ref: 47cec547e59ac8c5012f6091394dcb4304d64fc3
dir: /dominosa.c/
/* * dominosa.c: Domino jigsaw puzzle. Aim to place one of every * possible domino within a rectangle in such a way that the number * on each square matches the provided clue. */ /* * TODO: * * - improve solver so as to use more interesting forms of * deduction * * * rule out a domino placement if it would divide an unfilled * region such that at least one resulting region had an odd * area * + Tarjan's bridge-finding algorithm would be a way to find * domino placements that split a connected region in two: * form the graph whose vertices are unpaired squares and * whose edges are potential (not placed but also not ruled * out) dominoes covering two of them, and any bridge in that * graph is a candidate. * + Then, finding any old spanning forest of the unfilled * squares should be sufficient to determine the area parity * of the region that any such placement would cut off. * * * set analysis * + look at all unclaimed squares containing a given number * + for each one, find the set of possible numbers that it * can connect to (i.e. each neighbouring tile such that * the placement between it and that neighbour has not yet * been ruled out) * + now proceed similarly to Solo set analysis: try to find * a subset of the squares such that the union of their * possible numbers is the same size as the subset. If so, * rule out those possible numbers for all other squares. * * important wrinkle: the double dominoes complicate * matters. Connecting a number to itself uses up _two_ * of the unclaimed squares containing a number. Thus, * when finding the initial subset we must never * include two adjacent squares; and also, when ruling * things out after finding the subset, we must be * careful that we don't rule out precisely the domino * placement that was _included_ in our set! * * * playing off the two ends of one potential domino, by * considering the alternatives to that domino that each end * might otherwise be part of. * + if not playing this domino would require each end to be * part of an identical domino, play it. (e.g. the middle of * 5-4-4-5) * + if not playing this domino would guarantee that the two * ends between them used up all of some other square's * choices, play it. (e.g. the middle of 2-3-3-1 if another 3 * cell can only link to a 2 or a 1) * * * identify 'forcing chains', in the sense of any path of cells * each of which has only two possible dominoes to be part of, * and each of those rules out one of the choices for the next * cell. Such a chain has the property that either all the odd * dominoes are placed, or all the even ones are placed; so if * either set of those introduces a conflict (e.g. a dupe within * the chain, or using up all of some other square's choices), * then the whole set can be ruled out, and the other set played * immediately. * + this is of course a generalisation of the previous idea, * which is simply a forcing chain of length 3. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" /* nth triangular number */ #define TRI(n) ( (n) * ((n) + 1) / 2 ) /* number of dominoes for value n */ #define DCOUNT(n) TRI((n)+1) /* map a pair of numbers to a unique domino index from 0 upwards. */ #define DINDEX(n1,n2) ( TRI(max(n1,n2)) + min(n1,n2) ) #define FLASH_TIME 0.13F enum { COL_BACKGROUND, COL_TEXT, COL_DOMINO, COL_DOMINOCLASH, COL_DOMINOTEXT, COL_EDGE, COL_HIGHLIGHT_1, COL_HIGHLIGHT_2, NCOLOURS }; struct game_params { int n; bool unique; }; struct game_numbers { int refcount; int *numbers; /* h x w */ }; #define EDGE_L 0x100 #define EDGE_R 0x200 #define EDGE_T 0x400 #define EDGE_B 0x800 struct game_state { game_params params; int w, h; struct game_numbers *numbers; int *grid; unsigned short *edges; /* h x w */ bool completed, cheated; }; static game_params *default_params(void) { game_params *ret = snew(game_params); ret->n = 6; ret->unique = true; return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int n; char buf[80]; switch (i) { case 0: n = 3; break; case 1: n = 4; break; case 2: n = 5; break; case 3: n = 6; break; case 4: n = 7; break; case 5: n = 8; break; case 6: n = 9; break; default: return false; } sprintf(buf, "Up to double-%d", n); *name = dupstr(buf); *params = ret = snew(game_params); ret->n = n; ret->unique = true; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { params->n = atoi(string); while (*string && isdigit((unsigned char)*string)) string++; if (*string == 'a') params->unique = false; } static char *encode_params(const game_params *params, bool full) { char buf[80]; sprintf(buf, "%d", params->n); if (full && !params->unique) strcat(buf, "a"); return dupstr(buf); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Maximum number on dominoes"; ret[0].type = C_STRING; sprintf(buf, "%d", params->n); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Ensure unique solution"; ret[1].type = C_BOOLEAN; ret[1].u.boolean.bval = params->unique; ret[2].name = NULL; ret[2].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->n = atoi(cfg[0].u.string.sval); ret->unique = cfg[1].u.boolean.bval; return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->n < 1) return "Maximum face number must be at least one"; return NULL; } /* ---------------------------------------------------------------------- * Solver. */ static int find_overlaps(int w, int h, int placement, int *set) { int x, y, n; n = 0; /* number of returned placements */ x = placement / 2; y = x / w; x %= w; if (placement & 1) { /* * Horizontal domino, indexed by its left end. */ if (x > 0) set[n++] = placement-2; /* horizontal domino to the left */ if (y > 0) set[n++] = placement-2*w-1;/* vertical domino above left side */ if (y+1 < h) set[n++] = placement-1; /* vertical domino below left side */ if (x+2 < w) set[n++] = placement+2; /* horizontal domino to the right */ if (y > 0) set[n++] = placement-2*w+2-1;/* vertical domino above right side */ if (y+1 < h) set[n++] = placement+2-1; /* vertical domino below right side */ } else { /* * Vertical domino, indexed by its top end. */ if (y > 0) set[n++] = placement-2*w; /* vertical domino above */ if (x > 0) set[n++] = placement-2+1; /* horizontal domino left of top */ if (x+1 < w) set[n++] = placement+1; /* horizontal domino right of top */ if (y+2 < h) set[n++] = placement+2*w; /* vertical domino below */ if (x > 0) set[n++] = placement-2+2*w+1;/* horizontal domino left of bottom */ if (x+1 < w) set[n++] = placement+2*w+1;/* horizontal domino right of bottom */ } return n; } /* * Returns 0, 1 or 2 for number of solutions. 2 means `any number * more than one', or more accurately `we were unable to prove * there was only one'. * * Outputs in a `placements' array, indexed the same way as the one * within this function (see below); entries in there are <0 for a * placement ruled out, 0 for an uncertain placement, and 1 for a * definite one. */ static int solver(int w, int h, int n, int *grid, int *output) { int wh = w*h, dc = DCOUNT(n); int *placements, *heads; int i, j, x, y, ret; /* * This array has one entry for every possible domino * placement. Vertical placements are indexed by their top * half, at (y*w+x)*2; horizontal placements are indexed by * their left half at (y*w+x)*2+1. * * This array is used to link domino placements together into * linked lists, so that we can track all the possible * placements of each different domino. It's also used as a * quick means of looking up an individual placement to see * whether we still think it's possible. Actual values stored * in this array are -2 (placement not possible at all), -1 * (end of list), or the array index of the next item. * * Oh, and -3 for `not even valid', used for array indices * which don't even represent a plausible placement. */ placements = snewn(2*wh, int); for (i = 0; i < 2*wh; i++) placements[i] = -3; /* not even valid */ /* * This array has one entry for every domino, and it is an * index into `placements' denoting the head of the placement * list for that domino. */ heads = snewn(dc, int); for (i = 0; i < dc; i++) heads[i] = -1; /* * Set up the initial possibility lists by scanning the grid. */ for (y = 0; y < h-1; y++) for (x = 0; x < w; x++) { int di = DINDEX(grid[y*w+x], grid[(y+1)*w+x]); placements[(y*w+x)*2] = heads[di]; heads[di] = (y*w+x)*2; } for (y = 0; y < h; y++) for (x = 0; x < w-1; x++) { int di = DINDEX(grid[y*w+x], grid[y*w+(x+1)]); placements[(y*w+x)*2+1] = heads[di]; heads[di] = (y*w+x)*2+1; } #ifdef SOLVER_DIAGNOSTICS printf("before solver:\n"); for (i = 0; i <= n; i++) for (j = 0; j <= i; j++) { int k, m; m = 0; printf("%2d [%d %d]:", DINDEX(i, j), i, j); for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k]) printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v'); printf("\n"); } #endif while (1) { bool done_something = false; /* * For each domino, look at its possible placements, and * for each placement consider the placements (of any * domino) it overlaps. Any placement overlapped by all * placements of this domino can be ruled out. * * Each domino placement overlaps only six others, so we * need not do serious set theory to work this out. */ for (i = 0; i < dc; i++) { int permset[6], permlen = 0, p; if (heads[i] == -1) { /* no placement for this domino */ ret = 0; /* therefore puzzle is impossible */ goto done; } for (j = heads[i]; j >= 0; j = placements[j]) { assert(placements[j] != -2); if (j == heads[i]) { permlen = find_overlaps(w, h, j, permset); } else { int tempset[6], templen, m, n, k; templen = find_overlaps(w, h, j, tempset); /* * Pathetically primitive set intersection * algorithm, which I'm only getting away with * because I know my sets are bounded by a very * small size. */ for (m = n = 0; m < permlen; m++) { for (k = 0; k < templen; k++) if (tempset[k] == permset[m]) break; if (k < templen) permset[n++] = permset[m]; } permlen = n; } } for (p = 0; p < permlen; p++) { j = permset[p]; if (placements[j] != -2) { int p1, p2, di; done_something = true; /* * Rule out this placement. First find what * domino it is... */ p1 = j / 2; p2 = (j & 1) ? p1 + 1 : p1 + w; di = DINDEX(grid[p1], grid[p2]); #ifdef SOLVER_DIAGNOSTICS printf("considering domino %d: ruling out placement %d" " for %d\n", i, j, di); #endif /* * ... then walk that domino's placement list, * removing this placement when we find it. */ if (heads[di] == j) heads[di] = placements[j]; else { int k = heads[di]; while (placements[k] != -1 && placements[k] != j) k = placements[k]; assert(placements[k] == j); placements[k] = placements[j]; } placements[j] = -2; } } } /* * For each square, look at the available placements * involving that square. If all of them are for the same * domino, then rule out any placements for that domino * _not_ involving this square. */ for (i = 0; i < wh; i++) { int list[4], k, n, adi; x = i % w; y = i / w; j = 0; if (x > 0) list[j++] = 2*(i-1)+1; if (x+1 < w) list[j++] = 2*i+1; if (y > 0) list[j++] = 2*(i-w); if (y+1 < h) list[j++] = 2*i; for (n = k = 0; k < j; k++) if (placements[list[k]] >= -1) list[n++] = list[k]; adi = -1; for (j = 0; j < n; j++) { int p1, p2, di; k = list[j]; p1 = k / 2; p2 = (k & 1) ? p1 + 1 : p1 + w; di = DINDEX(grid[p1], grid[p2]); if (adi == -1) adi = di; if (adi != di) break; } if (j == n) { int nn; assert(adi >= 0); /* * We've found something. All viable placements * involving this square are for domino `adi'. If * the current placement list for that domino is * longer than n, reduce it to precisely this * placement list and we've done something. */ nn = 0; for (k = heads[adi]; k >= 0; k = placements[k]) nn++; if (nn > n) { done_something = true; #ifdef SOLVER_DIAGNOSTICS printf("considering square %d,%d: reducing placements " "of domino %d\n", x, y, adi); #endif /* * Set all other placements on the list to * impossible. */ k = heads[adi]; while (k >= 0) { int tmp = placements[k]; placements[k] = -2; k = tmp; } /* * Set up the new list. */ heads[adi] = list[0]; for (k = 0; k < n; k++) placements[list[k]] = (k+1 == n ? -1 : list[k+1]); } } } if (!done_something) break; } #ifdef SOLVER_DIAGNOSTICS printf("after solver:\n"); for (i = 0; i <= n; i++) for (j = 0; j <= i; j++) { int k, m; m = 0; printf("%2d [%d %d]:", DINDEX(i, j), i, j); for (k = heads[DINDEX(i,j)]; k >= 0; k = placements[k]) printf(" %3d [%d,%d,%c]", k, k/2%w, k/2/w, k%2?'h':'v'); printf("\n"); } #endif ret = 1; for (i = 0; i < wh*2; i++) { if (placements[i] == -2) { if (output) output[i] = -1; /* ruled out */ } else if (placements[i] != -3) { int p1, p2, di; p1 = i / 2; p2 = (i & 1) ? p1 + 1 : p1 + w; di = DINDEX(grid[p1], grid[p2]); if (i == heads[di] && placements[i] == -1) { if (output) output[i] = 1; /* certain */ } else { if (output) output[i] = 0; /* uncertain */ ret = 2; } } } done: /* * Free working data. */ sfree(placements); sfree(heads); return ret; } /* ---------------------------------------------------------------------- * End of solver code. */ static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { int n = params->n, w = n+2, h = n+1, wh = w*h; int *grid, *grid2, *list; int i, j, k, len; char *ret; /* * Allocate space in which to lay the grid out. */ grid = snewn(wh, int); grid2 = snewn(wh, int); list = snewn(2*wh, int); /* * I haven't been able to think of any particularly clever * techniques for generating instances of Dominosa with a * unique solution. Many of the deductions used in this puzzle * are based on information involving half the grid at a time * (`of all the 6s, exactly one is next to a 3'), so a strategy * of partially solving the grid and then perturbing the place * where the solver got stuck seems particularly likely to * accidentally destroy the information which the solver had * used in getting that far. (Contrast with, say, Mines, in * which most deductions are local so this is an excellent * strategy.) * * Therefore I resort to the basest of brute force methods: * generate a random grid, see if it's solvable, throw it away * and try again if not. My only concession to sophistication * and cleverness is to at least _try_ not to generate obvious * 2x2 ambiguous sections (see comment below in the domino- * flipping section). * * During tests performed on 2005-07-15, I found that the brute * force approach without that tweak had to throw away about 87 * grids on average (at the default n=6) before finding a * unique one, or a staggering 379 at n=9; good job the * generator and solver are fast! When I added the * ambiguous-section avoidance, those numbers came down to 19 * and 26 respectively, which is a lot more sensible. */ do { domino_layout_prealloc(w, h, rs, grid, grid2, list); /* * Now we have a complete layout covering the whole * rectangle with dominoes. So shuffle the actual domino * values and fill the rectangle with numbers. */ k = 0; for (i = 0; i <= params->n; i++) for (j = 0; j <= i; j++) { list[k++] = i; list[k++] = j; } shuffle(list, k/2, 2*sizeof(*list), rs); j = 0; for (i = 0; i < wh; i++) if (grid[i] > i) { /* Optionally flip the domino round. */ int flip = -1; if (params->unique) { int t1, t2; /* * If we're after a unique solution, we can do * something here to improve the chances. If * we're placing a domino so that it forms a * 2x2 rectangle with one we've already placed, * and if that domino and this one share a * number, we can try not to put them so that * the identical numbers are diagonally * separated, because that automatically causes * non-uniqueness: * * +---+ +-+-+ * |2 3| |2|3| * +---+ -> | | | * |4 2| |4|2| * +---+ +-+-+ */ t1 = i; t2 = grid[i]; if (t2 == t1 + w) { /* this domino is vertical */ if (t1 % w > 0 &&/* and not on the left hand edge */ grid[t1-1] == t2-1 &&/* alongside one to left */ (grid2[t1-1] == list[j] || /* and has a number */ grid2[t1-1] == list[j+1] || /* in common */ grid2[t2-1] == list[j] || grid2[t2-1] == list[j+1])) { if (grid2[t1-1] == list[j] || grid2[t2-1] == list[j+1]) flip = 0; else flip = 1; } } else { /* this domino is horizontal */ if (t1 / w > 0 &&/* and not on the top edge */ grid[t1-w] == t2-w &&/* alongside one above */ (grid2[t1-w] == list[j] || /* and has a number */ grid2[t1-w] == list[j+1] || /* in common */ grid2[t2-w] == list[j] || grid2[t2-w] == list[j+1])) { if (grid2[t1-w] == list[j] || grid2[t2-w] == list[j+1]) flip = 0; else flip = 1; } } } if (flip < 0) flip = random_upto(rs, 2); grid2[i] = list[j + flip]; grid2[grid[i]] = list[j + 1 - flip]; j += 2; } assert(j == k); } while (params->unique && solver(w, h, n, grid2, NULL) > 1); #ifdef GENERATION_DIAGNOSTICS for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { putchar('0' + grid2[j*w+i]); } putchar('\n'); } putchar('\n'); #endif /* * Encode the resulting game state. * * Our encoding is a string of digits. Any number greater than * 9 is represented by a decimal integer within square * brackets. We know there are n+2 of every number (it's paired * with each number from 0 to n inclusive, and one of those is * itself so that adds another occurrence), so we can work out * the string length in advance. */ /* * To work out the total length of the decimal encodings of all * the numbers from 0 to n inclusive: * - every number has a units digit; total is n+1. * - all numbers above 9 have a tens digit; total is max(n+1-10,0). * - all numbers above 99 have a hundreds digit; total is max(n+1-100,0). * - and so on. */ len = n+1; for (i = 10; i <= n; i *= 10) len += max(n + 1 - i, 0); /* Now add two square brackets for each number above 9. */ len += 2 * max(n + 1 - 10, 0); /* And multiply by n+2 for the repeated occurrences of each number. */ len *= n+2; /* * Now actually encode the string. */ ret = snewn(len+1, char); j = 0; for (i = 0; i < wh; i++) { k = grid2[i]; if (k < 10) ret[j++] = '0' + k; else j += sprintf(ret+j, "[%d]", k); assert(j <= len); } assert(j == len); ret[j] = '\0'; /* * Encode the solved state as an aux_info. */ { char *auxinfo = snewn(wh+1, char); for (i = 0; i < wh; i++) { int v = grid[i]; auxinfo[i] = (v == i+1 ? 'L' : v == i-1 ? 'R' : v == i+w ? 'T' : v == i-w ? 'B' : '.'); } auxinfo[wh] = '\0'; *aux = auxinfo; } sfree(list); sfree(grid2); sfree(grid); return ret; } static const char *validate_desc(const game_params *params, const char *desc) { int n = params->n, w = n+2, h = n+1, wh = w*h; int *occurrences; int i, j; const char *ret; ret = NULL; occurrences = snewn(n+1, int); for (i = 0; i <= n; i++) occurrences[i] = 0; for (i = 0; i < wh; i++) { if (!*desc) { ret = ret ? ret : "Game description is too short"; } else { if (*desc >= '0' && *desc <= '9') j = *desc++ - '0'; else if (*desc == '[') { desc++; j = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc != ']') ret = ret ? ret : "Missing ']' in game description"; else desc++; } else { j = -1; ret = ret ? ret : "Invalid syntax in game description"; } if (j < 0 || j > n) ret = ret ? ret : "Number out of range in game description"; else occurrences[j]++; } } if (*desc) ret = ret ? ret : "Game description is too long"; if (!ret) { for (i = 0; i <= n; i++) if (occurrences[i] != n+2) ret = "Incorrect number balance in game description"; } sfree(occurrences); return ret; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int n = params->n, w = n+2, h = n+1, wh = w*h; game_state *state = snew(game_state); int i, j; state->params = *params; state->w = w; state->h = h; state->grid = snewn(wh, int); for (i = 0; i < wh; i++) state->grid[i] = i; state->edges = snewn(wh, unsigned short); for (i = 0; i < wh; i++) state->edges[i] = 0; state->numbers = snew(struct game_numbers); state->numbers->refcount = 1; state->numbers->numbers = snewn(wh, int); for (i = 0; i < wh; i++) { assert(*desc); if (*desc >= '0' && *desc <= '9') j = *desc++ - '0'; else { assert(*desc == '['); desc++; j = atoi(desc); while (*desc && isdigit((unsigned char)*desc)) desc++; assert(*desc == ']'); desc++; } assert(j >= 0 && j <= n); state->numbers->numbers[i] = j; } state->completed = false; state->cheated = false; return state; } static game_state *dup_game(const game_state *state) { int n = state->params.n, w = n+2, h = n+1, wh = w*h; game_state *ret = snew(game_state); ret->params = state->params; ret->w = state->w; ret->h = state->h; ret->grid = snewn(wh, int); memcpy(ret->grid, state->grid, wh * sizeof(int)); ret->edges = snewn(wh, unsigned short); memcpy(ret->edges, state->edges, wh * sizeof(unsigned short)); ret->numbers = state->numbers; ret->numbers->refcount++; ret->completed = state->completed; ret->cheated = state->cheated; return ret; } static void free_game(game_state *state) { sfree(state->grid); sfree(state->edges); if (--state->numbers->refcount <= 0) { sfree(state->numbers->numbers); sfree(state->numbers); } sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { int n = state->params.n, w = n+2, h = n+1, wh = w*h; int *placements; char *ret; int retlen, retsize; int i, v; char buf[80]; int extra; if (aux) { retsize = 256; ret = snewn(retsize, char); retlen = sprintf(ret, "S"); for (i = 0; i < wh; i++) { if (aux[i] == 'L') extra = sprintf(buf, ";D%d,%d", i, i+1); else if (aux[i] == 'T') extra = sprintf(buf, ";D%d,%d", i, i+w); else continue; if (retlen + extra + 1 >= retsize) { retsize = retlen + extra + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += extra; } } else { placements = snewn(wh*2, int); for (i = 0; i < wh*2; i++) placements[i] = -3; solver(w, h, n, state->numbers->numbers, placements); /* * First make a pass putting in edges for -1, then make a pass * putting in dominoes for +1. */ retsize = 256; ret = snewn(retsize, char); retlen = sprintf(ret, "S"); for (v = -1; v <= +1; v += 2) for (i = 0; i < wh*2; i++) if (placements[i] == v) { int p1 = i / 2; int p2 = (i & 1) ? p1+1 : p1+w; extra = sprintf(buf, ";%c%d,%d", (int)(v==-1 ? 'E' : 'D'), p1, p2); if (retlen + extra + 1 >= retsize) { retsize = retlen + extra + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += extra; } sfree(placements); } return ret; } static bool game_can_format_as_text_now(const game_params *params) { return params->n < 1000; } static void draw_domino(char *board, int start, char corner, int dshort, int nshort, char cshort, int dlong, int nlong, char clong) { int go_short = nshort*dshort, go_long = nlong*dlong, i; board[start] = corner; board[start + go_short] = corner; board[start + go_long] = corner; board[start + go_short + go_long] = corner; for (i = 1; i < nshort; ++i) { int j = start + i*dshort, k = start + i*dshort + go_long; if (board[j] != corner) board[j] = cshort; if (board[k] != corner) board[k] = cshort; } for (i = 1; i < nlong; ++i) { int j = start + i*dlong, k = start + i*dlong + go_short; if (board[j] != corner) board[j] = clong; if (board[k] != corner) board[k] = clong; } } static char *game_text_format(const game_state *state) { int w = state->w, h = state->h, r, c; int cw = 4, ch = 2, gw = cw*w + 2, gh = ch * h + 1, len = gw * gh; char *board = snewn(len + 1, char); memset(board, ' ', len); for (r = 0; r < h; ++r) { for (c = 0; c < w; ++c) { int cell = r*ch*gw + cw*c, center = cell + gw*ch/2 + cw/2; int i = r*w + c, num = state->numbers->numbers[i]; if (num < 100) { board[center] = '0' + num % 10; if (num >= 10) board[center - 1] = '0' + num / 10; } else { board[center+1] = '0' + num % 10; board[center] = '0' + num / 10 % 10; board[center-1] = '0' + num / 100; } if (state->edges[i] & EDGE_L) board[center - cw/2] = '|'; if (state->edges[i] & EDGE_R) board[center + cw/2] = '|'; if (state->edges[i] & EDGE_T) board[center - gw] = '-'; if (state->edges[i] & EDGE_B) board[center + gw] = '-'; if (state->grid[i] == i) continue; /* no domino pairing */ if (state->grid[i] < i) continue; /* already done */ assert (state->grid[i] == i + 1 || state->grid[i] == i + w); if (state->grid[i] == i + 1) draw_domino(board, cell, '+', gw, ch, '|', +1, 2*cw, '-'); else if (state->grid[i] == i + w) draw_domino(board, cell, '+', +1, cw, '-', gw, 2*ch, '|'); } board[r*ch*gw + gw - 1] = '\n'; board[r*ch*gw + gw + gw - 1] = '\n'; } board[len - 1] = '\n'; board[len] = '\0'; return board; } struct game_ui { int cur_x, cur_y, highlight_1, highlight_2; bool cur_visible; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->cur_x = ui->cur_y = 0; ui->cur_visible = false; ui->highlight_1 = ui->highlight_2 = -1; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { if (!oldstate->completed && newstate->completed) ui->cur_visible = false; } #define PREFERRED_TILESIZE 32 #define TILESIZE (ds->tilesize) #define BORDER (TILESIZE * 3 / 4) #define DOMINO_GUTTER (TILESIZE / 16) #define DOMINO_RADIUS (TILESIZE / 8) #define DOMINO_COFFSET (DOMINO_GUTTER + DOMINO_RADIUS) #define CURSOR_RADIUS (TILESIZE / 4) #define COORD(x) ( (x) * TILESIZE + BORDER ) #define FROMCOORD(x) ( ((x) - BORDER + TILESIZE) / TILESIZE - 1 ) struct game_drawstate { bool started; int w, h, tilesize; unsigned long *visible; }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int w = state->w, h = state->h; char buf[80]; /* * A left-click between two numbers toggles a domino covering * them. A right-click toggles an edge. */ if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { int tx = FROMCOORD(x), ty = FROMCOORD(y), t = ty*w+tx; int dx, dy; int d1, d2; if (tx < 0 || tx >= w || ty < 0 || ty >= h) return NULL; /* * Now we know which square the click was in, decide which * edge of the square it was closest to. */ dx = 2 * (x - COORD(tx)) - TILESIZE; dy = 2 * (y - COORD(ty)) - TILESIZE; if (abs(dx) > abs(dy) && dx < 0 && tx > 0) d1 = t - 1, d2 = t; /* clicked in right side of domino */ else if (abs(dx) > abs(dy) && dx > 0 && tx+1 < w) d1 = t, d2 = t + 1; /* clicked in left side of domino */ else if (abs(dy) > abs(dx) && dy < 0 && ty > 0) d1 = t - w, d2 = t; /* clicked in bottom half of domino */ else if (abs(dy) > abs(dx) && dy > 0 && ty+1 < h) d1 = t, d2 = t + w; /* clicked in top half of domino */ else return NULL; /* * We can't mark an edge next to any domino. */ if (button == RIGHT_BUTTON && (state->grid[d1] != d1 || state->grid[d2] != d2)) return NULL; ui->cur_visible = false; sprintf(buf, "%c%d,%d", (int)(button == RIGHT_BUTTON ? 'E' : 'D'), d1, d2); return dupstr(buf); } else if (IS_CURSOR_MOVE(button)) { ui->cur_visible = true; move_cursor(button, &ui->cur_x, &ui->cur_y, 2*w-1, 2*h-1, false); return UI_UPDATE; } else if (IS_CURSOR_SELECT(button)) { int d1, d2; if (!((ui->cur_x ^ ui->cur_y) & 1)) return NULL; /* must have exactly one dimension odd */ d1 = (ui->cur_y / 2) * w + (ui->cur_x / 2); d2 = ((ui->cur_y+1) / 2) * w + ((ui->cur_x+1) / 2); /* * We can't mark an edge next to any domino. */ if (button == CURSOR_SELECT2 && (state->grid[d1] != d1 || state->grid[d2] != d2)) return NULL; sprintf(buf, "%c%d,%d", (int)(button == CURSOR_SELECT2 ? 'E' : 'D'), d1, d2); return dupstr(buf); } else if (isdigit(button)) { int n = state->params.n, num = button - '0'; if (num > n) { return NULL; } else if (ui->highlight_1 == num) { ui->highlight_1 = -1; } else if (ui->highlight_2 == num) { ui->highlight_2 = -1; } else if (ui->highlight_1 == -1) { ui->highlight_1 = num; } else if (ui->highlight_2 == -1) { ui->highlight_2 = num; } else { return NULL; } return UI_UPDATE; } return NULL; } static game_state *execute_move(const game_state *state, const char *move) { int n = state->params.n, w = n+2, h = n+1, wh = w*h; int d1, d2, d3, p; game_state *ret = dup_game(state); while (*move) { if (move[0] == 'S') { int i; ret->cheated = true; /* * Clear the existing edges and domino placements. We * expect the S to be followed by other commands. */ for (i = 0; i < wh; i++) { ret->grid[i] = i; ret->edges[i] = 0; } move++; } else if (move[0] == 'D' && sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 && d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2) { /* * Toggle domino presence between d1 and d2. */ if (ret->grid[d1] == d2) { assert(ret->grid[d2] == d1); ret->grid[d1] = d1; ret->grid[d2] = d2; } else { /* * Erase any dominoes that might overlap the new one. */ d3 = ret->grid[d1]; if (d3 != d1) ret->grid[d3] = d3; d3 = ret->grid[d2]; if (d3 != d2) ret->grid[d3] = d3; /* * Place the new one. */ ret->grid[d1] = d2; ret->grid[d2] = d1; /* * Destroy any edges lurking around it. */ if (ret->edges[d1] & EDGE_L) { assert(d1 - 1 >= 0); ret->edges[d1 - 1] &= ~EDGE_R; } if (ret->edges[d1] & EDGE_R) { assert(d1 + 1 < wh); ret->edges[d1 + 1] &= ~EDGE_L; } if (ret->edges[d1] & EDGE_T) { assert(d1 - w >= 0); ret->edges[d1 - w] &= ~EDGE_B; } if (ret->edges[d1] & EDGE_B) { assert(d1 + 1 < wh); ret->edges[d1 + w] &= ~EDGE_T; } ret->edges[d1] = 0; if (ret->edges[d2] & EDGE_L) { assert(d2 - 1 >= 0); ret->edges[d2 - 1] &= ~EDGE_R; } if (ret->edges[d2] & EDGE_R) { assert(d2 + 1 < wh); ret->edges[d2 + 1] &= ~EDGE_L; } if (ret->edges[d2] & EDGE_T) { assert(d2 - w >= 0); ret->edges[d2 - w] &= ~EDGE_B; } if (ret->edges[d2] & EDGE_B) { assert(d2 + 1 < wh); ret->edges[d2 + w] &= ~EDGE_T; } ret->edges[d2] = 0; } move += p+1; } else if (move[0] == 'E' && sscanf(move+1, "%d,%d%n", &d1, &d2, &p) == 2 && d1 >= 0 && d1 < wh && d2 >= 0 && d2 < wh && d1 < d2 && ret->grid[d1] == d1 && ret->grid[d2] == d2) { /* * Toggle edge presence between d1 and d2. */ if (d2 == d1 + 1) { ret->edges[d1] ^= EDGE_R; ret->edges[d2] ^= EDGE_L; } else { ret->edges[d1] ^= EDGE_B; ret->edges[d2] ^= EDGE_T; } move += p+1; } else { free_game(ret); return NULL; } if (*move) { if (*move != ';') { free_game(ret); return NULL; } move++; } } /* * After modifying the grid, check completion. */ if (!ret->completed) { int i, ok = 0; bool *used = snewn(TRI(n+1), bool); memset(used, 0, TRI(n+1)); for (i = 0; i < wh; i++) if (ret->grid[i] > i) { int n1, n2, di; n1 = ret->numbers->numbers[i]; n2 = ret->numbers->numbers[ret->grid[i]]; di = DINDEX(n1, n2); assert(di >= 0 && di < TRI(n+1)); if (!used[di]) { used[di] = true; ok++; } } sfree(used); if (ok == DCOUNT(n)) ret->completed = true; } return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { int n = params->n, w = n+2, h = n+1; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = w * TILESIZE + 2*BORDER; *y = h * TILESIZE + 2*BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); ret[COL_TEXT * 3 + 0] = 0.0F; ret[COL_TEXT * 3 + 1] = 0.0F; ret[COL_TEXT * 3 + 2] = 0.0F; ret[COL_DOMINO * 3 + 0] = 0.0F; ret[COL_DOMINO * 3 + 1] = 0.0F; ret[COL_DOMINO * 3 + 2] = 0.0F; ret[COL_DOMINOCLASH * 3 + 0] = 0.5F; ret[COL_DOMINOCLASH * 3 + 1] = 0.0F; ret[COL_DOMINOCLASH * 3 + 2] = 0.0F; ret[COL_DOMINOTEXT * 3 + 0] = 1.0F; ret[COL_DOMINOTEXT * 3 + 1] = 1.0F; ret[COL_DOMINOTEXT * 3 + 2] = 1.0F; ret[COL_EDGE * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 2 / 3; ret[COL_EDGE * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 2 / 3; ret[COL_EDGE * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 2 / 3; ret[COL_HIGHLIGHT_1 * 3 + 0] = 0.85; ret[COL_HIGHLIGHT_1 * 3 + 1] = 0.20; ret[COL_HIGHLIGHT_1 * 3 + 2] = 0.20; ret[COL_HIGHLIGHT_2 * 3 + 0] = 0.30; ret[COL_HIGHLIGHT_2 * 3 + 1] = 0.85; ret[COL_HIGHLIGHT_2 * 3 + 2] = 0.20; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->started = false; ds->w = state->w; ds->h = state->h; ds->visible = snewn(ds->w * ds->h, unsigned long); ds->tilesize = 0; /* not decided yet */ for (i = 0; i < ds->w * ds->h; i++) ds->visible[i] = 0xFFFF; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->visible); sfree(ds); } enum { TYPE_L, TYPE_R, TYPE_T, TYPE_B, TYPE_BLANK, TYPE_MASK = 0x0F }; /* These flags must be disjoint with: * the above enum (TYPE_*) [0x000 -- 0x00F] * EDGE_* [0x100 -- 0xF00] * and must fit into an unsigned long (32 bits). */ #define DF_HIGHLIGHT_1 0x10 #define DF_HIGHLIGHT_2 0x20 #define DF_FLASH 0x40 #define DF_CLASH 0x80 #define DF_CURSOR 0x01000 #define DF_CURSOR_USEFUL 0x02000 #define DF_CURSOR_XBASE 0x10000 #define DF_CURSOR_XMASK 0x30000 #define DF_CURSOR_YBASE 0x40000 #define DF_CURSOR_YMASK 0xC0000 #define CEDGE_OFF (TILESIZE / 8) #define IS_EMPTY(s,x,y) ((s)->grid[(y)*(s)->w+(x)] == ((y)*(s)->w+(x))) static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state, int x, int y, int type, int highlight_1, int highlight_2) { int w = state->w /*, h = state->h */; int cx = COORD(x), cy = COORD(y); int nc; char str[80]; int flags; clip(dr, cx, cy, TILESIZE, TILESIZE); draw_rect(dr, cx, cy, TILESIZE, TILESIZE, COL_BACKGROUND); flags = type &~ TYPE_MASK; type &= TYPE_MASK; if (type != TYPE_BLANK) { int i, bg; /* * Draw one end of a domino. This is composed of: * * - two filled circles (rounded corners) * - two rectangles * - a slight shift in the number */ if (flags & DF_CLASH) bg = COL_DOMINOCLASH; else bg = COL_DOMINO; nc = COL_DOMINOTEXT; if (flags & DF_FLASH) { int tmp = nc; nc = bg; bg = tmp; } if (type == TYPE_L || type == TYPE_T) draw_circle(dr, cx+DOMINO_COFFSET, cy+DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); if (type == TYPE_R || type == TYPE_T) draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET, cy+DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); if (type == TYPE_L || type == TYPE_B) draw_circle(dr, cx+DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); if (type == TYPE_R || type == TYPE_B) draw_circle(dr, cx+TILESIZE-1-DOMINO_COFFSET, cy+TILESIZE-1-DOMINO_COFFSET, DOMINO_RADIUS, bg, bg); for (i = 0; i < 2; i++) { int x1, y1, x2, y2; x1 = cx + (i ? DOMINO_GUTTER : DOMINO_COFFSET); y1 = cy + (i ? DOMINO_COFFSET : DOMINO_GUTTER); x2 = cx + TILESIZE-1 - (i ? DOMINO_GUTTER : DOMINO_COFFSET); y2 = cy + TILESIZE-1 - (i ? DOMINO_COFFSET : DOMINO_GUTTER); if (type == TYPE_L) x2 = cx + TILESIZE + TILESIZE/16; else if (type == TYPE_R) x1 = cx - TILESIZE/16; else if (type == TYPE_T) y2 = cy + TILESIZE + TILESIZE/16; else if (type == TYPE_B) y1 = cy - TILESIZE/16; draw_rect(dr, x1, y1, x2-x1+1, y2-y1+1, bg); } } else { if (flags & EDGE_T) draw_rect(dr, cx+DOMINO_GUTTER, cy, TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE); if (flags & EDGE_B) draw_rect(dr, cx+DOMINO_GUTTER, cy+TILESIZE-1, TILESIZE-2*DOMINO_GUTTER, 1, COL_EDGE); if (flags & EDGE_L) draw_rect(dr, cx, cy+DOMINO_GUTTER, 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE); if (flags & EDGE_R) draw_rect(dr, cx+TILESIZE-1, cy+DOMINO_GUTTER, 1, TILESIZE-2*DOMINO_GUTTER, COL_EDGE); nc = COL_TEXT; } if (flags & DF_CURSOR) { int curx = ((flags & DF_CURSOR_XMASK) / DF_CURSOR_XBASE) & 3; int cury = ((flags & DF_CURSOR_YMASK) / DF_CURSOR_YBASE) & 3; int ox = cx + curx*TILESIZE/2; int oy = cy + cury*TILESIZE/2; draw_rect_corners(dr, ox, oy, CURSOR_RADIUS, nc); if (flags & DF_CURSOR_USEFUL) draw_rect_corners(dr, ox, oy, CURSOR_RADIUS+1, nc); } if (flags & DF_HIGHLIGHT_1) { nc = COL_HIGHLIGHT_1; } else if (flags & DF_HIGHLIGHT_2) { nc = COL_HIGHLIGHT_2; } sprintf(str, "%d", state->numbers->numbers[y*w+x]); draw_text(dr, cx+TILESIZE/2, cy+TILESIZE/2, FONT_VARIABLE, TILESIZE/2, ALIGN_HCENTRE | ALIGN_VCENTRE, nc, str); draw_update(dr, cx, cy, TILESIZE, TILESIZE); unclip(dr); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int n = state->params.n, w = state->w, h = state->h, wh = w*h; int x, y, i; unsigned char *used; if (!ds->started) { int pw, ph; game_compute_size(&state->params, TILESIZE, &pw, &ph); draw_rect(dr, 0, 0, pw, ph, COL_BACKGROUND); draw_update(dr, 0, 0, pw, ph); ds->started = true; } /* * See how many dominoes of each type there are, so we can * highlight clashes in red. */ used = snewn(TRI(n+1), unsigned char); memset(used, 0, TRI(n+1)); for (i = 0; i < wh; i++) if (state->grid[i] > i) { int n1, n2, di; n1 = state->numbers->numbers[i]; n2 = state->numbers->numbers[state->grid[i]]; di = DINDEX(n1, n2); assert(di >= 0 && di < TRI(n+1)); if (used[di] < 2) used[di]++; } for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int n = y*w+x; int n1, n2, di; unsigned long c; if (state->grid[n] == n-1) c = TYPE_R; else if (state->grid[n] == n+1) c = TYPE_L; else if (state->grid[n] == n-w) c = TYPE_B; else if (state->grid[n] == n+w) c = TYPE_T; else c = TYPE_BLANK; n1 = state->numbers->numbers[n]; if (c != TYPE_BLANK) { n2 = state->numbers->numbers[state->grid[n]]; di = DINDEX(n1, n2); if (used[di] > 1) c |= DF_CLASH; /* highlight a clash */ } else { c |= state->edges[n]; } if (n1 == ui->highlight_1) c |= DF_HIGHLIGHT_1; if (n1 == ui->highlight_2) c |= DF_HIGHLIGHT_2; if (flashtime != 0) c |= DF_FLASH; /* we're flashing */ if (ui->cur_visible) { unsigned curx = (unsigned)(ui->cur_x - (2*x-1)); unsigned cury = (unsigned)(ui->cur_y - (2*y-1)); if (curx < 3 && cury < 3) { c |= (DF_CURSOR | (curx * DF_CURSOR_XBASE) | (cury * DF_CURSOR_YBASE)); if ((ui->cur_x ^ ui->cur_y) & 1) c |= DF_CURSOR_USEFUL; } } if (ds->visible[n] != c) { draw_tile(dr, ds, state, x, y, c, ui->highlight_1, ui->highlight_2); ds->visible[n] = c; } } sfree(used); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) { ui->highlight_1 = ui->highlight_2 = -1; return FLASH_TIME; } return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { return true; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 6mm squares by default. */ game_compute_size(params, 600, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, int tilesize) { int w = state->w, h = state->h; int c, x, y; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); c = print_mono_colour(dr, 1); assert(c == COL_BACKGROUND); c = print_mono_colour(dr, 0); assert(c == COL_TEXT); c = print_mono_colour(dr, 0); assert(c == COL_DOMINO); c = print_mono_colour(dr, 0); assert(c == COL_DOMINOCLASH); c = print_mono_colour(dr, 1); assert(c == COL_DOMINOTEXT); c = print_mono_colour(dr, 0); assert(c == COL_EDGE); for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int n = y*w+x; unsigned long c; if (state->grid[n] == n-1) c = TYPE_R; else if (state->grid[n] == n+1) c = TYPE_L; else if (state->grid[n] == n-w) c = TYPE_B; else if (state->grid[n] == n+w) c = TYPE_T; else c = TYPE_BLANK; draw_tile(dr, ds, state, x, y, c, -1, -1); } } #ifdef COMBINED #define thegame dominosa #endif const struct game thegame = { "Dominosa", "games.dominosa", "dominosa", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, interpret_move, execute_move, PREFERRED_TILESIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_status, true, false, game_print_size, game_print, false, /* wants_statusbar */ false, game_timing_state, 0, /* flags */ }; /* vim: set shiftwidth=4 :set textwidth=80: */