ref: 6a9a0cd8f6ee83e6fbd3424c337bacfb8e90502a
dir: /misc.c/
/* * misc.c: Miscellaneous helpful functions. */ #include <assert.h> #include <ctype.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include <stdlib.h> #include <string.h> #include <stdio.h> #include "puzzles.h" char MOVE_UI_UPDATE[] = ""; char MOVE_NO_EFFECT[] = ""; char MOVE_UNUSED[] = ""; void free_cfg(config_item *cfg) { config_item *i; for (i = cfg; i->type != C_END; i++) if (i->type == C_STRING) sfree(i->u.string.sval); sfree(cfg); } void free_keys(key_label *keys, int nkeys) { int i; for(i = 0; i < nkeys; i++) sfree(keys[i].label); sfree(keys); } /* * The Mines (among others) game descriptions contain the location of every * mine, and can therefore be used to cheat. * * It would be pointless to attempt to _prevent_ this form of * cheating by encrypting the description, since Mines is * open-source so anyone can find out the encryption key. However, * I think it is worth doing a bit of gentle obfuscation to prevent * _accidental_ spoilers: if you happened to note that the game ID * starts with an F, for example, you might be unable to put the * knowledge of those mines out of your mind while playing. So, * just as discussions of film endings are rot13ed to avoid * spoiling it for people who don't want to be told, we apply a * keyless, reversible, but visually completely obfuscatory masking * function to the mine bitmap. */ void obfuscate_bitmap(unsigned char *bmp, int bits, bool decode) { int bytes, firsthalf, secondhalf; struct step { unsigned char *seedstart; int seedlen; unsigned char *targetstart; int targetlen; } steps[2]; int i, j; /* * My obfuscation algorithm is similar in concept to the OAEP * encoding used in some forms of RSA. Here's a specification * of it: * * + We have a `masking function' which constructs a stream of * pseudorandom bytes from a seed of some number of input * bytes. * * + We pad out our input bit stream to a whole number of * bytes by adding up to 7 zero bits on the end. (In fact * the bitmap passed as input to this function will already * have had this done in practice.) * * + We divide the _byte_ stream exactly in half, rounding the * half-way position _down_. So an 81-bit input string, for * example, rounds up to 88 bits or 11 bytes, and then * dividing by two gives 5 bytes in the first half and 6 in * the second half. * * + We generate a mask from the second half of the bytes, and * XOR it over the first half. * * + We generate a mask from the (encoded) first half of the * bytes, and XOR it over the second half. Any null bits at * the end which were added as padding are cleared back to * zero even if this operation would have made them nonzero. * * To de-obfuscate, the steps are precisely the same except * that the final two are reversed. * * Finally, our masking function. Given an input seed string of * bytes, the output mask consists of concatenating the SHA-1 * hashes of the seed string and successive decimal integers, * starting from 0. */ bytes = (bits + 7) / 8; firsthalf = bytes / 2; secondhalf = bytes - firsthalf; steps[decode ? 1 : 0].seedstart = bmp + firsthalf; steps[decode ? 1 : 0].seedlen = secondhalf; steps[decode ? 1 : 0].targetstart = bmp; steps[decode ? 1 : 0].targetlen = firsthalf; steps[decode ? 0 : 1].seedstart = bmp; steps[decode ? 0 : 1].seedlen = firsthalf; steps[decode ? 0 : 1].targetstart = bmp + firsthalf; steps[decode ? 0 : 1].targetlen = secondhalf; for (i = 0; i < 2; i++) { SHA_State base, final; unsigned char digest[20]; char numberbuf[80]; int digestpos = 20, counter = 0; SHA_Init(&base); SHA_Bytes(&base, steps[i].seedstart, steps[i].seedlen); for (j = 0; j < steps[i].targetlen; j++) { if (digestpos >= 20) { sprintf(numberbuf, "%d", counter++); final = base; SHA_Bytes(&final, numberbuf, strlen(numberbuf)); SHA_Final(&final, digest); digestpos = 0; } steps[i].targetstart[j] ^= digest[digestpos++]; } /* * Mask off the pad bits in the final byte after both steps. */ if (bits % 8) bmp[bits / 8] &= 0xFF & (0xFF00 >> (bits % 8)); } } /* err, yeah, these two pretty much rely on unsigned char being 8 bits. * Platforms where this is not the case probably have bigger problems * than just making these two work, though... */ char *bin2hex(const unsigned char *in, int inlen) { char *ret = snewn(inlen*2 + 1, char), *p = ret; int i; for (i = 0; i < inlen*2; i++) { int v = in[i/2]; if (i % 2 == 0) v >>= 4; *p++ = "0123456789abcdef"[v & 0xF]; } *p = '\0'; return ret; } unsigned char *hex2bin(const char *in, int outlen) { unsigned char *ret = snewn(outlen, unsigned char); int i; memset(ret, 0, outlen*sizeof(unsigned char)); for (i = 0; i < outlen*2; i++) { int c = in[i]; int v; assert(c != 0); if (c >= '0' && c <= '9') v = c - '0'; else if (c >= 'a' && c <= 'f') v = c - 'a' + 10; else if (c >= 'A' && c <= 'F') v = c - 'A' + 10; else v = 0; ret[i / 2] |= v << (4 * (1 - (i % 2))); } return ret; } char *fgetline(FILE *fp) { char *ret = snewn(512, char); int size = 512, len = 0; while (fgets(ret + len, size - len, fp)) { len += strlen(ret + len); if (ret[len-1] == '\n') break; /* got a newline, we're done */ size = len + 512; ret = sresize(ret, size, char); } if (len == 0) { /* first fgets returned NULL */ sfree(ret); return NULL; } ret[len] = '\0'; return ret; } int getenv_bool(const char *name, int dflt) { char *env = getenv(name); if (env == NULL) return dflt; if (strchr("yYtT", env[0])) return true; return false; } /* Utility functions for colour manipulation. */ static float colour_distance(const float a[3], const float b[3]) { return (float)sqrt((a[0]-b[0]) * (a[0]-b[0]) + (a[1]-b[1]) * (a[1]-b[1]) + (a[2]-b[2]) * (a[2]-b[2])); } void colour_mix(const float src1[3], const float src2[3], float p, float dst[3]) { int i; for (i = 0; i < 3; i++) dst[i] = src1[i] * (1.0F - p) + src2[i] * p; } void game_mkhighlight_specific(frontend *fe, float *ret, int background, int highlight, int lowlight) { static const float black[3] = { 0.0F, 0.0F, 0.0F }; static const float white[3] = { 1.0F, 1.0F, 1.0F }; float db, dw; int i; /* * New geometric highlight-generation algorithm: Draw a line from * the base colour to white. The point K distance along this line * from the base colour is the highlight colour. Similarly, draw * a line from the base colour to black. The point on this line * at a distance K from the base colour is the shadow. If either * of these colours is imaginary (for reasonable K at most one * will be), _extrapolate_ the base colour along the same line * until it's a distance K from white (or black) and start again * with that as the base colour. * * This preserves the hue of the base colour, ensures that of the * three the base colour is the most saturated, and only ever * flattens the highlight and shadow to pure white or pure black. * * K must be at most sqrt(3)/2, or mid grey would be too close to * both white and black. Here K is set to sqrt(3)/6 so that this * code produces the same results as the former code in the common * case where the background is grey and the highlight saturates * to white. */ const float k = sqrt(3)/6.0F; if (lowlight >= 0) { db = colour_distance(&ret[background*3], black); if (db < k) { for (i = 0; i < 3; i++) ret[lowlight*3+i] = black[i]; if (db == 0.0F) colour_mix(black, white, k/sqrt(3), &ret[background*3]); else colour_mix(black, &ret[background*3], k/db, &ret[background*3]); } else { colour_mix(&ret[background*3], black, k/db, &ret[lowlight*3]); } } if (highlight >= 0) { dw = colour_distance(&ret[background*3], white); if (dw < k) { for (i = 0; i < 3; i++) ret[highlight*3+i] = white[i]; if (dw == 0.0F) colour_mix(white, black, k/sqrt(3), &ret[background*3]); else colour_mix(white, &ret[background*3], k/dw, &ret[background*3]); /* Background has changed; recalculate lowlight. */ if (lowlight >= 0) colour_mix(&ret[background*3], black, k/db, &ret[lowlight*3]); } else { colour_mix(&ret[background*3], white, k/dw, &ret[highlight*3]); } } } void game_mkhighlight(frontend *fe, float *ret, int background, int highlight, int lowlight) { frontend_default_colour(fe, &ret[background * 3]); game_mkhighlight_specific(fe, ret, background, highlight, lowlight); } static void memswap(void *av, void *bv, int size) { char tmpbuf[512]; char *a = av, *b = bv; while (size > 0) { int thislen = min(size, sizeof(tmpbuf)); memcpy(tmpbuf, a, thislen); memcpy(a, b, thislen); memcpy(b, tmpbuf, thislen); a += thislen; b += thislen; size -= thislen; } } void shuffle(void *array, int nelts, int eltsize, random_state *rs) { char *carray = (char *)array; int i; for (i = nelts; i-- > 1 ;) { int j = random_upto(rs, i+1); if (j != i) memswap(carray + eltsize * i, carray + eltsize * j, eltsize); } } void draw_rect_outline(drawing *dr, int x, int y, int w, int h, int colour) { int x0 = x, x1 = x+w-1, y0 = y, y1 = y+h-1; int coords[8]; coords[0] = x0; coords[1] = y0; coords[2] = x0; coords[3] = y1; coords[4] = x1; coords[5] = y1; coords[6] = x1; coords[7] = y0; draw_polygon(dr, coords, 4, -1, colour); } void draw_rect_corners(drawing *dr, int cx, int cy, int r, int col) { draw_line(dr, cx - r, cy - r, cx - r, cy - r/2, col); draw_line(dr, cx - r, cy - r, cx - r/2, cy - r, col); draw_line(dr, cx - r, cy + r, cx - r, cy + r/2, col); draw_line(dr, cx - r, cy + r, cx - r/2, cy + r, col); draw_line(dr, cx + r, cy - r, cx + r, cy - r/2, col); draw_line(dr, cx + r, cy - r, cx + r/2, cy - r, col); draw_line(dr, cx + r, cy + r, cx + r, cy + r/2, col); draw_line(dr, cx + r, cy + r, cx + r/2, cy + r, col); } char *move_cursor(int button, int *x, int *y, int maxw, int maxh, bool wrap, bool *visible) { int dx = 0, dy = 0, ox = *x, oy = *y; switch (button) { case CURSOR_UP: dy = -1; break; case CURSOR_DOWN: dy = 1; break; case CURSOR_RIGHT: dx = 1; break; case CURSOR_LEFT: dx = -1; break; default: return MOVE_UNUSED; } if (wrap) { *x = (*x + dx + maxw) % maxw; *y = (*y + dy + maxh) % maxh; } else { *x = min(max(*x+dx, 0), maxw - 1); *y = min(max(*y+dy, 0), maxh - 1); } if (visible != NULL && !*visible) { *visible = true; return MOVE_UI_UPDATE; } if (*x != ox || *y != oy) return MOVE_UI_UPDATE; return MOVE_NO_EFFECT; } /* Used in netslide.c and sixteen.c for cursor movement around edge. */ int c2pos(int w, int h, int cx, int cy) { if (cy == -1) return cx; /* top row, 0 .. w-1 (->) */ else if (cx == w) return w + cy; /* R col, w .. w+h -1 (v) */ else if (cy == h) return w + h + (w-cx-1); /* bottom row, w+h .. w+h+w-1 (<-) */ else if (cx == -1) return w + h + w + (h-cy-1); /* L col, w+h+w .. w+h+w+h-1 (^) */ assert(!"invalid cursor pos!"); return -1; /* not reached */ } int c2diff(int w, int h, int cx, int cy, int button) { int diff = 0; assert(IS_CURSOR_MOVE(button)); /* Obvious moves around edge. */ if (cy == -1) diff = (button == CURSOR_RIGHT) ? +1 : (button == CURSOR_LEFT) ? -1 : diff; if (cy == h) diff = (button == CURSOR_RIGHT) ? -1 : (button == CURSOR_LEFT) ? +1 : diff; if (cx == -1) diff = (button == CURSOR_UP) ? +1 : (button == CURSOR_DOWN) ? -1 : diff; if (cx == w) diff = (button == CURSOR_UP) ? -1 : (button == CURSOR_DOWN) ? +1 : diff; if (button == CURSOR_LEFT && cx == w && (cy == 0 || cy == h-1)) diff = (cy == 0) ? -1 : +1; if (button == CURSOR_RIGHT && cx == -1 && (cy == 0 || cy == h-1)) diff = (cy == 0) ? +1 : -1; if (button == CURSOR_DOWN && cy == -1 && (cx == 0 || cx == w-1)) diff = (cx == 0) ? -1 : +1; if (button == CURSOR_UP && cy == h && (cx == 0 || cx == w-1)) diff = (cx == 0) ? +1 : -1; debug(("cx,cy = %d,%d; w%d h%d, diff = %d", cx, cy, w, h, diff)); return diff; } void pos2c(int w, int h, int pos, int *cx, int *cy) { int max = w+h+w+h; pos = (pos + max) % max; if (pos < w) { *cx = pos; *cy = -1; return; } pos -= w; if (pos < h) { *cx = w; *cy = pos; return; } pos -= h; if (pos < w) { *cx = w-pos-1; *cy = h; return; } pos -= w; if (pos < h) { *cx = -1; *cy = h-pos-1; return; } assert(!"invalid pos, huh?"); /* limited by % above! */ } void draw_text_outline(drawing *dr, int x, int y, int fonttype, int fontsize, int align, int text_colour, int outline_colour, const char *text) { if (outline_colour > -1) { draw_text(dr, x-1, y, fonttype, fontsize, align, outline_colour, text); draw_text(dr, x+1, y, fonttype, fontsize, align, outline_colour, text); draw_text(dr, x, y-1, fonttype, fontsize, align, outline_colour, text); draw_text(dr, x, y+1, fonttype, fontsize, align, outline_colour, text); } draw_text(dr, x, y, fonttype, fontsize, align, text_colour, text); } /* kludge for sprintf() in Rockbox not supporting "%-8.8s" */ void copy_left_justified(char *buf, size_t sz, const char *str) { size_t len = strlen(str); assert(sz > 0); memset(buf, ' ', sz - 1); assert(len <= sz - 1); memcpy(buf, str, len); buf[sz - 1] = 0; } /* Returns a dynamically allocated label for a generic button. * Game-specific buttons should go into the `label' field of key_label * instead. */ char *button2label(int button) { /* check if it's a keyboard button */ if(('A' <= button && button <= 'Z') || ('a' <= button && button <= 'z') || ('0' <= button && button <= '9') ) { char str[2]; str[0] = button; str[1] = '\0'; return dupstr(str); } switch(button) { case CURSOR_UP: return dupstr("Up"); case CURSOR_DOWN: return dupstr("Down"); case CURSOR_LEFT: return dupstr("Left"); case CURSOR_RIGHT: return dupstr("Right"); case CURSOR_SELECT: return dupstr("Select"); case '\b': return dupstr("Clear"); default: fatal("unknown generic key"); } /* should never get here */ return NULL; } char *make_prefs_path(const char *dir, const char *sep, const game *game, const char *suffix) { size_t dirlen = strlen(dir); size_t seplen = strlen(sep); size_t gamelen = strlen(game->name); size_t suffixlen = strlen(suffix); char *path, *p; const char *q; if (!dir || !sep || !game || !suffix) return NULL; path = snewn(dirlen + seplen + gamelen + suffixlen + 1, char); p = path; memcpy(p, dir, dirlen); p += dirlen; memcpy(p, sep, seplen); p += seplen; for (q = game->name; *q; q++) if (*q != ' ') *p++ = tolower((unsigned char)*q); memcpy(p, suffix, suffixlen); p += suffixlen; *p = '\0'; return path; } /* * Calculate the nearest integer to n*sqrt(k), via a bitwise algorithm * that avoids floating point. * * (It would probably be OK in practice to use floating point, but I * felt like overengineering it for fun. With FP, there's at least a * theoretical risk of rounding the wrong way, due to the three * successive roundings involved - rounding sqrt(k), rounding its * product with n, and then rounding to the nearest integer. This * approach avoids that: it's exact.) */ int n_times_root_k(int n_signed, int k) { unsigned x, r, m; int sign = n_signed < 0 ? -1 : +1; unsigned n = n_signed * sign; unsigned bitpos; /* * Method: * * We transform m gradually from zero into n, by multiplying it by * 2 in each step and optionally adding 1, so that it's always * floor(n/2^something). * * At the start of each step, x is the largest integer less than * or equal to m*sqrt(k). We transform m to 2m+bit, and therefore * we must transform x to 2x+something to match. The 'something' * we add to 2x is at most floor(sqrt(k))+2. (Worst case is if m * sqrt(k) was equal to x + 1-eps for some tiny eps, and then the * incoming bit of m is 1, so that (2m+1)sqrt(k) = * 2x+2+sqrt(k)-2eps.) * * To compute this, we also track the residual value r such that * x^2+r = km^2. * * The algorithm below is very similar to the usual approach for * taking the square root of an integer in binary. The wrinkle is * that we have an integer multiplier, i.e. we're computing * n*sqrt(k) rather than just sqrt(k). Of course in principle we * could just take sqrt(n^2k), but we'd need an integer twice the * width to hold n^2. Pulling out n and treating it specially * makes overflow less likely. */ x = r = m = 0; for (bitpos = UINT_MAX & ~(UINT_MAX >> 1); bitpos; bitpos >>= 1) { unsigned a, b = (n & bitpos) ? 1 : 0; /* * Check invariants. We expect that x^2 + r = km^2 (i.e. our * residual term is correct), and also that r < 2x+1 (because * if not, then we could replace x with x+1 and still get a * value that made r non-negative, i.e. x would not be the * _largest_ integer less than m sqrt(k)). */ assert(x*x + r == k*m*m); assert(r < 2*x+1); /* * We're going to replace m with 2m+b, and x with 2x+a for * some a we haven't decided on yet. * * The new value of the residual will therefore be * * k (2m+b)^2 - (2x+a)^2 * = (4km^2 + 4kmb + kb^2) - (4x^2 + 4xa + a^2) * = 4 (km^2 - x^2) + 4kmb + kb^2 - 4xa - a^2 * = 4r + 4kmb + kb^2 - 4xa - a^2 (because r = km^2 - x^2) * = 4r + (4m + 1)kb - 4xa - a^2 (b is 0 or 1, so b = b^2) */ for (a = 0;; a++) { /* If we made this routine handle square roots of numbers * significantly bigger than 3 or 5 then it would be * sensible to make this a binary search. Here, it hardly * seems important. */ unsigned pos = 4*r + k*b*(4*m + 1); unsigned neg = 4*a*x + a*a; if (pos < neg) break; /* this value of a is too big */ } /* The above loop will have terminated with a one too big. So * now decrementing a will give us the right value to add. */ a--; r = 4*r + b*k*(4*m + 1) - (4*a*x + a*a); m = 2*m+b; x = 2*x+a; } /* * Finally, round to the nearest integer. At present, x is the * largest integer that is _at most_ m sqrt(k). But we want the * _nearest_ integer, whether that's rounded up or down. So check * whether (x + 1/2) is still less than m sqrt(k), i.e. whether * (x + 1/2)^2 < km^2; if it is, then we increment x. * * We have km^2 - (x + 1/2)^2 = km^2 - x^2 - x - 1/4 * = r - x - 1/4 * * and since r and x are integers, this is greater than 0 if and * only if r > x. * * (There's no need to worry about tie-breaking exact halfway * rounding cases. sqrt(k) is irrational, so none such exist.) */ if (r > x) x++; /* * Put the sign back on, and convert back from unsigned to int. */ if (sign == +1) { return x; } else { /* Be a little careful to avoid compilers deciding I've just * perpetrated signed-integer overflow. This should optimise * down to no actual code. */ return INT_MIN + (int)(-x - (unsigned)INT_MIN); } } /* vim: set shiftwidth=4 tabstop=8: */