally before doing anything else. */ ret = -1; /* placate optimiser */ for (diff = 0; diff < DIFFCOUNT; diff++) { for (i = 0; i < s->map->n; i++) if (!s->map->immutable[i]) s->colouring[i] = -1; ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph, s->colouring, diff); if (ret < 2) break; } if (diff == DIFFCOUNT) { if (grade) printf("Difficulty rating: harder than Hard, or ambiguous\n"); else printf("Unable to find a unique solution\n"); } else { if (grade) { if (ret == 0) printf("Difficulty rating: impossible (no solution exists)\n"); else if (ret == 1) printf("Difficulty rating: %s\n", map_diffnames[diff]); } else { verbose = really_verbose; for (i = 0; i < s->map->n; i++) if (!s->map->immutable[i]) s->colouring[i] = -1; ret = map_solver(sc, s->map->graph, s->map->n, s->map->ngraph, s->colouring, diff); if (ret == 0) printf("Puzzle is inconsistent\n"); else { int col = 0; for (i = 0; i < s->map->n; i++) { printf("%5d <- %c%c", i, colnames[s->colouring[i]], (col < 6 && i+1 < s->map->n ? ' ' : '\n')); if (++col == 7) col = 0; } } } } return 0; } #endif /* vim: set shiftwidth=4 tabstop=8: */