ref: 8a03fbfdfacb4b1d1a3dc6aaeafe9078bd5164c4
dir: /auxiliary/spectre-tables-extra.h/
/* * Further data tables used to generate the final transition maps. */ /* * Locations in the plane of the centres of the 8 hexagons in the * expansion of each hex. * * We take the centre-to-centre distance to be 6 units, so that other * locations in the hex tiling (e.g. edge midpoints and vertices) will * still have integer coefficients. * * These locations are represented using the same Point type used for * the whole tiling, but all our angles are 60 degrees, so we don't * ever need the coefficients of d or d^3, only of 1 and d^2. */ static const Point hex_centres[] = { {{0, 0, 0, 0}}, {{6, 0, 0, 0}}, /* 0 1 */ {{0, 0, -6, 0}}, {{6, 0, -6, 0}}, /* 2 3 */ {{0, 0, -12, 0}}, {{6, 0, -12, 0}}, {{12, 0, -12, 0}}, /* 4 5 6 */ {{12, 0, -18, 0}}, /* 7 */ }; /* * Orientations of all the sub-hexes in the expansion of each hex. * Measured anticlockwise (that is, as a power of s) from 0, where 0 * means the hex is upright, with its own vertex #0 at the top. */ static const unsigned orientations_G[] = { 2, /* HEX_F */ 1, /* HEX_X */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_P */ 5, /* HEX_D */ 0, /* HEX_J */ /* hex #7 is not present for this tile */ }; static const unsigned orientations_D[] = { 2, /* HEX_F */ 1, /* HEX_P */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_X */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_X */ }; static const unsigned orientations_J[] = { 2, /* HEX_F */ 1, /* HEX_P */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_Y */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_P */ }; static const unsigned orientations_L[] = { 2, /* HEX_F */ 1, /* HEX_P */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_Y */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_X */ }; static const unsigned orientations_X[] = { 2, /* HEX_F */ 1, /* HEX_Y */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_Y */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_P */ }; static const unsigned orientations_P[] = { 2, /* HEX_F */ 1, /* HEX_Y */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_Y */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_X */ }; static const unsigned orientations_S[] = { 2, /* HEX_L */ 1, /* HEX_P */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_X */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_X */ }; static const unsigned orientations_F[] = { 2, /* HEX_F */ 1, /* HEX_P */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_Y */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_Y */ }; static const unsigned orientations_Y[] = { 2, /* HEX_F */ 1, /* HEX_Y */ 0, /* HEX_G */ 1, /* HEX_S */ 4, /* HEX_Y */ 5, /* HEX_D */ 0, /* HEX_F */ 5, /* HEX_Y */ }; /* * For each hex type, indicate the point on the boundary of the * expansion that corresponds to vertex 0 of the superhex. Also, * indicate the initial direction we head in to go round the edge. */ #define HEX_OUTLINE_START_COMMON {{ -4, 0, -10, 0 }}, {{ +2, 0, +2, 0 }} #define HEX_OUTLINE_START_RARE {{ -2, 0, -14, 0 }}, {{ -2, 0, +4, 0 }} #define HEX_OUTLINE_START_G HEX_OUTLINE_START_COMMON #define HEX_OUTLINE_START_D HEX_OUTLINE_START_RARE #define HEX_OUTLINE_START_J HEX_OUTLINE_START_COMMON #define HEX_OUTLINE_START_L HEX_OUTLINE_START_COMMON #define HEX_OUTLINE_START_X HEX_OUTLINE_START_COMMON #define HEX_OUTLINE_START_P HEX_OUTLINE_START_COMMON #define HEX_OUTLINE_START_S HEX_OUTLINE_START_RARE #define HEX_OUTLINE_START_F HEX_OUTLINE_START_COMMON #define HEX_OUTLINE_START_Y HEX_OUTLINE_START_COMMON /* * Similarly, for each hex type, indicate the point on the boundary of * its Spectre expansion that corresponds to hex vertex 0. * * This time, it's easiest just to indicate which vertex of which * sub-Spectre we take in each case, because the Spectre outlines * don't take predictable turns between the edge expansions, so the * routine consuming this data will have to look things up in its * edgemap anyway. */ #define SPEC_OUTLINE_START_COMMON 0, 9 #define SPEC_OUTLINE_START_RARE 0, 8 #define SPEC_OUTLINE_START_G SPEC_OUTLINE_START_COMMON #define SPEC_OUTLINE_START_D SPEC_OUTLINE_START_RARE #define SPEC_OUTLINE_START_J SPEC_OUTLINE_START_COMMON #define SPEC_OUTLINE_START_L SPEC_OUTLINE_START_COMMON #define SPEC_OUTLINE_START_X SPEC_OUTLINE_START_COMMON #define SPEC_OUTLINE_START_P SPEC_OUTLINE_START_COMMON #define SPEC_OUTLINE_START_S SPEC_OUTLINE_START_RARE #define SPEC_OUTLINE_START_F SPEC_OUTLINE_START_COMMON #define SPEC_OUTLINE_START_Y SPEC_OUTLINE_START_COMMON /* * The paper also defines a set of 8 different classes of edges for * the hexagons. (You can imagine these as different shapes of * jigsaw-piece tab, constraining how the hexes can fit together). So * for each hex, we need a list of its edge types. * * Most edge types come in two matching pairs, which the paper labels * with the same lowercase Greek letter and a + or - superscript, e.g. * alpha^+ and alpha^-. The usual rule is that when two edges meet, * they have to be the + and - versions of the same letter. The * exception to this rule is the 'eta' edge, which has no sign: it's * symmetric, so any two eta edges can validly meet. * * We express this here by defining an enumeration in which eta = 0 * and all other edge types have positive values, so that integer * negation can be used to indicate the other edge that fits with this * one (and for eta, it doesn't change the value). */ enum Edge { edge_eta = 0, edge_alpha, edge_beta, edge_gamma, edge_delta, edge_epsilon, edge_zeta, edge_theta, }; /* * Edge types for each hex are specified anticlockwise, starting from * the top vertex, so that edge #0 is the top-left diagonal edge, edge * #1 the left-hand vertical edge, etc. */ static const int edges_G[6] = { -edge_beta, -edge_alpha, +edge_alpha, -edge_gamma, -edge_delta, +edge_beta, }; static const int edges_D[6] = { -edge_zeta, +edge_gamma, +edge_beta, -edge_epsilon, +edge_alpha, -edge_gamma, }; static const int edges_J[6] = { -edge_beta, +edge_gamma, +edge_beta, +edge_theta, +edge_beta, edge_eta, }; static const int edges_L[6] = { -edge_beta, +edge_gamma, +edge_beta, -edge_epsilon, +edge_alpha, -edge_theta, }; static const int edges_X[6] = { -edge_beta, -edge_alpha, +edge_epsilon, +edge_theta, +edge_beta, edge_eta, }; static const int edges_P[6] = { -edge_beta, -edge_alpha, +edge_epsilon, -edge_epsilon, +edge_alpha, -edge_theta, }; static const int edges_S[6] = { +edge_delta, +edge_zeta, +edge_beta, -edge_epsilon, +edge_alpha, -edge_gamma, }; static const int edges_F[6] = { -edge_beta, +edge_gamma, +edge_beta, -edge_epsilon, +edge_epsilon, edge_eta, }; static const int edges_Y[6] = { -edge_beta, -edge_alpha, +edge_epsilon, -edge_epsilon, +edge_epsilon, edge_eta, }; /* * Now specify the actual shape of each edge type, in terms of the * angles of turns as you traverse the edge. * * Edges around the outline of a hex expansion are traversed * _clockwise_, because each expansion step flips the handedness of * the whole system. * * Each array has one fewer element than the number of sub-edges in * the edge shape (for the usual reason - n edges in a path have only * n-1 vertices separating them). * * These arrays show the positive version of each edge type. The * negative version is obtained by reversing the order of the turns * and also the sign of each turn. */ static const int hex_edge_shape_eta[] = { +2, +2, -2, -2 }; static const int hex_edge_shape_alpha[] = { +2, -2 }; static const int hex_edge_shape_beta[] = { -2 }; static const int hex_edge_shape_gamma[] = { +2, -2, -2, +2 }; static const int hex_edge_shape_delta[] = { -2, +2, -2, +2 }; static const int hex_edge_shape_epsilon[] = { +2, -2, -2 }; static const int hex_edge_shape_zeta[] = { -2, +2 }; static const int hex_edge_shape_theta[] = { +2, +2, -2, -2, +2 }; static const int *const hex_edge_shapes[] = { hex_edge_shape_eta, hex_edge_shape_alpha, hex_edge_shape_beta, hex_edge_shape_gamma, hex_edge_shape_delta, hex_edge_shape_epsilon, hex_edge_shape_zeta, hex_edge_shape_theta, }; static const size_t hex_edge_lengths[] = { lenof(hex_edge_shape_eta) + 1, lenof(hex_edge_shape_alpha) + 1, lenof(hex_edge_shape_beta) + 1, lenof(hex_edge_shape_gamma) + 1, lenof(hex_edge_shape_delta) + 1, lenof(hex_edge_shape_epsilon) + 1, lenof(hex_edge_shape_zeta) + 1, lenof(hex_edge_shape_theta) + 1, }; static const int spec_edge_shape_eta[] = { 0 }; static const int spec_edge_shape_alpha[] = { -2, +3 }; static const int spec_edge_shape_beta[] = { +3, -2 }; static const int spec_edge_shape_gamma[] = { +2 }; static const int spec_edge_shape_delta[] = { +2, +3, +2, -3, +2 }; static const int spec_edge_shape_epsilon[] = { +3 }; static const int spec_edge_shape_zeta[] = { -2 }; /* In expansion to Spectres, a theta edge corresponds to just one * Spectre edge, so its turns array would be completely empty! */ static const int *const spec_edge_shapes[] = { spec_edge_shape_eta, spec_edge_shape_alpha, spec_edge_shape_beta, spec_edge_shape_gamma, spec_edge_shape_delta, spec_edge_shape_epsilon, spec_edge_shape_zeta, NULL, /* theta has no turns */ }; static const size_t spec_edge_lengths[] = { lenof(spec_edge_shape_eta) + 1, lenof(spec_edge_shape_alpha) + 1, lenof(spec_edge_shape_beta) + 1, lenof(spec_edge_shape_gamma) + 1, lenof(spec_edge_shape_delta) + 1, lenof(spec_edge_shape_epsilon) + 1, lenof(spec_edge_shape_zeta) + 1, 1, /* theta is only one edge long */ }; /* * Each edge type corresponds to a fixed number of edges of the * hexagon layout in the expansion of each hex, and also to a fixed * number of edges of the Spectre(s) that each hex expands to in the * final step. */ static const int edgelen_hex[] = { 5, /* edge_eta */ 3, /* edge_alpha */ 2, /* edge_beta */ 5, /* edge_gamma */ 5, /* edge_delta */ 4, /* edge_epsilon */ 3, /* edge_zeta */ 6, /* edge_theta */ }; static const int edgelen_spectre[] = { 2, /* edge_eta */ 3, /* edge_alpha */ 3, /* edge_beta */ 2, /* edge_gamma */ 6, /* edge_delta */ 2, /* edge_epsilon */ 2, /* edge_zeta */ 1, /* edge_theta */ };