ref: 6179e8df56000bc8f558129a8475cf977c06a249
dir: /net.c/
/* * net.c: Net game. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" /* * The standard user interface for Net simply has left- and * right-button mouse clicks in a square rotate it one way or the * other. We also provide, by #ifdef, a separate interface based on * rotational dragging motions. I initially developed this for the * Mac on the basis that it might work better than the click * interface with only one mouse button available, but in fact * found it to be quite strange and unintuitive. Apparently it * works better on stylus-driven platforms such as Palm and * PocketPC, though, so we enable it by default there. */ #ifdef STYLUS_BASED #define USE_DRAGGING #endif #define MATMUL(xr,yr,m,x,y) do { \ float rx, ry, xx = (x), yy = (y), *mat = (m); \ rx = mat[0] * xx + mat[2] * yy; \ ry = mat[1] * xx + mat[3] * yy; \ (xr) = rx; (yr) = ry; \ } while (0) /* Direction and other bitfields */ #define R 0x01 #define U 0x02 #define L 0x04 #define D 0x08 #define LOCKED 0x10 #define ACTIVE 0x20 #define RLOOP (R << 6) #define ULOOP (U << 6) #define LLOOP (L << 6) #define DLOOP (D << 6) #define LOOP(dir) ((dir) << 6) /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */ #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) ) #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) ) #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) ) #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \ ((n)&3) == 1 ? A(x) : \ ((n)&3) == 2 ? F(x) : C(x) ) /* X and Y displacements */ #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 ) #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 ) /* Bit count */ #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \ (((x) & 0x02) >> 1) + ((x) & 0x01) ) #define PREFERRED_TILE_SIZE 32 #define TILE_SIZE (ds->tilesize) #define TILE_BORDER 1 #ifdef SMALL_SCREEN #define WINDOW_OFFSET 4 #else #define WINDOW_OFFSET 16 #endif #define ROTATE_TIME 0.13F #define FLASH_FRAME 0.07F /* Transform physical coords to game coords using game_drawstate ds */ #define GX(x) (((x) + ds->org_x) % ds->width) #define GY(y) (((y) + ds->org_y) % ds->height) /* ...and game coords to physical coords */ #define RX(x) (((x) + ds->width - ds->org_x) % ds->width) #define RY(y) (((y) + ds->height - ds->org_y) % ds->height) enum { COL_BACKGROUND, COL_LOCKED, COL_BORDER, COL_WIRE, COL_ENDPOINT, COL_POWERED, COL_BARRIER, COL_LOOP, NCOLOURS }; struct game_params { int width; int height; int wrapping; int unique; float barrier_probability; }; struct game_state { int width, height, wrapping, completed; int last_rotate_x, last_rotate_y, last_rotate_dir; int used_solve; unsigned char *tiles; unsigned char *barriers; }; #define OFFSETWH(x2,y2,x1,y1,dir,width,height) \ ( (x2) = ((x1) + width + X((dir))) % width, \ (y2) = ((y1) + height + Y((dir))) % height) #define OFFSET(x2,y2,x1,y1,dir,state) \ OFFSETWH(x2,y2,x1,y1,dir,(state)->width,(state)->height) #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] ) #define tile(state, x, y) index(state, (state)->tiles, x, y) #define barrier(state, x, y) index(state, (state)->barriers, x, y) struct xyd { int x, y, direction; }; static int xyd_cmp(const void *av, const void *bv) { const struct xyd *a = (const struct xyd *)av; const struct xyd *b = (const struct xyd *)bv; if (a->x < b->x) return -1; if (a->x > b->x) return +1; if (a->y < b->y) return -1; if (a->y > b->y) return +1; if (a->direction < b->direction) return -1; if (a->direction > b->direction) return +1; return 0; } static int xyd_cmp_nc(void *av, void *bv) { return xyd_cmp(av, bv); } static struct xyd *new_xyd(int x, int y, int direction) { struct xyd *xyd = snew(struct xyd); xyd->x = x; xyd->y = y; xyd->direction = direction; return xyd; } /* ---------------------------------------------------------------------- * Manage game parameters. */ static game_params *default_params(void) { game_params *ret = snew(game_params); ret->width = 5; ret->height = 5; ret->wrapping = FALSE; ret->unique = TRUE; ret->barrier_probability = 0.0; return ret; } static const struct game_params net_presets[] = { {5, 5, FALSE, TRUE, 0.0}, {7, 7, FALSE, TRUE, 0.0}, {9, 9, FALSE, TRUE, 0.0}, {11, 11, FALSE, TRUE, 0.0}, #ifndef SMALL_SCREEN {13, 11, FALSE, TRUE, 0.0}, #endif {5, 5, TRUE, TRUE, 0.0}, {7, 7, TRUE, TRUE, 0.0}, {9, 9, TRUE, TRUE, 0.0}, {11, 11, TRUE, TRUE, 0.0}, #ifndef SMALL_SCREEN {13, 11, TRUE, TRUE, 0.0}, #endif }; static int game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(net_presets)) return FALSE; ret = snew(game_params); *ret = net_presets[i]; sprintf(str, "%dx%d%s", ret->width, ret->height, ret->wrapping ? " wrapping" : ""); *name = dupstr(str); *params = ret; return TRUE; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { char const *p = string; ret->width = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; ret->height = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; } else { ret->height = ret->width; } while (*p) { if (*p == 'w') { p++; ret->wrapping = TRUE; } else if (*p == 'b') { p++; ret->barrier_probability = (float)atof(p); while (*p && (*p == '.' || isdigit((unsigned char)*p))) p++; } else if (*p == 'a') { p++; ret->unique = FALSE; } else p++; /* skip any other gunk */ } } static char *encode_params(const game_params *params, int full) { char ret[400]; int len; len = sprintf(ret, "%dx%d", params->width, params->height); if (params->wrapping) ret[len++] = 'w'; if (full && params->barrier_probability) len += sprintf(ret+len, "b%g", params->barrier_probability); if (full && !params->unique) ret[len++] = 'a'; assert(len < lenof(ret)); ret[len] = '\0'; return dupstr(ret); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(6, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->width); ret[0].sval = dupstr(buf); ret[0].ival = 0; ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->height); ret[1].sval = dupstr(buf); ret[1].ival = 0; ret[2].name = "Walls wrap around"; ret[2].type = C_BOOLEAN; ret[2].sval = NULL; ret[2].ival = params->wrapping; ret[3].name = "Barrier probability"; ret[3].type = C_STRING; sprintf(buf, "%g", params->barrier_probability); ret[3].sval = dupstr(buf); ret[3].ival = 0; ret[4].name = "Ensure unique solution"; ret[4].type = C_BOOLEAN; ret[4].sval = NULL; ret[4].ival = params->unique; ret[5].name = NULL; ret[5].type = C_END; ret[5].sval = NULL; ret[5].ival = 0; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->width = atoi(cfg[0].sval); ret->height = atoi(cfg[1].sval); ret->wrapping = cfg[2].ival; ret->barrier_probability = (float)atof(cfg[3].sval); ret->unique = cfg[4].ival; return ret; } static char *validate_params(const game_params *params, int full) { if (params->width <= 0 || params->height <= 0) return "Width and height must both be greater than zero"; if (params->width <= 1 && params->height <= 1) return "At least one of width and height must be greater than one"; if (params->barrier_probability < 0) return "Barrier probability may not be negative"; if (params->barrier_probability > 1) return "Barrier probability may not be greater than 1"; /* * Specifying either grid dimension as 2 in a wrapping puzzle * makes it actually impossible to ensure a unique puzzle * solution. * * Proof: * * Without loss of generality, let us assume the puzzle _width_ * is 2, so we can conveniently discuss rows without having to * say `rows/columns' all the time. (The height may be 2 as * well, but that doesn't matter.) * * In each row, there are two edges between tiles: the inner * edge (running down the centre of the grid) and the outer * edge (the identified left and right edges of the grid). * * Lemma: In any valid 2xn puzzle there must be at least one * row in which _exactly one_ of the inner edge and outer edge * is connected. * * Proof: No row can have _both_ inner and outer edges * connected, because this would yield a loop. So the only * other way to falsify the lemma is for every row to have * _neither_ the inner nor outer edge connected. But this * means there is no connection at all between the left and * right columns of the puzzle, so there are two disjoint * subgraphs, which is also disallowed. [] * * Given such a row, it is always possible to make the * disconnected edge connected and the connected edge * disconnected without changing the state of any other edge. * (This is easily seen by case analysis on the various tiles: * left-pointing and right-pointing endpoints can be exchanged, * likewise T-pieces, and a corner piece can select its * horizontal connectivity independently of its vertical.) This * yields a distinct valid solution. * * Thus, for _every_ row in which exactly one of the inner and * outer edge is connected, there are two valid states for that * row, and hence the total number of solutions of the puzzle * is at least 2^(number of such rows), and in particular is at * least 2 since there must be at least one such row. [] */ if (full && params->unique && params->wrapping && (params->width == 2 || params->height == 2)) return "No wrapping puzzle with a width or height of 2 can have" " a unique solution"; return NULL; } /* ---------------------------------------------------------------------- * Solver used to assure solution uniqueness during generation. */ /* * Test cases I used while debugging all this were * * ./net --generate 1 13x11w#12300 * which expands under the non-unique grid generation rules to * 13x11w:5eaade1bd222664436d5e2965c12656b1129dd825219e3274d558d5eb2dab5da18898e571d5a2987be79746bd95726c597447d6da96188c513add829da7681da954db113d3cd244 * and has two ambiguous areas. * * An even better one is * 13x11w#507896411361192 * which expands to * 13x11w:b7125b1aec598eb31bd58d82572bc11494e5dee4e8db2bdd29b88d41a16bdd996d2996ddec8c83741a1e8674e78328ba71737b8894a9271b1cd1399453d1952e43951d9b712822e * and has an ambiguous area _and_ a situation where loop avoidance * is a necessary deductive technique. * * Then there's * 48x25w#820543338195187 * becoming * 48x25w:255989d14cdd185deaa753a93821a12edc1ab97943ac127e2685d7b8b3c48861b2192416139212b316eddd35de43714ebc7628d753db32e596284d9ec52c5a7dc1b4c811a655117d16dc28921b2b4161352cab1d89d18bc836b8b891d55ea4622a1251861b5bc9a8aa3e5bcd745c95229ca6c3b5e21d5832d397e917325793d7eb442dc351b2db2a52ba8e1651642275842d8871d5534aabc6d5b741aaa2d48ed2a7dbbb3151ddb49d5b9a7ed1ab98ee75d613d656dbba347bc514c84556b43a9bc65a3256ead792488b862a9d2a8a39b4255a4949ed7dbd79443292521265896b4399c95ede89d7c8c797a6a57791a849adea489359a158aa12e5dacce862b8333b7ebea7d344d1a3c53198864b73a9dedde7b663abb1b539e1e8853b1b7edb14a2a17ebaae4dbe63598a2e7e9a2dbdad415bc1d8cb88cbab5a8c82925732cd282e641ea3bd7d2c6e776de9117a26be86deb7c82c89524b122cb9397cd1acd2284e744ea62b9279bae85479ababe315c3ac29c431333395b24e6a1e3c43a2da42d4dce84aadd5b154aea555eaddcbd6e527d228c19388d9b424d94214555a7edbdeebe569d4a56dc51a86bd9963e377bb74752bd5eaa5761ba545e297b62a1bda46ab4aee423ad6c661311783cc18786d4289236563cb4a75ec67d481c14814994464cd1b87396dee63e5ab6e952cc584baa1d4c47cb557ec84dbb63d487c8728118673a166846dd3a4ebc23d6cb9c5827d96b4556e91899db32b517eda815ae271a8911bd745447121dc8d321557bc2a435ebec1bbac35b1a291669451174e6aa2218a4a9c5a6ca31ebc45d84e3a82c121e9ced7d55e9a * which has a spot (far right) where slightly more complex loop * avoidance is required. */ struct todo { unsigned char *marked; int *buffer; int buflen; int head, tail; }; static struct todo *todo_new(int maxsize) { struct todo *todo = snew(struct todo); todo->marked = snewn(maxsize, unsigned char); memset(todo->marked, 0, maxsize); todo->buflen = maxsize + 1; todo->buffer = snewn(todo->buflen, int); todo->head = todo->tail = 0; return todo; } static void todo_free(struct todo *todo) { sfree(todo->marked); sfree(todo->buffer); sfree(todo); } static void todo_add(struct todo *todo, int index) { if (todo->marked[index]) return; /* already on the list */ todo->marked[index] = TRUE; todo->buffer[todo->tail++] = index; if (todo->tail == todo->buflen) todo->tail = 0; } static int todo_get(struct todo *todo) { int ret; if (todo->head == todo->tail) return -1; /* list is empty */ ret = todo->buffer[todo->head++]; if (todo->head == todo->buflen) todo->head = 0; todo->marked[ret] = FALSE; return ret; } static int net_solver(int w, int h, unsigned char *tiles, unsigned char *barriers, int wrapping) { unsigned char *tilestate; unsigned char *edgestate; int *deadends; int *equivalence; struct todo *todo; int i, j, x, y; int area; int done_something; /* * Set up the solver's data structures. */ /* * tilestate stores the possible orientations of each tile. * There are up to four of these, so we'll index the array in * fours. tilestate[(y * w + x) * 4] and its three successive * members give the possible orientations, clearing to 255 from * the end as things are ruled out. * * In this loop we also count up the area of the grid (which is * not _necessarily_ equal to w*h, because there might be one * or more blank squares present. This will never happen in a * grid generated _by_ this program, but it's worth keeping the * solver as general as possible.) */ tilestate = snewn(w * h * 4, unsigned char); area = 0; for (i = 0; i < w*h; i++) { tilestate[i * 4] = tiles[i] & 0xF; for (j = 1; j < 4; j++) { if (tilestate[i * 4 + j - 1] == 255 || A(tilestate[i * 4 + j - 1]) == tilestate[i * 4]) tilestate[i * 4 + j] = 255; else tilestate[i * 4 + j] = A(tilestate[i * 4 + j - 1]); } if (tiles[i] != 0) area++; } /* * edgestate stores the known state of each edge. It is 0 for * unknown, 1 for open (connected) and 2 for closed (not * connected). * * In principle we need only worry about each edge once each, * but in fact it's easier to track each edge twice so that we * can reference it from either side conveniently. Also I'm * going to allocate _five_ bytes per tile, rather than the * obvious four, so that I can index edgestate[(y*w+x) * 5 + d] * where d is 1,2,4,8 and they never overlap. */ edgestate = snewn((w * h - 1) * 5 + 9, unsigned char); memset(edgestate, 0, (w * h - 1) * 5 + 9); /* * deadends tracks which edges have dead ends on them. It is * indexed by tile and direction: deadends[(y*w+x) * 5 + d] * tells you whether heading out of tile (x,y) in direction d * can reach a limited amount of the grid. Values are area+1 * (no dead end known) or less than that (can reach _at most_ * this many other tiles by heading this way out of this tile). */ deadends = snewn((w * h - 1) * 5 + 9, int); for (i = 0; i < (w * h - 1) * 5 + 9; i++) deadends[i] = area+1; /* * equivalence tracks which sets of tiles are known to be * connected to one another, so we can avoid creating loops by * linking together tiles which are already linked through * another route. * * This is a disjoint set forest structure: equivalence[i] * contains the index of another member of the equivalence * class containing i, or contains i itself for precisely one * member in each such class. To find a representative member * of the equivalence class containing i, you keep replacing i * with equivalence[i] until it stops changing; then you go * _back_ along the same path and point everything on it * directly at the representative member so as to speed up * future searches. Then you test equivalence between tiles by * finding the representative of each tile and seeing if * they're the same; and you create new equivalence (merge * classes) by finding the representative of each tile and * setting equivalence[one]=the_other. */ equivalence = snew_dsf(w * h); /* * On a non-wrapping grid, we instantly know that all the edges * round the edge are closed. */ if (!wrapping) { for (i = 0; i < w; i++) { edgestate[i * 5 + 2] = edgestate[((h-1) * w + i) * 5 + 8] = 2; } for (i = 0; i < h; i++) { edgestate[(i * w + w-1) * 5 + 1] = edgestate[(i * w) * 5 + 4] = 2; } } /* * If we have barriers available, we can mark those edges as * closed too. */ if (barriers) { for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int d; for (d = 1; d <= 8; d += d) { if (barriers[y*w+x] & d) { int x2, y2; /* * In principle the barrier list should already * contain each barrier from each side, but * let's not take chances with our internal * consistency. */ OFFSETWH(x2, y2, x, y, d, w, h); edgestate[(y*w+x) * 5 + d] = 2; edgestate[(y2*w+x2) * 5 + F(d)] = 2; } } } } /* * Since most deductions made by this solver are local (the * exception is loop avoidance, where joining two tiles * together on one side of the grid can theoretically permit a * fresh deduction on the other), we can address the scaling * problem inherent in iterating repeatedly over the entire * grid by instead working with a to-do list. */ todo = todo_new(w * h); /* * Main deductive loop. */ done_something = TRUE; /* prevent instant termination! */ while (1) { int index; /* * Take a tile index off the todo list and process it. */ index = todo_get(todo); if (index == -1) { /* * If we have run out of immediate things to do, we * have no choice but to scan the whole grid for * longer-range things we've missed. Hence, I now add * every square on the grid back on to the to-do list. * I also set `done_something' to FALSE at this point; * if we later come back here and find it still FALSE, * we will know we've scanned the entire grid without * finding anything new to do, and we can terminate. */ if (!done_something) break; for (i = 0; i < w*h; i++) todo_add(todo, i); done_something = FALSE; index = todo_get(todo); } y = index / w; x = index % w; { int d, ourclass = dsf_canonify(equivalence, y*w+x); int deadendmax[9]; deadendmax[1] = deadendmax[2] = deadendmax[4] = deadendmax[8] = 0; for (i = j = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) { int valid; int nnondeadends, nondeadends[4], deadendtotal; int nequiv, equiv[5]; int val = tilestate[(y*w+x) * 4 + i]; valid = TRUE; nnondeadends = deadendtotal = 0; equiv[0] = ourclass; nequiv = 1; for (d = 1; d <= 8; d += d) { /* * Immediately rule out this orientation if it * conflicts with any known edge. */ if ((edgestate[(y*w+x) * 5 + d] == 1 && !(val & d)) || (edgestate[(y*w+x) * 5 + d] == 2 && (val & d))) valid = FALSE; if (val & d) { /* * Count up the dead-end statistics. */ if (deadends[(y*w+x) * 5 + d] <= area) { deadendtotal += deadends[(y*w+x) * 5 + d]; } else { nondeadends[nnondeadends++] = d; } /* * Ensure we aren't linking to any tiles, * through edges not already known to be * open, which create a loop. */ if (edgestate[(y*w+x) * 5 + d] == 0) { int c, k, x2, y2; OFFSETWH(x2, y2, x, y, d, w, h); c = dsf_canonify(equivalence, y2*w+x2); for (k = 0; k < nequiv; k++) if (c == equiv[k]) break; if (k == nequiv) equiv[nequiv++] = c; else valid = FALSE; } } } if (nnondeadends == 0) { /* * If this orientation links together dead-ends * with a total area of less than the entire * grid, it is invalid. * * (We add 1 to deadendtotal because of the * tile itself, of course; one tile linking * dead ends of size 2 and 3 forms a subnetwork * with a total area of 6, not 5.) */ if (deadendtotal > 0 && deadendtotal+1 < area) valid = FALSE; } else if (nnondeadends == 1) { /* * If this orientation links together one or * more dead-ends with precisely one * non-dead-end, then we may have to mark that * non-dead-end as a dead end going the other * way. However, it depends on whether all * other orientations share the same property. */ deadendtotal++; if (deadendmax[nondeadends[0]] < deadendtotal) deadendmax[nondeadends[0]] = deadendtotal; } else { /* * If this orientation links together two or * more non-dead-ends, then we can rule out the * possibility of putting in new dead-end * markings in those directions. */ int k; for (k = 0; k < nnondeadends; k++) deadendmax[nondeadends[k]] = area+1; } if (valid) tilestate[(y*w+x) * 4 + j++] = val; #ifdef SOLVER_DIAGNOSTICS else printf("ruling out orientation %x at %d,%d\n", val, x, y); #endif } assert(j > 0); /* we can't lose _all_ possibilities! */ if (j < i) { done_something = TRUE; /* * We have ruled out at least one tile orientation. * Make sure the rest are blanked. */ while (j < 4) tilestate[(y*w+x) * 4 + j++] = 255; } /* * Now go through the tile orientations again and see * if we've deduced anything new about any edges. */ { int a, o; a = 0xF; o = 0; for (i = 0; i < 4 && tilestate[(y*w+x) * 4 + i] != 255; i++) { a &= tilestate[(y*w+x) * 4 + i]; o |= tilestate[(y*w+x) * 4 + i]; } for (d = 1; d <= 8; d += d) if (edgestate[(y*w+x) * 5 + d] == 0) { int x2, y2, d2; OFFSETWH(x2, y2, x, y, d, w, h); d2 = F(d); if (a & d) { /* This edge is open in all orientations. */ #ifdef SOLVER_DIAGNOSTICS printf("marking edge %d,%d:%d open\n", x, y, d); #endif edgestate[(y*w+x) * 5 + d] = 1; edgestate[(y2*w+x2) * 5 + d2] = 1; dsf_merge(equivalence, y*w+x, y2*w+x2); done_something = TRUE; todo_add(todo, y2*w+x2); } else if (!(o & d)) { /* This edge is closed in all orientations. */ #ifdef SOLVER_DIAGNOSTICS printf("marking edge %d,%d:%d closed\n", x, y, d); #endif edgestate[(y*w+x) * 5 + d] = 2; edgestate[(y2*w+x2) * 5 + d2] = 2; done_something = TRUE; todo_add(todo, y2*w+x2); } } } /* * Now check the dead-end markers and see if any of * them has lowered from the real ones. */ for (d = 1; d <= 8; d += d) { int x2, y2, d2; OFFSETWH(x2, y2, x, y, d, w, h); d2 = F(d); if (deadendmax[d] > 0 && deadends[(y2*w+x2) * 5 + d2] > deadendmax[d]) { #ifdef SOLVER_DIAGNOSTICS printf("setting dead end value %d,%d:%d to %d\n", x2, y2, d2, deadendmax[d]); #endif deadends[(y2*w+x2) * 5 + d2] = deadendmax[d]; done_something = TRUE; todo_add(todo, y2*w+x2); } } } } /* * Mark all completely determined tiles as locked. */ j = TRUE; for (i = 0; i < w*h; i++) { if (tilestate[i * 4 + 1] == 255) { assert(tilestate[i * 4 + 0] != 255); tiles[i] = tilestate[i * 4] | LOCKED; } else { tiles[i] &= ~LOCKED; j = FALSE; } } /* * Free up working space. */ todo_free(todo); sfree(tilestate); sfree(edgestate); sfree(deadends); sfree(equivalence); return j; } /* ---------------------------------------------------------------------- * Randomly select a new game description. */ /* * Function to randomly perturb an ambiguous section in a grid, to * attempt to ensure unique solvability. */ static void perturb(int w, int h, unsigned char *tiles, int wrapping, random_state *rs, int startx, int starty, int startd) { struct xyd *perimeter, *perim2, *loop[2], looppos[2]; int nperim, perimsize, nloop[2], loopsize[2]; int x, y, d, i; /* * We know that the tile at (startx,starty) is part of an * ambiguous section, and we also know that its neighbour in * direction startd is fully specified. We begin by tracing all * the way round the ambiguous area. */ nperim = perimsize = 0; perimeter = NULL; x = startx; y = starty; d = startd; #ifdef PERTURB_DIAGNOSTICS printf("perturb %d,%d:%d\n", x, y, d); #endif do { int x2, y2, d2; if (nperim >= perimsize) { perimsize = perimsize * 3 / 2 + 32; perimeter = sresize(perimeter, perimsize, struct xyd); } perimeter[nperim].x = x; perimeter[nperim].y = y; perimeter[nperim].direction = d; nperim++; #ifdef PERTURB_DIAGNOSTICS printf("perimeter: %d,%d:%d\n", x, y, d); #endif /* * First, see if we can simply turn left from where we are * and find another locked square. */ d2 = A(d); OFFSETWH(x2, y2, x, y, d2, w, h); if ((!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) || (tiles[y2*w+x2] & LOCKED)) { d = d2; } else { /* * Failing that, step left into the new square and look * in front of us. */ x = x2; y = y2; OFFSETWH(x2, y2, x, y, d, w, h); if ((wrapping || (abs(x2-x) <= 1 && abs(y2-y) <= 1)) && !(tiles[y2*w+x2] & LOCKED)) { /* * And failing _that_, we're going to have to step * forward into _that_ square and look right at the * same locked square as we started with. */ x = x2; y = y2; d = C(d); } } } while (x != startx || y != starty || d != startd); /* * Our technique for perturbing this ambiguous area is to * search round its edge for a join we can make: that is, an * edge on the perimeter which is (a) not currently connected, * and (b) connecting it would not yield a full cross on either * side. Then we make that join, search round the network to * find the loop thus constructed, and sever the loop at a * randomly selected other point. */ perim2 = snewn(nperim, struct xyd); memcpy(perim2, perimeter, nperim * sizeof(struct xyd)); /* Shuffle the perimeter, so as to search it without directional bias. */ shuffle(perim2, nperim, sizeof(*perim2), rs); for (i = 0; i < nperim; i++) { int x2, y2; x = perim2[i].x; y = perim2[i].y; d = perim2[i].direction; OFFSETWH(x2, y2, x, y, d, w, h); if (!wrapping && (abs(x2-x) > 1 || abs(y2-y) > 1)) continue; /* can't link across non-wrapping border */ if (tiles[y*w+x] & d) continue; /* already linked in this direction! */ if (((tiles[y*w+x] | d) & 15) == 15) continue; /* can't turn this tile into a cross */ if (((tiles[y2*w+x2] | F(d)) & 15) == 15) continue; /* can't turn other tile into a cross */ /* * We've found the point at which we're going to make a new * link. */ #ifdef PERTURB_DIAGNOSTICS printf("linking %d,%d:%d\n", x, y, d); #endif tiles[y*w+x] |= d; tiles[y2*w+x2] |= F(d); break; } sfree(perim2); if (i == nperim) { sfree(perimeter); return; /* nothing we can do! */ } /* * Now we've constructed a new link, we need to find the entire * loop of which it is a part. * * In principle, this involves doing a complete search round * the network. However, I anticipate that in the vast majority * of cases the loop will be quite small, so what I'm going to * do is make _two_ searches round the network in parallel, one * keeping its metaphorical hand on the left-hand wall while * the other keeps its hand on the right. As soon as one of * them gets back to its starting point, I abandon the other. */ for (i = 0; i < 2; i++) { loopsize[i] = nloop[i] = 0; loop[i] = NULL; looppos[i].x = x; looppos[i].y = y; looppos[i].direction = d; } while (1) { for (i = 0; i < 2; i++) { int x2, y2, j; x = looppos[i].x; y = looppos[i].y; d = looppos[i].direction; OFFSETWH(x2, y2, x, y, d, w, h); /* * Add this path segment to the loop, unless it exactly * reverses the previous one on the loop in which case * we take it away again. */ #ifdef PERTURB_DIAGNOSTICS printf("looppos[%d] = %d,%d:%d\n", i, x, y, d); #endif if (nloop[i] > 0 && loop[i][nloop[i]-1].x == x2 && loop[i][nloop[i]-1].y == y2 && loop[i][nloop[i]-1].direction == F(d)) { #ifdef PERTURB_DIAGNOSTICS printf("removing path segment %d,%d:%d from loop[%d]\n", x2, y2, F(d), i); #endif nloop[i]--; } else { if (nloop[i] >= loopsize[i]) { loopsize[i] = loopsize[i] * 3 / 2 + 32; loop[i] = sresize(loop[i], loopsize[i], struct xyd); } #ifdef PERTURB_DIAGNOSTICS printf("adding path segment %d,%d:%d to loop[%d]\n", x, y, d, i); #endif loop[i][nloop[i]++] = looppos[i]; } #ifdef PERTURB_DIAGNOSTICS printf("tile at new location is %x\n", tiles[y2*w+x2] & 0xF); #endif d = F(d); for (j = 0; j < 4; j++) { if (i == 0) d = A(d); else d = C(d); #ifdef PERTURB_DIAGNOSTICS printf("trying dir %d\n", d); #endif if (tiles[y2*w+x2] & d) { looppos[i].x = x2; looppos[i].y = y2; looppos[i].direction = d; break; } } assert(j < 4); assert(nloop[i] > 0); if (looppos[i].x == loop[i][0].x && looppos[i].y == loop[i][0].y && looppos[i].direction == loop[i][0].direction) { #ifdef PERTURB_DIAGNOSTICS printf("loop %d finished tracking\n", i); #endif /* * Having found our loop, we now sever it at a * randomly chosen point - absolutely any will do - * which is not the one we joined it at to begin * with. Conveniently, the one we joined it at is * loop[i][0], so we just avoid that one. */ j = random_upto(rs, nloop[i]-1) + 1; x = loop[i][j].x; y = loop[i][j].y; d = loop[i][j].direction; OFFSETWH(x2, y2, x, y, d, w, h); tiles[y*w+x] &= ~d; tiles[y2*w+x2] &= ~F(d); break; } } if (i < 2) break; } sfree(loop[0]); sfree(loop[1]); /* * Finally, we must mark the entire disputed section as locked, * to prevent the perturb function being called on it multiple * times. * * To do this, we _sort_ the perimeter of the area. The * existing xyd_cmp function will arrange things into columns * for us, in such a way that each column has the edges in * vertical order. Then we can work down each column and fill * in all the squares between an up edge and a down edge. */ qsort(perimeter, nperim, sizeof(struct xyd), xyd_cmp); x = y = -1; for (i = 0; i <= nperim; i++) { if (i == nperim || perimeter[i].x > x) { /* * Fill in everything from the last Up edge to the * bottom of the grid, if necessary. */ if (x != -1) { while (y < h) { #ifdef PERTURB_DIAGNOSTICS printf("resolved: locking tile %d,%d\n", x, y); #endif tiles[y * w + x] |= LOCKED; y++; } x = y = -1; } if (i == nperim) break; x = perimeter[i].x; y = 0; } if (perimeter[i].direction == U) { x = perimeter[i].x; y = perimeter[i].y; } else if (perimeter[i].direction == D) { /* * Fill in everything from the last Up edge to here. */ assert(x == perimeter[i].x && y <= perimeter[i].y); while (y <= perimeter[i].y) { #ifdef PERTURB_DIAGNOSTICS printf("resolved: locking tile %d,%d\n", x, y); #endif tiles[y * w + x] |= LOCKED; y++; } x = y = -1; } } sfree(perimeter); } static int *compute_loops_inner(int w, int h, int wrapping, const unsigned char *tiles, const unsigned char *barriers); static char *new_game_desc(const game_params *params, random_state *rs, char **aux, int interactive) { tree234 *possibilities, *barriertree; int w, h, x, y, cx, cy, nbarriers; unsigned char *tiles, *barriers; char *desc, *p; w = params->width; h = params->height; cx = w / 2; cy = h / 2; tiles = snewn(w * h, unsigned char); barriers = snewn(w * h, unsigned char); begin_generation: memset(tiles, 0, w * h); memset(barriers, 0, w * h); /* * Construct the unshuffled grid. * * To do this, we simply start at the centre point, repeatedly * choose a random possibility out of the available ways to * extend a used square into an unused one, and do it. After * extending the third line out of a square, we remove the * fourth from the possibilities list to avoid any full-cross * squares (which would make the game too easy because they * only have one orientation). * * The slightly worrying thing is the avoidance of full-cross * squares. Can this cause our unsophisticated construction * algorithm to paint itself into a corner, by getting into a * situation where there are some unreached squares and the * only way to reach any of them is to extend a T-piece into a * full cross? * * Answer: no it can't, and here's a proof. * * Any contiguous group of such unreachable squares must be * surrounded on _all_ sides by T-pieces pointing away from the * group. (If not, then there is a square which can be extended * into one of the `unreachable' ones, and so it wasn't * unreachable after all.) In particular, this implies that * each contiguous group of unreachable squares must be * rectangular in shape (any deviation from that yields a * non-T-piece next to an `unreachable' square). * * So we have a rectangle of unreachable squares, with T-pieces * forming a solid border around the rectangle. The corners of * that border must be connected (since every tile connects all * the lines arriving in it), and therefore the border must * form a closed loop around the rectangle. * * But this can't have happened in the first place, since we * _know_ we've avoided creating closed loops! Hence, no such * situation can ever arise, and the naive grid construction * algorithm will guaranteeably result in a complete grid * containing no unreached squares, no full crosses _and_ no * closed loops. [] */ possibilities = newtree234(xyd_cmp_nc); if (cx+1 < w) add234(possibilities, new_xyd(cx, cy, R)); if (cy-1 >= 0) add234(possibilities, new_xyd(cx, cy, U)); if (cx-1 >= 0) add234(possibilities, new_xyd(cx, cy, L)); if (cy+1 < h) add234(possibilities, new_xyd(cx, cy, D)); while (count234(possibilities) > 0) { int i; struct xyd *xyd; int x1, y1, d1, x2, y2, d2, d; /* * Extract a randomly chosen possibility from the list. */ i = random_upto(rs, count234(possibilities)); xyd = delpos234(possibilities, i); x1 = xyd->x; y1 = xyd->y; d1 = xyd->direction; sfree(xyd); OFFSET(x2, y2, x1, y1, d1, params); d2 = F(d1); #ifdef GENERATION_DIAGNOSTICS printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n", x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]); #endif /* * Make the connection. (We should be moving to an as yet * unused tile.) */ index(params, tiles, x1, y1) |= d1; assert(index(params, tiles, x2, y2) == 0); index(params, tiles, x2, y2) |= d2; /* * If we have created a T-piece, remove its last * possibility. */ if (COUNT(index(params, tiles, x1, y1)) == 3) { struct xyd xyd1, *xydp; xyd1.x = x1; xyd1.y = y1; xyd1.direction = 0x0F ^ index(params, tiles, x1, y1); xydp = find234(possibilities, &xyd1, NULL); if (xydp) { #ifdef GENERATION_DIAGNOSTICS printf("T-piece; removing (%d,%d,%c)\n", xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); #endif del234(possibilities, xydp); sfree(xydp); } } /* * Remove all other possibilities that were pointing at the * tile we've just moved into. */ for (d = 1; d < 0x10; d <<= 1) { int x3, y3, d3; struct xyd xyd1, *xydp; OFFSET(x3, y3, x2, y2, d, params); d3 = F(d); xyd1.x = x3; xyd1.y = y3; xyd1.direction = d3; xydp = find234(possibilities, &xyd1, NULL); if (xydp) { #ifdef GENERATION_DIAGNOSTICS printf("Loop avoidance; removing (%d,%d,%c)\n", xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); #endif del234(possibilities, xydp); sfree(xydp); } } /* * Add new possibilities to the list for moving _out_ of * the tile we have just moved into. */ for (d = 1; d < 0x10; d <<= 1) { int x3, y3; if (d == d2) continue; /* we've got this one already */ if (!params->wrapping) { if (d == U && y2 == 0) continue; if (d == D && y2 == h-1) continue; if (d == L && x2 == 0) continue; if (d == R && x2 == w-1) continue; } OFFSET(x3, y3, x2, y2, d, params); if (index(params, tiles, x3, y3)) continue; /* this would create a loop */ #ifdef GENERATION_DIAGNOSTICS printf("New frontier; adding (%d,%d,%c)\n", x2, y2, "0RU3L567D9abcdef"[d]); #endif add234(possibilities, new_xyd(x2, y2, d)); } } /* Having done that, we should have no possibilities remaining. */ assert(count234(possibilities) == 0); freetree234(possibilities); if (params->unique) { int prevn = -1; /* * Run the solver to check unique solubility. */ while (!net_solver(w, h, tiles, NULL, params->wrapping)) { int n = 0; /* * We expect (in most cases) that most of the grid will * be uniquely specified already, and the remaining * ambiguous sections will be small and separate. So * our strategy is to find each individual such * section, and perform a perturbation on the network * in that area. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { if (x+1 < w && ((tiles[y*w+x] ^ tiles[y*w+x+1]) & LOCKED)) { n++; if (tiles[y*w+x] & LOCKED) perturb(w, h, tiles, params->wrapping, rs, x+1, y, L); else perturb(w, h, tiles, params->wrapping, rs, x, y, R); } if (y+1 < h && ((tiles[y*w+x] ^ tiles[(y+1)*w+x]) & LOCKED)) { n++; if (tiles[y*w+x] & LOCKED) perturb(w, h, tiles, params->wrapping, rs, x, y+1, U); else perturb(w, h, tiles, params->wrapping, rs, x, y, D); } } /* * Now n counts the number of ambiguous sections we * have fiddled with. If we haven't managed to decrease * it from the last time we ran the solver, give up and * regenerate the entire grid. */ if (prevn != -1 && prevn <= n) goto begin_generation; /* (sorry) */ prevn = n; } /* * The solver will have left a lot of LOCKED bits lying * around in the tiles array. Remove them. */ for (x = 0; x < w*h; x++) tiles[x] &= ~LOCKED; } /* * Now compute a list of the possible barrier locations. */ barriertree = newtree234(xyd_cmp_nc); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { if (!(index(params, tiles, x, y) & R) && (params->wrapping || x < w-1)) add234(barriertree, new_xyd(x, y, R)); if (!(index(params, tiles, x, y) & D) && (params->wrapping || y < h-1)) add234(barriertree, new_xyd(x, y, D)); } } /* * Save the unshuffled grid in aux. */ { char *solution; int i; solution = snewn(w * h + 1, char); for (i = 0; i < w * h; i++) solution[i] = "0123456789abcdef"[tiles[i] & 0xF]; solution[w*h] = '\0'; *aux = solution; } /* * Now shuffle the grid. * * In order to avoid accidentally generating an already-solved * grid, we will reshuffle as necessary to ensure that at least * one edge has a mismatched connection. * * This can always be done, since validate_params() enforces a * grid area of at least 2 and our generator never creates * either type of rotationally invariant tile (cross and * blank). Hence there must be at least one edge separating * distinct tiles, and it must be possible to find orientations * of those tiles such that one tile is trying to connect * through that edge and the other is not. * * (We could be more subtle, and allow the shuffle to generate * a grid in which all tiles match up locally and the only * criterion preventing the grid from being already solved is * connectedness. However, that would take more effort, and * it's easier to simply make sure every grid is _obviously_ * not solved.) * * We also require that our shuffle produces no loops in the * initial grid state, because it's a bit rude to light up a 'HEY, * YOU DID SOMETHING WRONG!' indicator when the user hasn't even * had a chance to do _anything_ yet. This also is possible just * by retrying the whole shuffle on failure, because it's clear * that at least one non-solved shuffle with no loops must exist. * (Proof: take the _solved_ state of the puzzle, and rotate one * endpoint.) */ while (1) { int mismatches, prev_loopsquares, this_loopsquares, i; int *loops; shuffle: for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int orig = index(params, tiles, x, y); int rot = random_upto(rs, 4); index(params, tiles, x, y) = ROT(orig, rot); } } /* * Check for loops, and try to fix them by reshuffling just * the squares involved. */ prev_loopsquares = w*h+1; while (1) { loops = compute_loops_inner(w, h, params->wrapping, tiles, NULL); this_loopsquares = 0; for (i = 0; i < w*h; i++) { if (loops[i]) { int orig = tiles[i]; int rot = random_upto(rs, 4); tiles[i] = ROT(orig, rot); this_loopsquares++; } } sfree(loops); if (this_loopsquares > prev_loopsquares) { /* * We're increasing rather than reducing the number of * loops. Give up and go back to the full shuffle. */ goto shuffle; } if (this_loopsquares == 0) break; prev_loopsquares = this_loopsquares; } mismatches = 0; /* * I can't even be bothered to check for mismatches across * a wrapping edge, so I'm just going to enforce that there * must be a mismatch across a non-wrapping edge, which is * still always possible. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { if (x+1 < w && ((ROT(index(params, tiles, x, y), 2) ^ index(params, tiles, x+1, y)) & L)) mismatches++; if (y+1 < h && ((ROT(index(params, tiles, x, y), 2) ^ index(params, tiles, x, y+1)) & U)) mismatches++; } if (mismatches == 0) continue; /* OK. */ break; } /* * And now choose barrier locations. (We carefully do this * _after_ shuffling, so that changing the barrier rate in the * params while keeping the random seed the same will give the * same shuffled grid and _only_ change the barrier locations. * Also the way we choose barrier locations, by repeatedly * choosing one possibility from the list until we have enough, * is designed to ensure that raising the barrier rate while * keeping the seed the same will provide a superset of the * previous barrier set - i.e. if you ask for 10 barriers, and * then decide that's still too hard and ask for 20, you'll get * the original 10 plus 10 more, rather than getting 20 new * ones and the chance of remembering your first 10.) */ nbarriers = (int)(params->barrier_probability * count234(barriertree)); assert(nbarriers >= 0 && nbarriers <= count234(barriertree)); while (nbarriers > 0) { int i; struct xyd *xyd; int x1, y1, d1, x2, y2, d2; /* * Extract a randomly chosen barrier from the list. */ i = random_upto(rs, count234(barriertree)); xyd = delpos234(barriertree, i); assert(xyd != NULL); x1 = xyd->x; y1 = xyd->y; d1 = xyd->direction; sfree(xyd); OFFSET(x2, y2, x1, y1, d1, params); d2 = F(d1); index(params, barriers, x1, y1) |= d1; index(params, barriers, x2, y2) |= d2; nbarriers--; } /* * Clean up the rest of the barrier list. */ { struct xyd *xyd; while ( (xyd = delpos234(barriertree, 0)) != NULL) sfree(xyd); freetree234(barriertree); } /* * Finally, encode the grid into a string game description. * * My syntax is extremely simple: each square is encoded as a * hex digit in which bit 0 means a connection on the right, * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same * encoding as used internally). Each digit is followed by * optional barrier indicators: `v' means a vertical barrier to * the right of it, and `h' means a horizontal barrier below * it. */ desc = snewn(w * h * 3 + 1, char); p = desc; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { *p++ = "0123456789abcdef"[index(params, tiles, x, y)]; if ((params->wrapping || x < w-1) && (index(params, barriers, x, y) & R)) *p++ = 'v'; if ((params->wrapping || y < h-1) && (index(params, barriers, x, y) & D)) *p++ = 'h'; } } assert(p - desc <= w*h*3); *p = '\0'; sfree(tiles); sfree(barriers); return desc; } static char *validate_desc(const game_params *params, const char *desc) { int w = params->width, h = params->height; int i; for (i = 0; i < w*h; i++) { if (*desc >= '0' && *desc <= '9') /* OK */; else if (*desc >= 'a' && *desc <= 'f') /* OK */; else if (*desc >= 'A' && *desc <= 'F') /* OK */; else if (!*desc) return "Game description shorter than expected"; else return "Game description contained unexpected character"; desc++; while (*desc == 'h' || *desc == 'v') desc++; } if (*desc) return "Game description longer than expected"; return NULL; } /* ---------------------------------------------------------------------- * Construct an initial game state, given a description and parameters. */ static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state; int w, h, x, y; assert(params->width > 0 && params->height > 0); assert(params->width > 1 || params->height > 1); /* * Create a blank game state. */ state = snew(game_state); w = state->width = params->width; h = state->height = params->height; state->wrapping = params->wrapping; state->last_rotate_dir = state->last_rotate_x = state->last_rotate_y = 0; state->completed = state->used_solve = FALSE; state->tiles = snewn(state->width * state->height, unsigned char); memset(state->tiles, 0, state->width * state->height); state->barriers = snewn(state->width * state->height, unsigned char); memset(state->barriers, 0, state->width * state->height); /* * Parse the game description into the grid. */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { if (*desc >= '0' && *desc <= '9') tile(state, x, y) = *desc - '0'; else if (*desc >= 'a' && *desc <= 'f') tile(state, x, y) = *desc - 'a' + 10; else if (*desc >= 'A' && *desc <= 'F') tile(state, x, y) = *desc - 'A' + 10; if (*desc) desc++; while (*desc == 'h' || *desc == 'v') { int x2, y2, d1, d2; if (*desc == 'v') d1 = R; else d1 = D; OFFSET(x2, y2, x, y, d1, state); d2 = F(d1); barrier(state, x, y) |= d1; barrier(state, x2, y2) |= d2; desc++; } } } /* * Set up border barriers if this is a non-wrapping game. */ if (!state->wrapping) { for (x = 0; x < state->width; x++) { barrier(state, x, 0) |= U; barrier(state, x, state->height-1) |= D; } for (y = 0; y < state->height; y++) { barrier(state, 0, y) |= L; barrier(state, state->width-1, y) |= R; } } else { /* * We check whether this is de-facto a non-wrapping game * despite the parameters, in case we were passed the * description of a non-wrapping game. This is so that we * can change some aspects of the UI behaviour. */ state->wrapping = FALSE; for (x = 0; x < state->width; x++) if (!(barrier(state, x, 0) & U) || !(barrier(state, x, state->height-1) & D)) state->wrapping = TRUE; for (y = 0; y < state->height; y++) if (!(barrier(state, 0, y) & L) || !(barrier(state, state->width-1, y) & R)) state->wrapping = TRUE; } return state; } static game_state *dup_game(const game_state *state) { game_state *ret; ret = snew(game_state); ret->width = state->width; ret->height = state->height; ret->wrapping = state->wrapping; ret->completed = state->completed; ret->used_solve = state->used_solve; ret->last_rotate_dir = state->last_rotate_dir; ret->last_rotate_x = state->last_rotate_x; ret->last_rotate_y = state->last_rotate_y; ret->tiles = snewn(state->width * state->height, unsigned char); memcpy(ret->tiles, state->tiles, state->width * state->height); ret->barriers = snewn(state->width * state->height, unsigned char); memcpy(ret->barriers, state->barriers, state->width * state->height); return ret; } static void free_game(game_state *state) { sfree(state->tiles); sfree(state->barriers); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, char **error) { unsigned char *tiles; char *ret; int retlen, retsize; int i; tiles = snewn(state->width * state->height, unsigned char); if (!aux) { /* * Run the internal solver on the provided grid. This might * not yield a complete solution. */ memcpy(tiles, state->tiles, state->width * state->height); net_solver(state->width, state->height, tiles, state->barriers, state->wrapping); } else { for (i = 0; i < state->width * state->height; i++) { int c = aux[i]; if (c >= '0' && c <= '9') tiles[i] = c - '0'; else if (c >= 'a' && c <= 'f') tiles[i] = c - 'a' + 10; else if (c >= 'A' && c <= 'F') tiles[i] = c - 'A' + 10; tiles[i] |= LOCKED; } } /* * Now construct a string which can be passed to execute_move() * to transform the current grid into the solved one. */ retsize = 256; ret = snewn(retsize, char); retlen = 0; ret[retlen++] = 'S'; for (i = 0; i < state->width * state->height; i++) { int from = currstate->tiles[i], to = tiles[i]; int ft = from & (R|L|U|D), tt = to & (R|L|U|D); int x = i % state->width, y = i / state->width; int chr = '\0'; char buf[80], *p = buf; if (from == to) continue; /* nothing needs doing at all */ /* * To transform this tile into the desired tile: first * unlock the tile if it's locked, then rotate it if * necessary, then lock it if necessary. */ if (from & LOCKED) p += sprintf(p, ";L%d,%d", x, y); if (tt == A(ft)) chr = 'A'; else if (tt == C(ft)) chr = 'C'; else if (tt == F(ft)) chr = 'F'; else { assert(tt == ft); chr = '\0'; } if (chr) p += sprintf(p, ";%c%d,%d", chr, x, y); if (to & LOCKED) p += sprintf(p, ";L%d,%d", x, y); if (p > buf) { if (retlen + (p - buf) >= retsize) { retsize = retlen + (p - buf) + 512; ret = sresize(ret, retsize, char); } memcpy(ret+retlen, buf, p - buf); retlen += p - buf; } } assert(retlen < retsize); ret[retlen] = '\0'; ret = sresize(ret, retlen+1, char); sfree(tiles); return ret; } static int game_can_format_as_text_now(const game_params *params) { return TRUE; } static char *game_text_format(const game_state *state) { return NULL; } /* ---------------------------------------------------------------------- * Utility routine. */ /* * Compute which squares are reachable from the centre square, as a * quick visual aid to determining how close the game is to * completion. This is also a simple way to tell if the game _is_ * completed - just call this function and see whether every square * is marked active. */ static unsigned char *compute_active(const game_state *state, int cx, int cy) { unsigned char *active; tree234 *todo; struct xyd *xyd; active = snewn(state->width * state->height, unsigned char); memset(active, 0, state->width * state->height); /* * We only store (x,y) pairs in todo, but it's easier to reuse * xyd_cmp and just store direction 0 every time. */ todo = newtree234(xyd_cmp_nc); index(state, active, cx, cy) = ACTIVE; add234(todo, new_xyd(cx, cy, 0)); while ( (xyd = delpos234(todo, 0)) != NULL) { int x1, y1, d1, x2, y2, d2; x1 = xyd->x; y1 = xyd->y; sfree(xyd); for (d1 = 1; d1 < 0x10; d1 <<= 1) { OFFSET(x2, y2, x1, y1, d1, state); d2 = F(d1); /* * If the next tile in this direction is connected to * us, and there isn't a barrier in the way, and it * isn't already marked active, then mark it active and * add it to the to-examine list. */ if ((tile(state, x1, y1) & d1) && (tile(state, x2, y2) & d2) && !(barrier(state, x1, y1) & d1) && !index(state, active, x2, y2)) { index(state, active, x2, y2) = ACTIVE; add234(todo, new_xyd(x2, y2, 0)); } } } /* Now we expect the todo list to have shrunk to zero size. */ assert(count234(todo) == 0); freetree234(todo); return active; } static int *compute_loops_inner(int w, int h, int wrapping, const unsigned char *tiles, const unsigned char *barriers) { int *loops, *dsf; int x, y; /* * The loop-detecting algorithm I use here is not quite the same * one as I've used in Slant and Loopy. Those two puzzles use a * very similar algorithm which works by finding connected * components, not of the graph _vertices_, but of the pieces of * space in between them. You divide the plane into maximal areas * that can't be intersected by a grid edge (faces in Loopy, * diamond shapes centred on a grid edge in Slant); you form a dsf * over those areas, and unify any pair _not_ separated by a graph * edge; then you've identified the connected components of the * space, and can now immediately tell whether an edge is part of * a loop or not by checking whether the pieces of space on either * side of it are in the same component. * * In Net, this doesn't work reliably, because of the toroidal * wrapping mode. A torus has non-trivial homology, which is to * say, there can exist a closed loop on its surface which is not * the boundary of any proper subset of the torus's area. For * example, consider the 'loop' consisting of a straight vertical * line going off the top of the grid and coming back on the * bottom to join up with itself. This certainly wants to be * marked as a loop, but it won't be detected as one by the above * algorithm, because all the area of the grid is still connected * via the left- and right-hand edges, so the two sides of the * loop _are_ in the same equivalence class. * * The replacement algorithm I use here is also dsf-based, but the * dsf is now over _sides of edges_. That is to say, on a general * graph, you would have two dsf elements per edge of the graph. * The unification rule is: for each vertex, iterate round the * edges leaving that vertex in cyclic order, and dsf-unify the * _near sides_ of each pair of adjacent edges. The effect of this * is to trace round the outside edge of each connected component * of the graph (this time of the actual graph, not the space * between), so that the outline of each component becomes its own * equivalence class. And now, just as before, an edge is part of * a loop iff its two sides are not in the same component. * * This correctly detects even homologically nontrivial loops on a * torus, because a torus is still _orientable_ - there's no way * that a loop can join back up with itself with the two sides * swapped. It would stop working, however, on a Mobius strip or a * Klein bottle - so if I ever implement either of those modes for * Net, I'll have to revisit this algorithm yet again and probably * replace it with a completely general and much more fiddly * approach such as Tarjan's bridge-finding algorithm (which is * linear-time, but looks to me as if it's going to take more * effort to get it working, especially when the graph is * represented so unlike an ordinary graph). * * In Net, the algorithm as I describe it above has to be fiddled * with just a little, to deal with the fact that there are two * kinds of 'vertex' in the graph - one set at face-centres, and * another set at edge-midpoints where two wires either do or do * not join. Since those two vertex classes have very different * representations in the Net data structure, separate code is * needed for them. */ /* Four potential edges per grid cell; one dsf node for each side * of each one makes 8 per cell. */ dsf = snew_dsf(w*h*8); /* Encode the dsf nodes. We imagine going round anticlockwise, so * BEFORE(dir) indicates the clockwise side of an edge, e.g. the * underside of R or the right-hand side of U. AFTER is the other * side. */ #define BEFORE(dir) ((dir)==R?7:(dir)==U?1:(dir)==L?3:5) #define AFTER(dir) ((dir)==R?0:(dir)==U?2:(dir)==L?4:6) #if 0 printf("--- begin\n"); #endif for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int tile = tiles[y*w+x]; int dir; for (dir = 1; dir < 0x10; dir <<= 1) { /* * To unify dsf nodes around a face-centre vertex, * it's easiest to do it _unconditionally_ - e.g. just * unify the top side of R with the right side of U * regardless of whether there's an edge in either * place. Later we'll also unify the top and bottom * sides of any nonexistent edge, which will e.g. * complete a connection BEFORE(U) - AFTER(R) - * BEFORE(R) - AFTER(D) in the absence of an R edge. * * This is a safe optimisation because these extra dsf * nodes unified into our equivalence class can't get * out of control - they are never unified with * anything _else_ elsewhere in the algorithm. */ #if 0 printf("tile centre %d,%d: merge %d,%d\n", x, y, (y*w+x)*8+AFTER(C(dir)), (y*w+x)*8+BEFORE(dir)); #endif dsf_merge(dsf, (y*w+x)*8+AFTER(C(dir)), (y*w+x)*8+BEFORE(dir)); if (tile & dir) { int x1, y1; OFFSETWH(x1, y1, x, y, dir, w, h); /* * If the tile does have an edge going out in this * direction, we must check whether it joins up * (without being blocked by a barrier) to an edge * in the next cell along. If so, we unify around * the edge-centre vertex by joining each side of * this edge to the appropriate side of the next * cell's edge; otherwise, the edge is a stub (the * only one reaching the edge-centre vertex) and * so we join its own two sides together. */ if ((barriers && barriers[y*w+x] & dir) || !(tiles[y1*w+x1] & F(dir))) { #if 0 printf("tile edge stub %d,%d -> %c: merge %d,%d\n", x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), (y*w+x)*8+BEFORE(dir), (y*w+x)*8+AFTER(dir)); #endif dsf_merge(dsf, (y*w+x)*8+BEFORE(dir), (y*w+x)*8+AFTER(dir)); } else { #if 0 printf("tile edge conn %d,%d -> %c: merge %d,%d\n", x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), (y*w+x)*8+BEFORE(dir), (y*w+x)*8+AFTER(F(dir))); #endif dsf_merge(dsf, (y*w+x)*8+BEFORE(dir), (y1*w+x1)*8+AFTER(F(dir))); #if 0 printf("tile edge conn %d,%d -> %c: merge %d,%d\n", x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), (y*w+x)*8+AFTER(dir), (y*w+x)*8+BEFORE(F(dir))); #endif dsf_merge(dsf, (y*w+x)*8+AFTER(dir), (y1*w+x1)*8+BEFORE(F(dir))); } } else { /* * As discussed above, if this edge doesn't even * exist, we unify its two sides anyway to * complete the unification of whatever edges do * exist in this cell. */ #if 0 printf("tile edge missing %d,%d -> %c: merge %d,%d\n", x, y, (dir==L?'L':dir==U?'U':dir==R?'R':'D'), (y*w+x)*8+BEFORE(dir), (y*w+x)*8+AFTER(dir)); #endif dsf_merge(dsf, (y*w+x)*8+BEFORE(dir), (y*w+x)*8+AFTER(dir)); } } } } #if 0 printf("--- end\n"); #endif loops = snewn(w*h, int); /* * Now we've done the loop detection and can read off the output * flags trivially: any piece of connection whose two sides are * not in the same dsf class is part of a loop. */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { int dir; int tile = tiles[y*w+x]; int flags = 0; for (dir = 1; dir < 0x10; dir <<= 1) { if ((tile & dir) && (dsf_canonify(dsf, (y*w+x)*8+BEFORE(dir)) != dsf_canonify(dsf, (y*w+x)*8+AFTER(dir)))) { flags |= LOOP(dir); } } loops[y*w+x] = flags; } } sfree(dsf); return loops; } static int *compute_loops(const game_state *state) { return compute_loops_inner(state->width, state->height, state->wrapping, state->tiles, state->barriers); } struct game_ui { int org_x, org_y; /* origin */ int cx, cy; /* source tile (game coordinates) */ int cur_x, cur_y; int cur_visible; random_state *rs; /* used for jumbling */ #ifdef USE_DRAGGING int dragtilex, dragtiley, dragstartx, dragstarty, dragged; #endif }; static game_ui *new_ui(const game_state *state) { void *seed; int seedsize; game_ui *ui = snew(game_ui); ui->org_x = ui->org_y = 0; ui->cur_x = ui->cx = state->width / 2; ui->cur_y = ui->cy = state->height / 2; ui->cur_visible = FALSE; get_random_seed(&seed, &seedsize); ui->rs = random_new(seed, seedsize); sfree(seed); return ui; } static void free_ui(game_ui *ui) { random_free(ui->rs); sfree(ui); } static char *encode_ui(const game_ui *ui) { char buf[120]; /* * We preserve the origin and centre-point coordinates over a * serialise. */ sprintf(buf, "O%d,%d;C%d,%d", ui->org_x, ui->org_y, ui->cx, ui->cy); return dupstr(buf); } static void decode_ui(game_ui *ui, const char *encoding) { sscanf(encoding, "O%d,%d;C%d,%d", &ui->org_x, &ui->org_y, &ui->cx, &ui->cy); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } struct game_drawstate { int started; int width, height; int org_x, org_y; int tilesize; int *visible; }; /* ---------------------------------------------------------------------- * Process a move. */ static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { char *nullret; int tx = -1, ty = -1, dir = 0; int shift = button & MOD_SHFT, ctrl = button & MOD_CTRL; enum { NONE, ROTATE_LEFT, ROTATE_180, ROTATE_RIGHT, TOGGLE_LOCK, JUMBLE, MOVE_ORIGIN, MOVE_SOURCE, MOVE_ORIGIN_AND_SOURCE, MOVE_CURSOR } action; button &= ~MOD_MASK; nullret = NULL; action = NONE; if (button == LEFT_BUTTON || button == MIDDLE_BUTTON || #ifdef USE_DRAGGING button == LEFT_DRAG || button == LEFT_RELEASE || button == RIGHT_DRAG || button == RIGHT_RELEASE || #endif button == RIGHT_BUTTON) { if (ui->cur_visible) { ui->cur_visible = FALSE; nullret = ""; } /* * The button must have been clicked on a valid tile. */ x -= WINDOW_OFFSET + TILE_BORDER; y -= WINDOW_OFFSET + TILE_BORDER; if (x < 0 || y < 0) return nullret; tx = x / TILE_SIZE; ty = y / TILE_SIZE; if (tx >= state->width || ty >= state->height) return nullret; /* Transform from physical to game coords */ tx = (tx + ui->org_x) % state->width; ty = (ty + ui->org_y) % state->height; if (x % TILE_SIZE >= TILE_SIZE - TILE_BORDER || y % TILE_SIZE >= TILE_SIZE - TILE_BORDER) return nullret; #ifdef USE_DRAGGING if (button == MIDDLE_BUTTON #ifdef STYLUS_BASED || button == RIGHT_BUTTON /* with a stylus, `right-click' locks */ #endif ) { /* * Middle button never drags: it only toggles the lock. */ action = TOGGLE_LOCK; } else if (button == LEFT_BUTTON #ifndef STYLUS_BASED || button == RIGHT_BUTTON /* (see above) */ #endif ) { /* * Otherwise, we note down the start point for a drag. */ ui->dragtilex = tx; ui->dragtiley = ty; ui->dragstartx = x % TILE_SIZE; ui->dragstarty = y % TILE_SIZE; ui->dragged = FALSE; return nullret; /* no actual action */ } else if (button == LEFT_DRAG #ifndef STYLUS_BASED || button == RIGHT_DRAG #endif ) { /* * Find the new drag point and see if it necessitates a * rotation. */ int x0,y0, xA,yA, xC,yC, xF,yF; int mx, my; int d0, dA, dC, dF, dmin; tx = ui->dragtilex; ty = ui->dragtiley; mx = x - (ui->dragtilex * TILE_SIZE); my = y - (ui->dragtiley * TILE_SIZE); x0 = ui->dragstartx; y0 = ui->dragstarty; xA = ui->dragstarty; yA = TILE_SIZE-1 - ui->dragstartx; xF = TILE_SIZE-1 - ui->dragstartx; yF = TILE_SIZE-1 - ui->dragstarty; xC = TILE_SIZE-1 - ui->dragstarty; yC = ui->dragstartx; d0 = (mx-x0)*(mx-x0) + (my-y0)*(my-y0); dA = (mx-xA)*(mx-xA) + (my-yA)*(my-yA); dF = (mx-xF)*(mx-xF) + (my-yF)*(my-yF); dC = (mx-xC)*(mx-xC) + (my-yC)*(my-yC); dmin = min(min(d0,dA),min(dF,dC)); if (d0 == dmin) { return nullret; } else if (dF == dmin) { action = ROTATE_180; ui->dragstartx = xF; ui->dragstarty = yF; ui->dragged = TRUE; } else if (dA == dmin) { action = ROTATE_LEFT; ui->dragstartx = xA; ui->dragstarty = yA; ui->dragged = TRUE; } else /* dC == dmin */ { action = ROTATE_RIGHT; ui->dragstartx = xC; ui->dragstarty = yC; ui->dragged = TRUE; } } else if (button == LEFT_RELEASE #ifndef STYLUS_BASED || button == RIGHT_RELEASE #endif ) { if (!ui->dragged) { /* * There was a click but no perceptible drag: * revert to single-click behaviour. */ tx = ui->dragtilex; ty = ui->dragtiley; if (button == LEFT_RELEASE) action = ROTATE_LEFT; else action = ROTATE_RIGHT; } else return nullret; /* no action */ } #else /* USE_DRAGGING */ action = (button == LEFT_BUTTON ? ROTATE_LEFT : button == RIGHT_BUTTON ? ROTATE_RIGHT : TOGGLE_LOCK); #endif /* USE_DRAGGING */ } else if (IS_CURSOR_MOVE(button)) { switch (button) { case CURSOR_UP: dir = U; break; case CURSOR_DOWN: dir = D; break; case CURSOR_LEFT: dir = L; break; case CURSOR_RIGHT: dir = R; break; default: return nullret; } if (shift && ctrl) action = MOVE_ORIGIN_AND_SOURCE; else if (shift) action = MOVE_ORIGIN; else if (ctrl) action = MOVE_SOURCE; else action = MOVE_CURSOR; } else if (button == 'a' || button == 's' || button == 'd' || button == 'A' || button == 'S' || button == 'D' || button == 'f' || button == 'F' || IS_CURSOR_SELECT(button)) { tx = ui->cur_x; ty = ui->cur_y; if (button == 'a' || button == 'A' || button == CURSOR_SELECT) action = ROTATE_LEFT; else if (button == 's' || button == 'S' || button == CURSOR_SELECT2) action = TOGGLE_LOCK; else if (button == 'd' || button == 'D') action = ROTATE_RIGHT; else if (button == 'f' || button == 'F') action = ROTATE_180; ui->cur_visible = TRUE; } else if (button == 'j' || button == 'J') { /* XXX should we have some mouse control for this? */ action = JUMBLE; } else return nullret; /* * The middle button locks or unlocks a tile. (A locked tile * cannot be turned, and is visually marked as being locked. * This is a convenience for the player, so that once they are * sure which way round a tile goes, they can lock it and thus * avoid forgetting later on that they'd already done that one; * and the locking also prevents them turning the tile by * accident. If they change their mind, another middle click * unlocks it.) */ if (action == TOGGLE_LOCK) { char buf[80]; sprintf(buf, "L%d,%d", tx, ty); return dupstr(buf); } else if (action == ROTATE_LEFT || action == ROTATE_RIGHT || action == ROTATE_180) { char buf[80]; /* * The left and right buttons have no effect if clicked on a * locked tile. */ if (tile(state, tx, ty) & LOCKED) return nullret; /* * Otherwise, turn the tile one way or the other. Left button * turns anticlockwise; right button turns clockwise. */ sprintf(buf, "%c%d,%d", (int)(action == ROTATE_LEFT ? 'A' : action == ROTATE_RIGHT ? 'C' : 'F'), tx, ty); return dupstr(buf); } else if (action == JUMBLE) { /* * Jumble all unlocked tiles to random orientations. */ int jx, jy, maxlen; char *ret, *p; /* * Maximum string length assumes no int can be converted to * decimal and take more than 11 digits! */ maxlen = state->width * state->height * 25 + 3; ret = snewn(maxlen, char); p = ret; *p++ = 'J'; for (jy = 0; jy < state->height; jy++) { for (jx = 0; jx < state->width; jx++) { if (!(tile(state, jx, jy) & LOCKED)) { int rot = random_upto(ui->rs, 4); if (rot) { p += sprintf(p, ";%c%d,%d", "AFC"[rot-1], jx, jy); } } } } *p++ = '\0'; assert(p - ret < maxlen); ret = sresize(ret, p - ret, char); return ret; } else if (action == MOVE_ORIGIN || action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE || action == MOVE_CURSOR) { assert(dir != 0); if (action == MOVE_ORIGIN || action == MOVE_ORIGIN_AND_SOURCE) { if (state->wrapping) { OFFSET(ui->org_x, ui->org_y, ui->org_x, ui->org_y, dir, state); } else return nullret; /* disallowed for non-wrapping grids */ } if (action == MOVE_SOURCE || action == MOVE_ORIGIN_AND_SOURCE) { OFFSET(ui->cx, ui->cy, ui->cx, ui->cy, dir, state); } if (action == MOVE_CURSOR) { OFFSET(ui->cur_x, ui->cur_y, ui->cur_x, ui->cur_y, dir, state); ui->cur_visible = TRUE; } return ""; } else { return NULL; } } static game_state *execute_move(const game_state *from, const char *move) { game_state *ret; int tx = -1, ty = -1, n, noanim, orig; ret = dup_game(from); if (move[0] == 'J' || move[0] == 'S') { if (move[0] == 'S') ret->used_solve = TRUE; move++; if (*move == ';') move++; noanim = TRUE; } else noanim = FALSE; ret->last_rotate_dir = 0; /* suppress animation */ ret->last_rotate_x = ret->last_rotate_y = 0; while (*move) { if ((move[0] == 'A' || move[0] == 'C' || move[0] == 'F' || move[0] == 'L') && sscanf(move+1, "%d,%d%n", &tx, &ty, &n) >= 2 && tx >= 0 && tx < from->width && ty >= 0 && ty < from->height) { orig = tile(ret, tx, ty); if (move[0] == 'A') { tile(ret, tx, ty) = A(orig); if (!noanim) ret->last_rotate_dir = +1; } else if (move[0] == 'F') { tile(ret, tx, ty) = F(orig); if (!noanim) ret->last_rotate_dir = +2; /* + for sake of argument */ } else if (move[0] == 'C') { tile(ret, tx, ty) = C(orig); if (!noanim) ret->last_rotate_dir = -1; } else { assert(move[0] == 'L'); tile(ret, tx, ty) ^= LOCKED; } move += 1 + n; if (*move == ';') move++; } else { free_game(ret); return NULL; } } if (!noanim) { if (tx == -1 || ty == -1) { free_game(ret); return NULL; } ret->last_rotate_x = tx; ret->last_rotate_y = ty; } /* * Check whether the game has been completed. * * For this purpose it doesn't matter where the source square * is, because we can start from anywhere and correctly * determine whether the game is completed. */ { unsigned char *active = compute_active(ret, 0, 0); int x1, y1; int complete = TRUE; for (x1 = 0; x1 < ret->width; x1++) for (y1 = 0; y1 < ret->height; y1++) if ((tile(ret, x1, y1) & 0xF) && !index(ret, active, x1, y1)) { complete = FALSE; goto break_label; /* break out of two loops at once */ } break_label: sfree(active); if (complete) ret->completed = TRUE; } return ret; } /* ---------------------------------------------------------------------- * Routines for drawing the game position on the screen. */ static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { game_drawstate *ds = snew(game_drawstate); int i; ds->started = FALSE; ds->width = state->width; ds->height = state->height; ds->org_x = ds->org_y = -1; ds->visible = snewn(state->width * state->height, int); ds->tilesize = 0; /* undecided yet */ for (i = 0; i < state->width * state->height; i++) ds->visible[i] = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->visible); sfree(ds); } static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { *x = WINDOW_OFFSET * 2 + tilesize * params->width + TILE_BORDER; *y = WINDOW_OFFSET * 2 + tilesize * params->height + TILE_BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret; ret = snewn(NCOLOURS * 3, float); *ncolours = NCOLOURS; /* * Basic background colour is whatever the front end thinks is * a sensible default. */ frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); /* * Wires are black. */ ret[COL_WIRE * 3 + 0] = 0.0F; ret[COL_WIRE * 3 + 1] = 0.0F; ret[COL_WIRE * 3 + 2] = 0.0F; /* * Powered wires and powered endpoints are cyan. */ ret[COL_POWERED * 3 + 0] = 0.0F; ret[COL_POWERED * 3 + 1] = 1.0F; ret[COL_POWERED * 3 + 2] = 1.0F; /* * Barriers are red. */ ret[COL_BARRIER * 3 + 0] = 1.0F; ret[COL_BARRIER * 3 + 1] = 0.0F; ret[COL_BARRIER * 3 + 2] = 0.0F; /* * Highlighted loops are red as well. */ ret[COL_LOOP * 3 + 0] = 1.0F; ret[COL_LOOP * 3 + 1] = 0.0F; ret[COL_LOOP * 3 + 2] = 0.0F; /* * Unpowered endpoints are blue. */ ret[COL_ENDPOINT * 3 + 0] = 0.0F; ret[COL_ENDPOINT * 3 + 1] = 0.0F; ret[COL_ENDPOINT * 3 + 2] = 1.0F; /* * Tile borders are a darker grey than the background. */ ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; /* * Locked tiles are a grey in between those two. */ ret[COL_LOCKED * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_LOCKED * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_LOCKED * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2]; return ret; } static void draw_filled_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) { draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE); draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE); draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE); draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE); draw_line(dr, x1, y1, x2, y2, colour); } static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2, int colour) { int mx = (x1 < x2 ? x1 : x2); int my = (y1 < y2 ? y1 : y2); int dx = (x2 + x1 - 2*mx + 1); int dy = (y2 + y1 - 2*my + 1); draw_rect(dr, mx, my, dx, dy, colour); } /* * draw_barrier_corner() and draw_barrier() are passed physical coords */ static void draw_barrier_corner(drawing *dr, game_drawstate *ds, int x, int y, int dx, int dy, int phase) { int bx = WINDOW_OFFSET + TILE_SIZE * x; int by = WINDOW_OFFSET + TILE_SIZE * y; int x1, y1; x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); if (phase == 0) { draw_rect_coords(dr, bx+x1+dx, by+y1, bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy, COL_WIRE); draw_rect_coords(dr, bx+x1, by+y1+dy, bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy, COL_WIRE); } else { draw_rect_coords(dr, bx+x1, by+y1, bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy, COL_BARRIER); } } static void draw_barrier(drawing *dr, game_drawstate *ds, int x, int y, int dir, int phase) { int bx = WINDOW_OFFSET + TILE_SIZE * x; int by = WINDOW_OFFSET + TILE_SIZE * y; int x1, y1, w, h; x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0); y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0); w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); if (phase == 0) { draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE); } else { draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER); } } /* * draw_tile() is passed physical coordinates */ static void draw_tile(drawing *dr, const game_state *state, game_drawstate *ds, int x, int y, int tile, int src, float angle, int cursor) { int bx = WINDOW_OFFSET + TILE_SIZE * x; int by = WINDOW_OFFSET + TILE_SIZE * y; float matrix[4]; float cx, cy, ex, ey, tx, ty; int dir, col, phase; /* * When we draw a single tile, we must draw everything up to * and including the borders around the tile. This means that * if the neighbouring tiles have connections to those borders, * we must draw those connections on the borders themselves. */ clip(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); /* * So. First blank the tile out completely: draw a big * rectangle in border colour, and a smaller rectangle in * background colour to fill it in. */ draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER, COL_BORDER); draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER, TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER, tile & LOCKED ? COL_LOCKED : COL_BACKGROUND); /* * Draw an inset outline rectangle as a cursor, in whichever of * COL_LOCKED and COL_BACKGROUND we aren't currently drawing * in. */ if (cursor) { draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE/8, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); draw_line(dr, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE/8, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); draw_line(dr, bx+TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, bx+TILE_SIZE-TILE_SIZE/8, by+TILE_SIZE-TILE_SIZE/8, tile & LOCKED ? COL_BACKGROUND : COL_LOCKED); } /* * Set up the rotation matrix. */ matrix[0] = (float)cos(angle * PI / 180.0); matrix[1] = (float)-sin(angle * PI / 180.0); matrix[2] = (float)sin(angle * PI / 180.0); matrix[3] = (float)cos(angle * PI / 180.0); /* * Draw the wires. */ cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F; col = (tile & ACTIVE ? COL_POWERED : COL_WIRE); for (dir = 1; dir < 0x10; dir <<= 1) { if (tile & dir) { ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); MATMUL(tx, ty, matrix, ex, ey); draw_filled_line(dr, bx+(int)cx, by+(int)cy, bx+(int)(cx+tx), by+(int)(cy+ty), COL_WIRE); } } for (dir = 1; dir < 0x10; dir <<= 1) { if (tile & dir) { ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); MATMUL(tx, ty, matrix, ex, ey); draw_line(dr, bx+(int)cx, by+(int)cy, bx+(int)(cx+tx), by+(int)(cy+ty), (tile & LOOP(dir)) ? COL_LOOP : col); } } /* If we've drawn any loop-highlighted arms, make sure the centre * point is loop-coloured rather than a later arm overwriting it. */ if (tile & (RLOOP | ULOOP | LLOOP | DLOOP)) draw_rect(dr, bx+(int)cx, by+(int)cy, 1, 1, COL_LOOP); /* * Draw the box in the middle. We do this in blue if the tile * is an unpowered endpoint, in cyan if the tile is a powered * endpoint, in black if the tile is the centrepiece, and * otherwise not at all. */ col = -1; if (src) col = COL_WIRE; else if (COUNT(tile) == 1) { col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT); } if (col >= 0) { int i, points[8]; points[0] = +1; points[1] = +1; points[2] = +1; points[3] = -1; points[4] = -1; points[5] = -1; points[6] = -1; points[7] = +1; for (i = 0; i < 8; i += 2) { ex = (TILE_SIZE * 0.24F) * points[i]; ey = (TILE_SIZE * 0.24F) * points[i+1]; MATMUL(tx, ty, matrix, ex, ey); points[i] = bx+(int)(cx+tx); points[i+1] = by+(int)(cy+ty); } draw_polygon(dr, points, 4, col, COL_WIRE); } /* * Draw the points on the border if other tiles are connected * to us. */ for (dir = 1; dir < 0x10; dir <<= 1) { int dx, dy, px, py, lx, ly, vx, vy, ox, oy; dx = X(dir); dy = Y(dir); ox = x + dx; oy = y + dy; if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height) continue; if (!(tile(state, GX(ox), GY(oy)) & F(dir))) continue; px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx); py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy); lx = dx * (TILE_BORDER-1); ly = dy * (TILE_BORDER-1); vx = (dy ? 1 : 0); vy = (dx ? 1 : 0); if (angle == 0.0 && (tile & dir)) { /* * If we are fully connected to the other tile, we must * draw right across the tile border. (We can use our * own ACTIVE state to determine what colour to do this * in: if we are fully connected to the other tile then * the two ACTIVE states will be the same.) */ draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE); draw_rect_coords(dr, px, py, px+lx, py+ly, ((tile & LOOP(dir)) ? COL_LOOP : (tile & ACTIVE) ? COL_POWERED : COL_WIRE)); } else { /* * The other tile extends into our border, but isn't * actually connected to us. Just draw a single black * dot. */ draw_rect_coords(dr, px, py, px, py, COL_WIRE); } } /* * Draw barrier corners, and then barriers. */ for (phase = 0; phase < 2; phase++) { for (dir = 1; dir < 0x10; dir <<= 1) { int x1, y1, corner = FALSE; /* * If at least one barrier terminates at the corner * between dir and A(dir), draw a barrier corner. */ if (barrier(state, GX(x), GY(y)) & (dir | A(dir))) { corner = TRUE; } else { /* * Only count barriers terminating at this corner * if they're physically next to the corner. (That * is, if they've wrapped round from the far side * of the screen, they don't count.) */ x1 = x + X(dir); y1 = y + Y(dir); if (x1 >= 0 && x1 < state->width && y1 >= 0 && y1 < state->height && (barrier(state, GX(x1), GY(y1)) & A(dir))) { corner = TRUE; } else { x1 = x + X(A(dir)); y1 = y + Y(A(dir)); if (x1 >= 0 && x1 < state->width && y1 >= 0 && y1 < state->height && (barrier(state, GX(x1), GY(y1)) & dir)) corner = TRUE; } } if (corner) { /* * At least one barrier terminates here. Draw a * corner. */ draw_barrier_corner(dr, ds, x, y, X(dir)+X(A(dir)), Y(dir)+Y(A(dir)), phase); } } for (dir = 1; dir < 0x10; dir <<= 1) if (barrier(state, GX(x), GY(y)) & dir) draw_barrier(dr, ds, x, y, dir, phase); } unclip(dr); draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float t, float ft) { int x, y, tx, ty, frame, last_rotate_dir, moved_origin = FALSE; unsigned char *active; int *loops; float angle = 0.0; /* * Clear the screen, and draw the exterior barrier lines, if * this is our first call or if the origin has changed. */ if (!ds->started || ui->org_x != ds->org_x || ui->org_y != ds->org_y) { int phase; ds->started = TRUE; draw_rect(dr, 0, 0, WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER, WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER, COL_BACKGROUND); ds->org_x = ui->org_x; ds->org_y = ui->org_y; moved_origin = TRUE; draw_update(dr, 0, 0, WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER, WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER); for (phase = 0; phase < 2; phase++) { for (x = 0; x < ds->width; x++) { if (x+1 < ds->width) { if (barrier(state, GX(x), GY(0)) & R) draw_barrier_corner(dr, ds, x, -1, +1, +1, phase); if (barrier(state, GX(x), GY(ds->height-1)) & R) draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase); } if (barrier(state, GX(x), GY(0)) & U) { draw_barrier_corner(dr, ds, x, -1, -1, +1, phase); draw_barrier_corner(dr, ds, x, -1, +1, +1, phase); draw_barrier(dr, ds, x, -1, D, phase); } if (barrier(state, GX(x), GY(ds->height-1)) & D) { draw_barrier_corner(dr, ds, x, ds->height, -1, -1, phase); draw_barrier_corner(dr, ds, x, ds->height, +1, -1, phase); draw_barrier(dr, ds, x, ds->height, U, phase); } } for (y = 0; y < ds->height; y++) { if (y+1 < ds->height) { if (barrier(state, GX(0), GY(y)) & D) draw_barrier_corner(dr, ds, -1, y, +1, +1, phase); if (barrier(state, GX(ds->width-1), GY(y)) & D) draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase); } if (barrier(state, GX(0), GY(y)) & L) { draw_barrier_corner(dr, ds, -1, y, +1, -1, phase); draw_barrier_corner(dr, ds, -1, y, +1, +1, phase); draw_barrier(dr, ds, -1, y, R, phase); } if (barrier(state, GX(ds->width-1), GY(y)) & R) { draw_barrier_corner(dr, ds, ds->width, y, -1, -1, phase); draw_barrier_corner(dr, ds, ds->width, y, -1, +1, phase); draw_barrier(dr, ds, ds->width, y, L, phase); } } } } tx = ty = -1; last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir : state->last_rotate_dir; if (oldstate && (t < ROTATE_TIME) && last_rotate_dir) { /* * We're animating a single tile rotation. Find the turning * tile. */ tx = (dir==-1 ? oldstate->last_rotate_x : state->last_rotate_x); ty = (dir==-1 ? oldstate->last_rotate_y : state->last_rotate_y); angle = last_rotate_dir * dir * 90.0F * (t / ROTATE_TIME); state = oldstate; } frame = -1; if (ft > 0) { /* * We're animating a completion flash. Find which frame * we're at. */ frame = (int)(ft / FLASH_FRAME); } /* * Draw any tile which differs from the way it was last drawn. */ active = compute_active(state, ui->cx, ui->cy); loops = compute_loops(state); for (x = 0; x < ds->width; x++) for (y = 0; y < ds->height; y++) { int c = tile(state, GX(x), GY(y)) | index(state, active, GX(x), GY(y)) | index(state, loops, GX(x), GY(y)); int is_src = GX(x) == ui->cx && GY(y) == ui->cy; int is_anim = GX(x) == tx && GY(y) == ty; int is_cursor = ui->cur_visible && GX(x) == ui->cur_x && GY(y) == ui->cur_y; /* * In a completion flash, we adjust the LOCKED bit * depending on our distance from the centre point and * the frame number. */ if (frame >= 0) { int rcx = RX(ui->cx), rcy = RY(ui->cy); int xdist, ydist, dist; xdist = (x < rcx ? rcx - x : x - rcx); ydist = (y < rcy ? rcy - y : y - rcy); dist = (xdist > ydist ? xdist : ydist); if (frame >= dist && frame < dist+4) { int lock = (frame - dist) & 1; lock = lock ? LOCKED : 0; c = (c &~ LOCKED) | lock; } } if (moved_origin || index(state, ds->visible, x, y) != c || index(state, ds->visible, x, y) == -1 || is_src || is_anim || is_cursor) { draw_tile(dr, state, ds, x, y, c, is_src, (is_anim ? angle : 0.0F), is_cursor); if (is_src || is_anim || is_cursor) index(state, ds->visible, x, y) = -1; else index(state, ds->visible, x, y) = c; } } /* * Update the status bar. */ { char statusbuf[256]; int i, n, n2, a; n = state->width * state->height; for (i = a = n2 = 0; i < n; i++) { if (active[i]) a++; if (state->tiles[i] & 0xF) n2++; } sprintf(statusbuf, "%sActive: %d/%d", (state->used_solve ? "Auto-solved. " : state->completed ? "COMPLETED! " : ""), a, n2); status_bar(dr, statusbuf); } sfree(active); sfree(loops); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { int last_rotate_dir; /* * Don't animate if last_rotate_dir is zero. */ last_rotate_dir = dir==-1 ? oldstate->last_rotate_dir : newstate->last_rotate_dir; if (last_rotate_dir) return ROTATE_TIME; return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { /* * If the game has just been completed, we display a completion * flash. */ if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) { int size = 0; if (size < newstate->width) size = newstate->width; if (size < newstate->height) size = newstate->height; return FLASH_FRAME * (size+4); } return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static int game_timing_state(const game_state *state, game_ui *ui) { return TRUE; } static void game_print_size(const game_params *params, float *x, float *y) { int pw, ph; /* * I'll use 8mm squares by default. */ game_compute_size(params, 800, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void draw_diagram(drawing *dr, game_drawstate *ds, int x, int y, int topleft, int v, int drawlines, int ink) { int tx, ty, cx, cy, r, br, k, thick; tx = WINDOW_OFFSET + TILE_SIZE * x; ty = WINDOW_OFFSET + TILE_SIZE * y; /* * Find our centre point. */ if (topleft) { cx = tx + (v & L ? TILE_SIZE / 4 : TILE_SIZE / 6); cy = ty + (v & U ? TILE_SIZE / 4 : TILE_SIZE / 6); r = TILE_SIZE / 8; br = TILE_SIZE / 32; } else { cx = tx + TILE_SIZE / 2; cy = ty + TILE_SIZE / 2; r = TILE_SIZE / 2; br = TILE_SIZE / 8; } thick = r / 20; /* * Draw the square block if we have an endpoint. */ if (v == 1 || v == 2 || v == 4 || v == 8) draw_rect(dr, cx - br, cy - br, br*2, br*2, ink); /* * Draw each radial line. */ if (drawlines) { for (k = 1; k < 16; k *= 2) if (v & k) { int x1 = min(cx, cx + (r-thick) * X(k)); int x2 = max(cx, cx + (r-thick) * X(k)); int y1 = min(cy, cy + (r-thick) * Y(k)); int y2 = max(cy, cy + (r-thick) * Y(k)); draw_rect(dr, x1 - thick, y1 - thick, (x2 - x1) + 2*thick, (y2 - y1) + 2*thick, ink); } } } static void game_print(drawing *dr, const game_state *state, int tilesize) { int w = state->width, h = state->height; int ink = print_mono_colour(dr, 0); int x, y; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); /* * Border. */ print_line_width(dr, TILE_SIZE / (state->wrapping ? 128 : 12)); draw_rect_outline(dr, WINDOW_OFFSET, WINDOW_OFFSET, TILE_SIZE * w, TILE_SIZE * h, ink); /* * Grid. */ print_line_width(dr, TILE_SIZE / 128); for (x = 1; x < w; x++) draw_line(dr, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * x, WINDOW_OFFSET + TILE_SIZE * h, ink); for (y = 1; y < h; y++) draw_line(dr, WINDOW_OFFSET, WINDOW_OFFSET + TILE_SIZE * y, WINDOW_OFFSET + TILE_SIZE * w, WINDOW_OFFSET + TILE_SIZE * y, ink); /* * Barriers. */ for (y = 0; y <= h; y++) for (x = 0; x <= w; x++) { int b = barrier(state, x % w, y % h); if (x < w && (b & U)) draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24, WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24, TILE_SIZE + TILE_SIZE/24 * 2, TILE_SIZE/24 * 2, ink); if (y < h && (b & L)) draw_rect(dr, WINDOW_OFFSET + TILE_SIZE * x - TILE_SIZE/24, WINDOW_OFFSET + TILE_SIZE * y - TILE_SIZE/24, TILE_SIZE/24 * 2, TILE_SIZE + TILE_SIZE/24 * 2, ink); } /* * Grid contents. */ for (y = 0; y < h; y++) for (x = 0; x < w; x++) { int vx, v = tile(state, x, y); int locked = v & LOCKED; v &= 0xF; /* * Rotate into a standard orientation for the top left * corner diagram. */ vx = v; while (vx != 0 && vx != 15 && vx != 1 && vx != 9 && vx != 13 && vx != 5) vx = A(vx); /* * Draw the top left corner diagram. */ draw_diagram(dr, ds, x, y, TRUE, vx, TRUE, ink); /* * Draw the real solution diagram, if we're doing so. */ draw_diagram(dr, ds, x, y, FALSE, v, locked, ink); } } #ifdef COMBINED #define thegame net #endif const struct game thegame = { "Net", "games.net", "net", default_params, game_fetch_preset, decode_params, encode_params, free_params, dup_params, TRUE, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, TRUE, solve_game, FALSE, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_status, TRUE, FALSE, game_print_size, game_print, TRUE, /* wants_statusbar */ FALSE, game_timing_state, 0, /* flags */ };