ref: 6a9a0cd8f6ee83e6fbd3424c337bacfb8e90502a
dir: /untangle.c/
/* * untangle.c: Game about planar graphs. You are given a graph * represented by points and straight lines, with some lines * crossing; your task is to drag the points into a configuration * where none of the lines cross. * * Cloned from a Flash game called `Planarity', by John Tantalo. * <http://home.cwru.edu/~jnt5/Planarity> at the time of writing * this. The Flash game had a fixed set of levels; my added value, * as usual, is automatic generation of random games to order. */ /* * TODO: * * - This puzzle, perhaps uniquely among the collection, could use * support for non-aspect-ratio-preserving resizes. This would * require some sort of fairly large redesign, unfortunately (since * it would invalidate the basic assumption that puzzles' size * requirements are adequately expressed by a single scalar tile * size), and probably complicate the rest of the puzzles' API as a * result. So I'm not sure I really want to do it. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <limits.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #if HAVE_STDINT_H # include <stdint.h> #endif #include "puzzles.h" #include "tree234.h" #define CIRCLE_RADIUS 6 #define DRAG_THRESHOLD (CIRCLE_RADIUS * 2) #define PREFERRED_TILESIZE 64 #define FLASH_TIME 0.30F #define ANIM_TIME 0.13F #define SOLVEANIM_TIME 0.50F enum { COL_SYSBACKGROUND, COL_BACKGROUND, COL_LINE, #ifdef SHOW_CROSSINGS COL_CROSSEDLINE, #endif COL_OUTLINE, COL_POINT, COL_DRAGPOINT, COL_NEIGHBOUR, COL_FLASH1, COL_FLASH2, NCOLOURS }; typedef struct point { /* * Points are stored using rational coordinates, with the same * denominator for both coordinates. */ long x, y, d; } point; typedef struct edge { /* * This structure is implicitly associated with a particular * point set, so all it has to do is to store two point * indices. It is required to store them in the order (lower, * higher), i.e. a < b always. */ int a, b; } edge; struct game_params { int n; /* number of points */ }; struct graph { int refcount; /* for deallocation */ tree234 *edges; /* stores `edge' structures */ }; struct game_state { game_params params; int w, h; /* extent of coordinate system only */ point *pts; #ifdef SHOW_CROSSINGS int *crosses; /* mark edges which are crossed */ #endif struct graph *graph; bool completed, cheated, just_solved; }; static int edgecmpC(const void *av, const void *bv) { const edge *a = (const edge *)av; const edge *b = (const edge *)bv; if (a->a < b->a) return -1; else if (a->a > b->a) return +1; else if (a->b < b->b) return -1; else if (a->b > b->b) return +1; return 0; } static int edgecmp(void *av, void *bv) { return edgecmpC(av, bv); } static game_params *default_params(void) { game_params *ret = snew(game_params); ret->n = 10; return ret; } static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; int n; char buf[80]; switch (i) { case 0: n = 6; break; case 1: n = 10; break; case 2: n = 15; break; case 3: n = 20; break; case 4: n = 25; break; default: return false; } sprintf(buf, "%d points", n); *name = dupstr(buf); *params = ret = snew(game_params); ret->n = n; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *params, char const *string) { params->n = atoi(string); } static char *encode_params(const game_params *params, bool full) { char buf[80]; sprintf(buf, "%d", params->n); return dupstr(buf); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Number of points"; ret[0].type = C_STRING; sprintf(buf, "%d", params->n); ret[0].u.string.sval = dupstr(buf); ret[1].name = NULL; ret[1].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->n = atoi(cfg[0].u.string.sval); return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->n < 4) return "Number of points must be at least four"; if (params->n > INT_MAX / 3) return "Number of points must not be unreasonably large"; return NULL; } /* ---------------------------------------------------------------------- * Small number of 64-bit integer arithmetic operations, to prevent * integer overflow at the very core of cross(). */ #if !HAVE_STDINT_H /* For prehistoric C implementations, do this the hard way */ typedef struct { long hi; unsigned long lo; } int64; #define greater64(i,j) ( (i).hi>(j).hi || ((i).hi==(j).hi && (i).lo>(j).lo)) #define sign64(i) ((i).hi < 0 ? -1 : (i).hi==0 && (i).lo==0 ? 0 : +1) static int64 mulu32to64(unsigned long x, unsigned long y) { unsigned long a, b, c, d, t; int64 ret; a = (x & 0xFFFF) * (y & 0xFFFF); b = (x & 0xFFFF) * (y >> 16); c = (x >> 16) * (y & 0xFFFF); d = (x >> 16) * (y >> 16); ret.lo = a; ret.hi = d + (b >> 16) + (c >> 16); t = (b & 0xFFFF) << 16; ret.lo += t; if (ret.lo < t) ret.hi++; t = (c & 0xFFFF) << 16; ret.lo += t; if (ret.lo < t) ret.hi++; #ifdef DIAGNOSTIC_VIA_LONGLONG assert(((unsigned long long)ret.hi << 32) + ret.lo == (unsigned long long)x * y); #endif return ret; } static int64 mul32to64(long x, long y) { int sign = +1; int64 ret; #ifdef DIAGNOSTIC_VIA_LONGLONG long long realret = (long long)x * y; #endif if (x < 0) x = -x, sign = -sign; if (y < 0) y = -y, sign = -sign; ret = mulu32to64(x, y); if (sign < 0) { ret.hi = -ret.hi; ret.lo = -ret.lo; if (ret.lo) ret.hi--; } #ifdef DIAGNOSTIC_VIA_LONGLONG assert(((unsigned long long)ret.hi << 32) + ret.lo == realret); #endif return ret; } static int64 dotprod64(long a, long b, long p, long q) { int64 ab, pq; ab = mul32to64(a, b); pq = mul32to64(p, q); ab.hi += pq.hi; ab.lo += pq.lo; if (ab.lo < pq.lo) ab.hi++; return ab; } #else /* HAVE_STDINT_H */ typedef int64_t int64; #define greater64(i,j) ((i) > (j)) #define sign64(i) ((i) < 0 ? -1 : (i)==0 ? 0 : +1) #define mulu32to64(x,y) ((int64_t)(unsigned long)(x) * (unsigned long)(y)) #define mul32to64(x,y) ((int64_t)(long)(x) * (long)(y)) static int64 dotprod64(long a, long b, long p, long q) { return (int64)a * b + (int64)p * q; } #endif /* HAVE_STDINT_H */ /* * Determine whether the line segments between a1 and a2, and * between b1 and b2, intersect. We count it as an intersection if * any of the endpoints lies _on_ the other line. */ static bool cross(point a1, point a2, point b1, point b2) { long b1x, b1y, b2x, b2y, px, py; int64 d1, d2, d3; /* * The condition for crossing is that b1 and b2 are on opposite * sides of the line a1-a2, and vice versa. We determine this * by taking the dot product of b1-a1 with a vector * perpendicular to a2-a1, and similarly with b2-a1, and seeing * if they have different signs. */ /* * Construct the vector b1-a1. We don't have to worry too much * about the denominator, because we're only going to check the * sign of this vector; we just need to get the numerator * right. */ b1x = b1.x * a1.d - a1.x * b1.d; b1y = b1.y * a1.d - a1.y * b1.d; /* Now construct b2-a1, and a vector perpendicular to a2-a1, * in the same way. */ b2x = b2.x * a1.d - a1.x * b2.d; b2y = b2.y * a1.d - a1.y * b2.d; px = a1.y * a2.d - a2.y * a1.d; py = a2.x * a1.d - a1.x * a2.d; /* Take the dot products. Here we resort to 64-bit arithmetic. */ d1 = dotprod64(b1x, px, b1y, py); d2 = dotprod64(b2x, px, b2y, py); /* If they have the same non-zero sign, the lines do not cross. */ if ((sign64(d1) > 0 && sign64(d2) > 0) || (sign64(d1) < 0 && sign64(d2) < 0)) return false; /* * If the dot products are both exactly zero, then the two line * segments are collinear. At this point the intersection * condition becomes whether or not they overlap within their * line. */ if (sign64(d1) == 0 && sign64(d2) == 0) { /* Construct the vector a2-a1. */ px = a2.x * a1.d - a1.x * a2.d; py = a2.y * a1.d - a1.y * a2.d; /* Determine the dot products of b1-a1 and b2-a1 with this. */ d1 = dotprod64(b1x, px, b1y, py); d2 = dotprod64(b2x, px, b2y, py); /* If they're both strictly negative, the lines do not cross. */ if (sign64(d1) < 0 && sign64(d2) < 0) return false; /* Otherwise, take the dot product of a2-a1 with itself. If * the other two dot products both exceed this, the lines do * not cross. */ d3 = dotprod64(px, px, py, py); if (greater64(d1, d3) && greater64(d2, d3)) return false; } /* * We've eliminated the only important special case, and we * have determined that b1 and b2 are on opposite sides of the * line a1-a2. Now do the same thing the other way round and * we're done. */ b1x = a1.x * b1.d - b1.x * a1.d; b1y = a1.y * b1.d - b1.y * a1.d; b2x = a2.x * b1.d - b1.x * a2.d; b2y = a2.y * b1.d - b1.y * a2.d; px = b1.y * b2.d - b2.y * b1.d; py = b2.x * b1.d - b1.x * b2.d; d1 = dotprod64(b1x, px, b1y, py); d2 = dotprod64(b2x, px, b2y, py); if ((sign64(d1) > 0 && sign64(d2) > 0) || (sign64(d1) < 0 && sign64(d2) < 0)) return false; /* * The lines must cross. */ return true; } static unsigned long squarert(unsigned long n) { unsigned long d, a, b, di; d = n; a = 0; b = 1L << 30; /* largest available power of 4 */ do { a >>= 1; di = 2*a + b; if (di <= d) { d -= di; a += b; } b >>= 2; } while (b); return a; } /* * Our solutions are arranged on a square grid big enough that n * points occupy about 1/POINTDENSITY of the grid. */ #define POINTDENSITY 3 #define MAXDEGREE 4 #define COORDLIMIT(n) squarert((n) * POINTDENSITY) static void addedge(tree234 *edges, int a, int b) { edge *e = snew(edge); assert(a != b); e->a = min(a, b); e->b = max(a, b); if (add234(edges, e) != e) /* Duplicate edge. */ sfree(e); } static bool isedge(tree234 *edges, int a, int b) { edge e; assert(a != b); e.a = min(a, b); e.b = max(a, b); return find234(edges, &e, NULL) != NULL; } typedef struct vertex { int param; int vindex; } vertex; static int vertcmpC(const void *av, const void *bv) { const vertex *a = (const vertex *)av; const vertex *b = (const vertex *)bv; if (a->param < b->param) return -1; else if (a->param > b->param) return +1; else if (a->vindex < b->vindex) return -1; else if (a->vindex > b->vindex) return +1; return 0; } static int vertcmp(void *av, void *bv) { return vertcmpC(av, bv); } /* * Construct point coordinates for n points arranged in a circle, * within the bounding box (0,0) to (w,w). */ static void make_circle(point *pts, int n, int w) { long d, r, c, i; /* * First, decide on a denominator. Although in principle it * would be nice to set this really high so as to finely * distinguish all the points on the circle, I'm going to set * it at a fixed size to prevent integer overflow problems. */ d = PREFERRED_TILESIZE; /* * Leave a little space outside the circle. */ c = d * w / 2; r = d * w * 3 / 7; /* * Place the points. */ for (i = 0; i < n; i++) { double angle = i * 2 * PI / n; double x = r * sin(angle), y = - r * cos(angle); pts[i].x = (long)(c + x + 0.5); pts[i].y = (long)(c + y + 0.5); pts[i].d = d; } } static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { int n = params->n, i; long w, h, j, k, m; point *pts, *pts2; long *tmp; tree234 *edges, *vertices; edge *e, *e2; vertex *v, *vs, *vlist; char *ret; w = h = COORDLIMIT(n); /* * Choose n points from this grid. */ pts = snewn(n, point); tmp = snewn(w*h, long); for (i = 0; i < w*h; i++) tmp[i] = i; shuffle(tmp, w*h, sizeof(*tmp), rs); for (i = 0; i < n; i++) { pts[i].x = tmp[i] % w; pts[i].y = tmp[i] / w; pts[i].d = 1; } sfree(tmp); /* * Now start adding edges between the points. * * At all times, we attempt to add an edge to the lowest-degree * vertex we currently have, and we try the other vertices as * candidate second endpoints in order of distance from this * one. We stop as soon as we find an edge which * * (a) does not increase any vertex's degree beyond MAXDEGREE * (b) does not cross any existing edges * (c) does not intersect any actual point. */ vs = snewn(n, vertex); vertices = newtree234(vertcmp); for (i = 0; i < n; i++) { v = vs + i; v->param = 0; /* in this tree, param is the degree */ v->vindex = i; add234(vertices, v); } edges = newtree234(edgecmp); vlist = snewn(n, vertex); while (1) { bool added = false; for (i = 0; i < n; i++) { v = index234(vertices, i); j = v->vindex; if (v->param >= MAXDEGREE) break; /* nothing left to add! */ /* * Sort the other vertices into order of their distance * from this one. Don't bother looking below i, because * we've already tried those edges the other way round. * Also here we rule out target vertices with too high * a degree, and (of course) ones to which we already * have an edge. */ m = 0; for (k = i+1; k < n; k++) { vertex *kv = index234(vertices, k); int ki = kv->vindex; int dx, dy; if (kv->param >= MAXDEGREE || isedge(edges, ki, j)) continue; vlist[m].vindex = ki; dx = pts[ki].x - pts[j].x; dy = pts[ki].y - pts[j].y; vlist[m].param = dx*dx + dy*dy; m++; } qsort(vlist, m, sizeof(*vlist), vertcmpC); for (k = 0; k < m; k++) { int p; int ki = vlist[k].vindex; /* * Check to see whether this edge intersects any * existing edge or point. */ for (p = 0; p < n; p++) if (p != ki && p != j && cross(pts[ki], pts[j], pts[p], pts[p])) break; if (p < n) continue; for (p = 0; (e = index234(edges, p)) != NULL; p++) if (e->a != ki && e->a != j && e->b != ki && e->b != j && cross(pts[ki], pts[j], pts[e->a], pts[e->b])) break; if (e) continue; /* * We're done! Add this edge, modify the degrees of * the two vertices involved, and break. */ addedge(edges, j, ki); added = true; del234(vertices, vs+j); vs[j].param++; add234(vertices, vs+j); del234(vertices, vs+ki); vs[ki].param++; add234(vertices, vs+ki); break; } if (k < m) break; } if (!added) break; /* we're done. */ } /* * That's our graph. Now shuffle the points, making sure that * they come out with at least one crossed line when arranged * in a circle (so that the puzzle isn't immediately solved!). */ tmp = snewn(n, long); for (i = 0; i < n; i++) tmp[i] = i; pts2 = snewn(n, point); make_circle(pts2, n, w); while (1) { shuffle(tmp, n, sizeof(*tmp), rs); for (i = 0; (e = index234(edges, i)) != NULL; i++) { for (j = i+1; (e2 = index234(edges, j)) != NULL; j++) { if (e2->a == e->a || e2->a == e->b || e2->b == e->a || e2->b == e->b) continue; if (cross(pts2[tmp[e2->a]], pts2[tmp[e2->b]], pts2[tmp[e->a]], pts2[tmp[e->b]])) break; } if (e2) break; } if (e) break; /* we've found a crossing */ } /* * We're done. Now encode the graph in a string format. Let's * use a comma-separated list of dash-separated vertex number * pairs, numbered from zero. We'll sort the list to prevent * side channels. */ ret = NULL; { const char *sep; char buf[80]; int retlen; edge *ea; retlen = 0; m = count234(edges); ea = snewn(m, edge); for (i = 0; (e = index234(edges, i)) != NULL; i++) { assert(i < m); ea[i].a = min(tmp[e->a], tmp[e->b]); ea[i].b = max(tmp[e->a], tmp[e->b]); retlen += 1 + sprintf(buf, "%d-%d", ea[i].a, ea[i].b); } assert(i == m); qsort(ea, m, sizeof(*ea), edgecmpC); ret = snewn(retlen, char); sep = ""; k = 0; for (i = 0; i < m; i++) { k += sprintf(ret + k, "%s%d-%d", sep, ea[i].a, ea[i].b); sep = ","; } assert(k < retlen); sfree(ea); } /* * Encode the solution we started with as an aux_info string. */ { char buf[80]; char *auxstr; int auxlen; auxlen = 2; /* leading 'S' and trailing '\0' */ for (i = 0; i < n; i++) { j = tmp[i]; pts2[j] = pts[i]; if (pts2[j].d & 1) { pts2[j].x *= 2; pts2[j].y *= 2; pts2[j].d *= 2; } pts2[j].x += pts2[j].d / 2; pts2[j].y += pts2[j].d / 2; auxlen += sprintf(buf, ";P%d:%ld,%ld/%ld", i, pts2[j].x, pts2[j].y, pts2[j].d); } k = 0; auxstr = snewn(auxlen, char); auxstr[k++] = 'S'; for (i = 0; i < n; i++) k += sprintf(auxstr+k, ";P%d:%ld,%ld/%ld", i, pts2[i].x, pts2[i].y, pts2[i].d); assert(k < auxlen); *aux = auxstr; } sfree(pts2); sfree(tmp); sfree(vlist); freetree234(vertices); sfree(vs); while ((e = delpos234(edges, 0)) != NULL) sfree(e); freetree234(edges); sfree(pts); return ret; } static const char *validate_desc(const game_params *params, const char *desc) { int a, b; while (*desc) { a = atoi(desc); if (a < 0 || a >= params->n) return "Number out of range in game description"; while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc != '-') return "Expected '-' after number in game description"; desc++; /* eat dash */ b = atoi(desc); if (b < 0 || b >= params->n) return "Number out of range in game description"; while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc) { if (*desc != ',') return "Expected ',' after number in game description"; desc++; /* eat comma */ } if (a == b) return "Node linked to itself in game description"; } return NULL; } static void mark_crossings(game_state *state) { bool ok = true; int i, j; edge *e, *e2; #ifdef SHOW_CROSSINGS for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) state->crosses[i] = false; #endif /* * Check correctness: for every pair of edges, see whether they * cross. */ for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) { for (j = i+1; (e2 = index234(state->graph->edges, j)) != NULL; j++) { if (e2->a == e->a || e2->a == e->b || e2->b == e->a || e2->b == e->b) continue; if (cross(state->pts[e2->a], state->pts[e2->b], state->pts[e->a], state->pts[e->b])) { ok = false; #ifdef SHOW_CROSSINGS state->crosses[i] = state->crosses[j] = true; #else goto done; /* multi-level break - sorry */ #endif } } } /* * e == NULL if we've gone through all the edge pairs * without finding a crossing. */ #ifndef SHOW_CROSSINGS done: #endif if (ok) state->completed = true; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int n = params->n; game_state *state = snew(game_state); int a, b; state->params = *params; state->w = state->h = COORDLIMIT(n); state->pts = snewn(n, point); make_circle(state->pts, n, state->w); state->graph = snew(struct graph); state->graph->refcount = 1; state->graph->edges = newtree234(edgecmp); state->completed = state->cheated = state->just_solved = false; while (*desc) { a = atoi(desc); assert(a >= 0 && a < params->n); while (*desc && isdigit((unsigned char)*desc)) desc++; assert(*desc == '-'); desc++; /* eat dash */ b = atoi(desc); assert(b >= 0 && b < params->n); while (*desc && isdigit((unsigned char)*desc)) desc++; if (*desc) { assert(*desc == ','); desc++; /* eat comma */ } addedge(state->graph->edges, a, b); } #ifdef SHOW_CROSSINGS state->crosses = snewn(count234(state->graph->edges), int); mark_crossings(state); /* sets up `crosses' and `completed' */ #endif return state; } static game_state *dup_game(const game_state *state) { int n = state->params.n; game_state *ret = snew(game_state); ret->params = state->params; ret->w = state->w; ret->h = state->h; ret->pts = snewn(n, point); memcpy(ret->pts, state->pts, n * sizeof(point)); ret->graph = state->graph; ret->graph->refcount++; ret->completed = state->completed; ret->cheated = state->cheated; ret->just_solved = state->just_solved; #ifdef SHOW_CROSSINGS ret->crosses = snewn(count234(ret->graph->edges), int); memcpy(ret->crosses, state->crosses, count234(ret->graph->edges) * sizeof(int)); #endif return ret; } static void free_game(game_state *state) { if (--state->graph->refcount <= 0) { edge *e; while ((e = delpos234(state->graph->edges, 0)) != NULL) sfree(e); freetree234(state->graph->edges); sfree(state->graph); } sfree(state->pts); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { int n = state->params.n; int matrix[4]; point *pts; int i, j, besti; float bestd; char buf[80], *ret; int retlen, retsize; if (!aux) { *error = "Solution not known for this puzzle"; return NULL; } /* * Decode the aux_info to get the original point positions. */ pts = snewn(n, point); aux++; /* eat 'S' */ for (i = 0; i < n; i++) { int p, k; long x, y, d; int ret = sscanf(aux, ";P%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k); if (ret != 4 || p != i) { *error = "Internal error: aux_info badly formatted"; sfree(pts); return NULL; } pts[i].x = x; pts[i].y = y; pts[i].d = d; aux += k; } /* * Now go through eight possible symmetries of the point set. * For each one, work out the sum of the Euclidean distances * between the points' current positions and their new ones. * * We're squaring distances here, which means we're at risk of * integer overflow. Fortunately, there's no real need to be * massively careful about rounding errors, since this is a * non-essential bit of the code; so I'll just work in floats * internally. */ besti = -1; bestd = 0.0F; for (i = 0; i < 8; i++) { float d; matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0; matrix[i & 1] = (i & 2) ? +1 : -1; matrix[3-(i&1)] = (i & 4) ? +1 : -1; d = 0.0F; for (j = 0; j < n; j++) { float px = (float)pts[j].x / pts[j].d; float py = (float)pts[j].y / pts[j].d; float sx = (float)currstate->pts[j].x / currstate->pts[j].d; float sy = (float)currstate->pts[j].y / currstate->pts[j].d; float cx = (float)currstate->w / 2; float cy = (float)currstate->h / 2; float ox, oy, dx, dy; px -= cx; py -= cy; ox = matrix[0] * px + matrix[1] * py; oy = matrix[2] * px + matrix[3] * py; ox += cx; oy += cy; dx = ox - sx; dy = oy - sy; d += dx*dx + dy*dy; } if (besti < 0 || bestd > d) { besti = i; bestd = d; } } assert(besti >= 0); /* * Now we know which symmetry is closest to the points' current * positions. Use it. */ matrix[0] = matrix[1] = matrix[2] = matrix[3] = 0; matrix[besti & 1] = (besti & 2) ? +1 : -1; matrix[3-(besti&1)] = (besti & 4) ? +1 : -1; retsize = 256; ret = snewn(retsize, char); retlen = 0; ret[retlen++] = 'S'; ret[retlen] = '\0'; for (i = 0; i < n; i++) { float px = (float)pts[i].x / pts[i].d; float py = (float)pts[i].y / pts[i].d; float cx = (float)currstate->w / 2; float cy = (float)currstate->h / 2; float ox, oy; int extra; px -= cx; py -= cy; ox = matrix[0] * px + matrix[1] * py; oy = matrix[2] * px + matrix[3] * py; ox += cx; oy += cy; /* * Use a fixed denominator of 2, because we know the * original points were on an integer grid offset by 1/2. */ pts[i].d = 2; ox *= pts[i].d; oy *= pts[i].d; pts[i].x = (long)(ox + 0.5F); pts[i].y = (long)(oy + 0.5F); extra = sprintf(buf, ";P%d:%ld,%ld/%ld", i, pts[i].x, pts[i].y, pts[i].d); if (retlen + extra >= retsize) { retsize = retlen + extra + 256; ret = sresize(ret, retsize, char); } strcpy(ret + retlen, buf); retlen += extra; } sfree(pts); return ret; } struct game_ui { int dragpoint; /* point being dragged; -1 if none */ point newpoint; /* where it's been dragged to so far */ bool just_dragged; /* reset in game_changed_state */ bool just_moved; /* _set_ in game_changed_state */ float anim_length; /* * User preference option to snap dragged points to a coarse-ish * grid. Requested by a user who otherwise found themself spending * too much time struggling to get lines nicely horizontal or * vertical. */ bool snap_to_grid; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->dragpoint = -1; ui->just_moved = ui->just_dragged = false; ui->snap_to_grid = false; return ui; } static config_item *get_prefs(game_ui *ui) { config_item *cfg; cfg = snewn(2, config_item); cfg[0].name = "Snap points to a grid"; cfg[0].kw = "snap-to-grid"; cfg[0].type = C_BOOLEAN; cfg[0].u.boolean.bval = ui->snap_to_grid; cfg[1].name = NULL; cfg[1].type = C_END; return cfg; } static void set_prefs(game_ui *ui, const config_item *cfg) { ui->snap_to_grid = cfg[0].u.boolean.bval; } static void free_ui(game_ui *ui) { sfree(ui); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { ui->dragpoint = -1; ui->just_moved = ui->just_dragged; ui->just_dragged = false; } struct game_drawstate { long tilesize; int bg, dragpoint; long *x, *y; }; static void place_dragged_point(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y) { if (ui->snap_to_grid) { /* * We snap points to a grid that has n-1 vertices on each * side. This should be large enough to permit a straight- * line drawing of any n-vertex planar graph, and moreover, * any specific planar embedding of that graph. * * Source: David Eppstein's book 'Forbidden Configurations in * Discrete Geometry' mentions (section 16.3, page 182) that * the point configuration he describes as GRID(n-1,n-1) - * that is, the vertices of a square grid with n-1 vertices on * each side - is universal for n-vertex planar graphs. In * other words (from definitions earlier in the chapter), if a * graph G admits any drawing in the plane at all, then it can * be drawn with straight lines, and with all vertices being * vertices of that grid. * * That fact by itself only says that _some_ planar embedding * of G can be drawn in this grid. We'd prefer that _all_ * embeddings of G can be so drawn, because 'snap to grid' is * supposed to be a UI affordance, not an extra puzzle * challenge, so we don't want to constrain the player's * choice of planar embedding. * * But it doesn't make a difference. Proof: given a specific * planar embedding of G, triangulate it, by adding extra * edges to every face of degree > 3. When this process * terminates with every face a triangle, we have a new graph * G' such that no edge can be added without it ceasing to be * planar. Standard theorems say that a maximal planar graph * is 3-connected, and that a 3-connected planar graph has a * _unique_ embedding. So any drawing of G' in the plane can * be converted into a drawing of G in the desired embedding, * by simply removing all the extra edges that we added to * turn G into G'. And G' is still an n-vertex planar graph, * hence it can be drawn in GRID(n-1,n-1). [] */ int d = state->params.n - 1; x = d * x / (state->w * ds->tilesize); x *= (state->w * ds->tilesize) / d; x += (state->w * ds->tilesize) / (2*d); y = d * y / (state->h * ds->tilesize); y *= (state->h * ds->tilesize) / d; y += (state->h * ds->tilesize) / (2*d); } ui->newpoint.x = x; ui->newpoint.y = y; ui->newpoint.d = ds->tilesize; } static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int n = state->params.n; if (IS_MOUSE_DOWN(button)) { int i, best; long bestd; /* * Begin drag. We drag the vertex _nearest_ to the pointer, * just in case one is nearly on top of another and we want * to drag the latter. However, we drag nothing at all if * the nearest vertex is outside DRAG_THRESHOLD. */ best = -1; bestd = 0; for (i = 0; i < n; i++) { long px = state->pts[i].x * ds->tilesize / state->pts[i].d; long py = state->pts[i].y * ds->tilesize / state->pts[i].d; long dx = px - x; long dy = py - y; long d = dx*dx + dy*dy; if (best == -1 || bestd > d) { best = i; bestd = d; } } if (bestd <= DRAG_THRESHOLD * DRAG_THRESHOLD) { ui->dragpoint = best; place_dragged_point(state, ui, ds, x, y); return MOVE_UI_UPDATE; } } else if (IS_MOUSE_DRAG(button) && ui->dragpoint >= 0) { place_dragged_point(state, ui, ds, x, y); return MOVE_UI_UPDATE; } else if (IS_MOUSE_RELEASE(button) && ui->dragpoint >= 0) { int p = ui->dragpoint; char buf[80]; ui->dragpoint = -1; /* terminate drag, no matter what */ /* * First, see if we're within range. The user can cancel a * drag by dragging the point right off the window. */ if (ui->newpoint.x < 0 || ui->newpoint.x >= (long)state->w*ui->newpoint.d || ui->newpoint.y < 0 || ui->newpoint.y >= (long)state->h*ui->newpoint.d) return MOVE_UI_UPDATE; /* * We aren't cancelling the drag. Construct a move string * indicating where this point is going to. */ sprintf(buf, "P%d:%ld,%ld/%ld", p, ui->newpoint.x, ui->newpoint.y, ui->newpoint.d); ui->just_dragged = true; return dupstr(buf); } return NULL; } static game_state *execute_move(const game_state *state, const char *move) { int n = state->params.n; int p, k; long x, y, d; game_state *ret = dup_game(state); ret->just_solved = false; while (*move) { if (*move == 'S') { move++; if (*move == ';') move++; ret->cheated = ret->just_solved = true; } if (*move == 'P' && sscanf(move+1, "%d:%ld,%ld/%ld%n", &p, &x, &y, &d, &k) == 4 && p >= 0 && p < n && d > 0) { ret->pts[p].x = x; ret->pts[p].y = y; ret->pts[p].d = d; move += k+1; if (*move == ';') move++; } else { free_game(ret); return NULL; } } mark_crossings(ret); return ret; } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, const game_ui *ui, int *x, int *y) { *x = *y = COORDLIMIT(params->n) * tilesize; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); /* * COL_BACKGROUND is what we use as the normal background colour. * Unusually, though, it isn't colour #0: COL_SYSBACKGROUND, a bit * darker, takes that place. This means that if the user resizes * an Untangle window so as to change its aspect ratio, the * still-square playable area will be distinguished from the dead * space around it. */ game_mkhighlight(fe, ret, COL_BACKGROUND, -1, COL_SYSBACKGROUND); ret[COL_LINE * 3 + 0] = 0.0F; ret[COL_LINE * 3 + 1] = 0.0F; ret[COL_LINE * 3 + 2] = 0.0F; #ifdef SHOW_CROSSINGS ret[COL_CROSSEDLINE * 3 + 0] = 1.0F; ret[COL_CROSSEDLINE * 3 + 1] = 0.0F; ret[COL_CROSSEDLINE * 3 + 2] = 0.0F; #endif ret[COL_OUTLINE * 3 + 0] = 0.0F; ret[COL_OUTLINE * 3 + 1] = 0.0F; ret[COL_OUTLINE * 3 + 2] = 0.0F; ret[COL_POINT * 3 + 0] = 0.0F; ret[COL_POINT * 3 + 1] = 0.0F; ret[COL_POINT * 3 + 2] = 1.0F; ret[COL_DRAGPOINT * 3 + 0] = 1.0F; ret[COL_DRAGPOINT * 3 + 1] = 1.0F; ret[COL_DRAGPOINT * 3 + 2] = 1.0F; ret[COL_NEIGHBOUR * 3 + 0] = 1.0F; ret[COL_NEIGHBOUR * 3 + 1] = 0.0F; ret[COL_NEIGHBOUR * 3 + 2] = 0.0F; ret[COL_FLASH1 * 3 + 0] = 0.5F; ret[COL_FLASH1 * 3 + 1] = 0.5F; ret[COL_FLASH1 * 3 + 2] = 0.5F; ret[COL_FLASH2 * 3 + 0] = 1.0F; ret[COL_FLASH2 * 3 + 1] = 1.0F; ret[COL_FLASH2 * 3 + 2] = 1.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); int i; ds->tilesize = 0; ds->x = snewn(state->params.n, long); ds->y = snewn(state->params.n, long); for (i = 0; i < state->params.n; i++) ds->x[i] = ds->y[i] = -1; ds->bg = -1; ds->dragpoint = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->y); sfree(ds->x); sfree(ds); } static point mix(point a, point b, float distance) { point ret; ret.d = a.d * b.d; ret.x = (long)(a.x * b.d + distance * (b.x * a.d - a.x * b.d)); ret.y = (long)(a.y * b.d + distance * (b.y * a.d - a.y * b.d)); return ret; } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int w, h; edge *e; int i, j; int bg; bool points_moved; /* * There's no terribly sensible way to do partial redraws of * this game, so I'm going to have to resort to redrawing the * whole thing every time. */ if (flashtime == 0) bg = COL_BACKGROUND; else if ((int)(flashtime * 4 / FLASH_TIME) % 2 == 0) bg = COL_FLASH1; else bg = COL_FLASH2; /* * To prevent excessive spinning on redraw during a completion * flash, we first check to see if _either_ the flash * background colour has changed _or_ at least one point has * moved _or_ a drag has begun or ended, and abandon the redraw * if neither is the case. * * Also in this loop we work out the coordinates of all the * points for this redraw. */ points_moved = false; for (i = 0; i < state->params.n; i++) { point p = state->pts[i]; long x, y; if (ui->dragpoint == i) p = ui->newpoint; if (oldstate) p = mix(oldstate->pts[i], p, animtime / ui->anim_length); x = p.x * ds->tilesize / p.d; y = p.y * ds->tilesize / p.d; if (ds->x[i] != x || ds->y[i] != y) points_moved = true; ds->x[i] = x; ds->y[i] = y; } if (ds->bg == bg && ds->dragpoint == ui->dragpoint && !points_moved) return; /* nothing to do */ ds->dragpoint = ui->dragpoint; ds->bg = bg; game_compute_size(&state->params, ds->tilesize, ui, &w, &h); draw_rect(dr, 0, 0, w, h, bg); /* * Draw the edges. */ for (i = 0; (e = index234(state->graph->edges, i)) != NULL; i++) { draw_line(dr, ds->x[e->a], ds->y[e->a], ds->x[e->b], ds->y[e->b], #ifdef SHOW_CROSSINGS (oldstate?oldstate:state)->crosses[i] ? COL_CROSSEDLINE : #endif COL_LINE); } /* * Draw the points. * * When dragging, we should not only vary the colours, but * leave the point being dragged until last. */ for (j = 0; j < 3; j++) { int thisc = (j == 0 ? COL_POINT : j == 1 ? COL_NEIGHBOUR : COL_DRAGPOINT); for (i = 0; i < state->params.n; i++) { int c; if (ui->dragpoint == i) { c = COL_DRAGPOINT; } else if (ui->dragpoint >= 0 && isedge(state->graph->edges, ui->dragpoint, i)) { c = COL_NEIGHBOUR; } else { c = COL_POINT; } if (c == thisc) { #ifdef VERTEX_NUMBERS draw_circle(dr, ds->x[i], ds->y[i], DRAG_THRESHOLD, bg, bg); { char buf[80]; sprintf(buf, "%d", i); draw_text(dr, ds->x[i], ds->y[i], FONT_VARIABLE, DRAG_THRESHOLD*3/2, ALIGN_VCENTRE|ALIGN_HCENTRE, c, buf); } #else draw_circle(dr, ds->x[i], ds->y[i], CIRCLE_RADIUS, c, COL_OUTLINE); #endif } } } draw_update(dr, 0, 0, w, h); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (ui->just_moved) return 0.0F; if ((dir < 0 ? oldstate : newstate)->just_solved) ui->anim_length = SOLVEANIM_TIME; else ui->anim_length = ANIM_TIME; return ui->anim_length; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } #ifdef COMBINED #define thegame untangle #endif const struct game thegame = { "Untangle", "games.untangle", "untangle", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, false, NULL, NULL, /* can_format_as_text_now, text_format */ get_prefs, set_prefs, new_ui, free_ui, NULL, /* encode_ui */ NULL, /* decode_ui */ NULL, /* game_request_keys */ game_changed_state, NULL, /* current_key_label */ interpret_move, execute_move, PREFERRED_TILESIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, false, false, NULL, NULL, /* print_size, print */ false, /* wants_statusbar */ false, NULL, /* timing_state */ SOLVE_ANIMATES, /* flags */ };