ref: 8a03fbfdfacb4b1d1a3dc6aaeafe9078bd5164c4
dir: /penrose-internal.h/
#include "penrose.h" static inline unsigned num_subtriangles(char t) { return (t == 'A' || t == 'B' || t == 'X' || t == 'Y') ? 3 : 2; } static inline unsigned sibling_edge(char t) { switch (t) { case 'A': case 'U': return 2; case 'B': case 'V': return 1; default: return 0; } } /* * Coordinate system for tracking Penrose-tile half-triangles. * PenroseCoords simply stores an array of triangle types. */ typedef struct PenroseCoords { char *c; size_t nc, csize; } PenroseCoords; PenroseCoords *penrose_coords_new(void); void penrose_coords_free(PenroseCoords *pc); void penrose_coords_make_space(PenroseCoords *pc, size_t size); PenroseCoords *penrose_coords_copy(PenroseCoords *pc_in); /* * Coordinate system for locating Penrose tiles in the plane. * * The 'Point' structure represents a single point by means of an * integer linear combination of {1, t, t^2, t^3}, where t is the * complex number exp(i pi/5) representing 1/10 of a turn about the * origin. * * The 'PenroseTriangle' structure represents a half-tile triangle, * giving both the locations of its vertices and its combinatorial * coordinates. It also contains a linked-list pointer and a boolean * flag, used during breadth-first search to generate all the tiles in * an area and report them exactly once. */ typedef struct Point { int coeffs[4]; } Point; typedef struct PenroseTriangle PenroseTriangle; struct PenroseTriangle { Point vertices[3]; PenroseCoords *pc; PenroseTriangle *next; /* used in breadth-first search */ bool reported; }; /* Fill in all the coordinates of a triangle starting from any single edge. * Requires tri->pc to have been filled in, so that we know which shape of * triangle we're placing. */ void penrose_place(PenroseTriangle *tri, Point u, Point v, int index_of_u); /* Free a PenroseHalf and its contained coordinates, or a whole PenroseTile */ void penrose_free(PenroseTriangle *tri); /* * A Point is really a complex number, so we can add, subtract and * multiply them. */ static inline Point point_add(Point a, Point b) { Point r; size_t i; for (i = 0; i < 4; i++) r.coeffs[i] = a.coeffs[i] + b.coeffs[i]; return r; } static inline Point point_sub(Point a, Point b) { Point r; size_t i; for (i = 0; i < 4; i++) r.coeffs[i] = a.coeffs[i] - b.coeffs[i]; return r; } static inline Point point_mul_by_t(Point x) { Point r; /* Multiply by t by using the identity t^4 - t^3 + t^2 - t + 1 = 0, * so t^4 = t^3 - t^2 + t - 1 */ r.coeffs[0] = -x.coeffs[3]; r.coeffs[1] = x.coeffs[0] + x.coeffs[3]; r.coeffs[2] = x.coeffs[1] - x.coeffs[3]; r.coeffs[3] = x.coeffs[2] + x.coeffs[3]; return r; } static inline Point point_mul(Point a, Point b) { size_t i, j; Point r; /* Initialise r to be a, scaled by b's t^3 term */ for (j = 0; j < 4; j++) r.coeffs[j] = a.coeffs[j] * b.coeffs[3]; /* Now iterate r = t*r + (next coefficient down), by Horner's rule */ for (i = 3; i-- > 0 ;) { r = point_mul_by_t(r); for (j = 0; j < 4; j++) r.coeffs[j] += a.coeffs[j] * b.coeffs[i]; } return r; } static inline bool point_equal(Point a, Point b) { size_t i; for (i = 0; i < 4; i++) if (a.coeffs[i] != b.coeffs[i]) return false; return true; } /* * Return the Point corresponding to a rotation of s steps around the * origin, i.e. a rotation by 36*s degrees or s*pi/5 radians. */ static inline Point point_rot(int s) { Point r = {{ 1, 0, 0, 0 }}; Point tpower = {{ 0, 1, 0, 0 }}; /* Reduce to a sensible range */ s = s % 10; if (s < 0) s += 10; while (true) { if (s & 1) r = point_mul(r, tpower); s >>= 1; if (!s) break; tpower = point_mul(tpower, tpower); } return r; } /* * PenroseContext is the shared context of a whole run of the * algorithm. Its 'prototype' PenroseCoords object represents the * coordinates of the starting triangle, and is extended as necessary; * any other PenroseCoord that needs extending will copy the * higher-order values from ctx->prototype as needed, so that once * each choice has been made, it remains consistent. * * When we're inventing a random piece of tiling in the first place, * we append to ctx->prototype by choosing a random (but legal) * higher-level metatile for the current topmost one to turn out to be * part of. When we're replaying a generation whose parameters are * already stored, we don't have a random_state, and we make fixed * decisions if not enough coordinates were provided, as in the * corresponding hat.c system. * * For a normal (non-testing) caller, penrosectx_generate() is the * main useful function. It breadth-first searches a whole area to * generate all the triangles in it, starting from a (typically * central) one with the coordinates of ctx->prototype. It takes two * callback function: one that checks whether a triangle is within the * bounds of the target area (and therefore the search should continue * exploring its neighbours), and another that reports a full Penrose * tile once both of its halves have been found and determined to be * in bounds. */ typedef struct PenroseContext { random_state *rs; bool must_free_rs; unsigned start_vertex; /* which vertex of 'prototype' is at the origin? */ int orientation; /* orientation to put in PenrosePatchParams */ PenroseCoords *prototype; } PenroseContext; void penrosectx_init_random(PenroseContext *ctx, random_state *rs, int which); void penrosectx_init_from_params( PenroseContext *ctx, const struct PenrosePatchParams *ps); void penrosectx_cleanup(PenroseContext *ctx); PenroseCoords *penrosectx_initial_coords(PenroseContext *ctx); void penrosectx_extend_coords(PenroseContext *ctx, PenroseCoords *pc, size_t n); void penrosectx_step(PenroseContext *ctx, PenroseCoords *pc, unsigned edge, unsigned *outedge); void penrosectx_generate( PenroseContext *ctx, bool (*inbounds)(void *inboundsctx, const PenroseTriangle *tri), void *inboundsctx, void (*tile)(void *tilectx, const Point *vertices), void *tilectx); /* Subroutines that step around the tiling specified by a PenroseCtx, * delivering both plane and combinatorial coordinates as they go */ PenroseTriangle *penrose_initial(PenroseContext *ctx); PenroseTriangle *penrose_adjacent(PenroseContext *ctx, const PenroseTriangle *src_spec, unsigned src_edge, unsigned *dst_edge); /* For extracting the point coordinates */ typedef struct Coord { int c1, cr5; /* coefficients of 1 and sqrt(5) respectively */ } Coord; static inline Coord point_x(Point p) { Coord x = { 4 * p.coeffs[0] + p.coeffs[1] - p.coeffs[2] + p.coeffs[3], p.coeffs[1] + p.coeffs[2] - p.coeffs[3], }; return x; } static inline Coord point_y(Point p) { Coord y = { 2 * p.coeffs[1] + p.coeffs[2] + p.coeffs[3], p.coeffs[2] + p.coeffs[3], }; return y; } static inline int coord_sign(Coord x) { if (x.c1 == 0 && x.cr5 == 0) return 0; if (x.c1 >= 0 && x.cr5 >= 0) return +1; if (x.c1 <= 0 && x.cr5 <= 0) return -1; if (x.c1 * x.c1 > 5 * x.cr5 * x.cr5) return x.c1 < 0 ? -1 : +1; else return x.cr5 < 0 ? -1 : +1; } static inline Coord coord_construct(int c1, int cr5) { Coord c = { c1, cr5 }; return c; } static inline Coord coord_integer(int c1) { return coord_construct(c1, 0); } static inline Coord coord_add(Coord a, Coord b) { Coord sum; sum.c1 = a.c1 + b.c1; sum.cr5 = a.cr5 + b.cr5; return sum; } static inline Coord coord_sub(Coord a, Coord b) { Coord diff; diff.c1 = a.c1 - b.c1; diff.cr5 = a.cr5 - b.cr5; return diff; } static inline Coord coord_mul(Coord a, Coord b) { Coord prod; prod.c1 = a.c1 * b.c1 + 5 * a.cr5 * b.cr5; prod.cr5 = a.c1 * b.cr5 + a.cr5 * b.c1; return prod; } static inline Coord coord_abs(Coord a) { int sign = coord_sign(a); Coord abs; abs.c1 = a.c1 * sign; abs.cr5 = a.cr5 * sign; return abs; } static inline int coord_cmp(Coord a, Coord b) { return coord_sign(coord_sub(a, b)); }