ref: 9e4e15fda22e0ed8e5c6ea671f17bd76ead0d317
dir: /spectre-internal.h/
#include "spectre.h" /* * List macro of the names for hexagon types, which will be reused all * over the place. * * (I have to call the parameter to this list macro something other * than X, because here, X is also one of the macro arguments!) */ #define HEX_LETTERS(Z) Z(G) Z(D) Z(J) Z(L) Z(X) Z(P) Z(S) Z(F) Z(Y) typedef enum Hex { #define HEX_ENUM_DECL(x) HEX_##x, HEX_LETTERS(HEX_ENUM_DECL) #undef HEX_ENUM_DECL } Hex; static inline unsigned num_subhexes(Hex h) { return h == HEX_G ? 7 : 8; } static inline unsigned num_spectres(Hex h) { return h == HEX_G ? 2 : 1; } /* * Data types used in the lookup tables. */ struct MapEntry { bool internal; unsigned char hi, lo; }; struct MapEdge { unsigned char startindex, len; }; struct Possibility { unsigned char hi, lo; unsigned long prob; }; /* * Coordinate system for tracking Spectres and their hexagonal * metatiles. * * SpectreCoords will store the index of a single Spectre within a * smallest-size hexagon, plus an array of HexCoord each indexing a * hexagon within the expansion of a larger hexagon. * * The last coordinate stored, sc->c[sc->nc-1], will have a hex type * but no index (represented by index==-1). This means "we haven't * decided yet what this level of metatile needs to be". If we need to * refer to this level during the hatctx_step algorithm, we make it up * at random, based on a table of what metatiles each type can * possibly be part of, at what index. */ typedef struct HexCoord { int index; /* index within that tile, or -1 if not yet known */ Hex type; /* type of this hexagon */ } HexCoord; typedef struct SpectreCoords { int index; /* index of Spectre within the order-0 hexagon */ HexCoord *c; size_t nc, csize; /* Used by spectre-test to four-colour output tilings, and * maintained unconditionally because it's easier than making it * conditional */ unsigned char hex_colour, prev_hex_colour, incoming_hex_edge; } SpectreCoords; SpectreCoords *spectre_coords_new(void); void spectre_coords_free(SpectreCoords *hc); void spectre_coords_make_space(SpectreCoords *hc, size_t size); SpectreCoords *spectre_coords_copy(SpectreCoords *hc_in); /* * Coordinate system for locating Spectres in the plane. * * The 'Point' structure represents a single point by means of an * integer linear combination of {1, d, d^2, d^3}, where d is the * complex number exp(i pi/6) representing 1/12 of a turn about the * origin. * * The 'Spectre' structure represents an entire Spectre in a tiling, * giving both the locations of all of its vertices and its * combinatorial coordinates. It also contains a linked-list pointer, * used during breadth-first search to generate all the Spectres in an * area. */ typedef struct Point { int coeffs[4]; } Point; typedef struct Spectre Spectre; struct Spectre { Point vertices[14]; SpectreCoords *sc; Spectre *next; /* used in breadth-first search */ }; /* Fill in all the coordinates of a Spectre starting from any single edge */ void spectre_place(Spectre *spec, Point u, Point v, int index_of_u); /* Free a Spectre and its contained coordinates */ void spectre_free(Spectre *spec); /* * A Point is really a complex number, so we can add, subtract and * multiply them. */ static inline Point point_add(Point a, Point b) { Point r; size_t i; for (i = 0; i < 4; i++) r.coeffs[i] = a.coeffs[i] + b.coeffs[i]; return r; } static inline Point point_sub(Point a, Point b) { Point r; size_t i; for (i = 0; i < 4; i++) r.coeffs[i] = a.coeffs[i] - b.coeffs[i]; return r; } static inline Point point_mul_by_d(Point x) { Point r; /* Multiply by d by using the identity d^4 - d^2 + 1 = 0, so d^4 = d^2+1 */ r.coeffs[0] = -x.coeffs[3]; r.coeffs[1] = x.coeffs[0]; r.coeffs[2] = x.coeffs[1] + x.coeffs[3]; r.coeffs[3] = x.coeffs[2]; return r; } static inline Point point_mul(Point a, Point b) { size_t i, j; Point r; /* Initialise r to be a, scaled by b's d^3 term */ for (j = 0; j < 4; j++) r.coeffs[j] = a.coeffs[j] * b.coeffs[3]; /* Now iterate r = d*r + (next coefficient down), by Horner's rule */ for (i = 3; i-- > 0 ;) { r = point_mul_by_d(r); for (j = 0; j < 4; j++) r.coeffs[j] += a.coeffs[j] * b.coeffs[i]; } return r; } static inline bool point_equal(Point a, Point b) { size_t i; for (i = 0; i < 4; i++) if (a.coeffs[i] != b.coeffs[i]) return false; return true; } /* * Return the Point corresponding to a rotation of s steps around the * origin, i.e. a rotation by 30*s degrees or s*pi/6 radians. */ static inline Point point_rot(int s) { Point r = {{ 1, 0, 0, 0 }}; Point dpower = {{ 0, 1, 0, 0 }}; /* Reduce to a sensible range */ s = s % 12; if (s < 0) s += 12; while (true) { if (s & 1) r = point_mul(r, dpower); s >>= 1; if (!s) break; dpower = point_mul(dpower, dpower); } return r; } /* * SpectreContext is the shared context of a whole run of the * algorithm. Its 'prototype' SpectreCoords object represents the * coordinates of the starting Spectre, and is extended as necessary; * any other SpectreCoord that needs extending will copy the * higher-order values from ctx->prototype as needed, so that once * each choice has been made, it remains consistent. * * When we're inventing a random piece of tiling in the first place, * we append to ctx->prototype by choosing a random (but legal) * higher-level metatile for the current topmost one to turn out to be * part of. When we're replaying a generation whose parameters are * already stored, we don't have a random_state, and we make fixed * decisions if not enough coordinates were provided, as in the * corresponding hat.c system. * * For a normal (non-testing) caller, spectrectx_generate() is the * main useful function. It breadth-first searches a whole area to * generate all the Spectres in it, starting from a (typically * central) one with the coordinates of ctx->prototype. The callback * function processes each Spectre as it's generated, and returns true * or false to indicate whether that Spectre is within the bounds of * the target area (and therefore the search should continue exploring * its neighbours). */ typedef struct SpectreContext { random_state *rs; bool must_free_rs; Point start_vertices[2]; /* vertices 0,1 of the starting Spectre */ int orientation; /* orientation to put in SpectrePatchParams */ SpectreCoords *prototype; } SpectreContext; void spectrectx_init_random(SpectreContext *ctx, random_state *rs); void spectrectx_init_from_params( SpectreContext *ctx, const struct SpectrePatchParams *ps); void spectrectx_cleanup(SpectreContext *ctx); SpectreCoords *spectrectx_initial_coords(SpectreContext *ctx); void spectrectx_extend_coords(SpectreContext *ctx, SpectreCoords *hc, size_t n); void spectrectx_step(SpectreContext *ctx, SpectreCoords *sc, unsigned edge, unsigned *outedge); void spectrectx_generate(SpectreContext *ctx, bool (*callback)(void *cbctx, const Spectre *spec), void *cbctx); /* For spectre-test to directly generate a tiling of hexes */ void spectrectx_step_hex(SpectreContext *ctx, SpectreCoords *sc, size_t depth, unsigned edge, unsigned *outedge); /* Subroutines that step around the tiling specified by a SpectreCtx, * delivering both plane and combinatorial coordinates as they go */ Spectre *spectre_initial(SpectreContext *ctx); Spectre *spectre_adjacent(SpectreContext *ctx, const Spectre *src_spec, unsigned src_edge, unsigned *dst_edge); /* For extracting the point coordinates */ typedef struct Coord { int c1, cr3; /* coefficients of 1 and sqrt(3) respectively */ } Coord; static inline Coord point_x(Point p) { Coord x = { 2 * p.coeffs[0] + p.coeffs[2], p.coeffs[1] }; return x; } static inline Coord point_y(Point p) { Coord y = { 2 * p.coeffs[3] + p.coeffs[1], p.coeffs[2] }; return y; } static inline int coord_sign(Coord x) { if (x.c1 == 0 && x.cr3 == 0) return 0; if (x.c1 >= 0 && x.cr3 >= 0) return +1; if (x.c1 <= 0 && x.cr3 <= 0) return -1; if (x.c1 * x.c1 > 3 * x.cr3 * x.cr3) return x.c1 < 0 ? -1 : +1; else return x.cr3 < 0 ? -1 : +1; } static inline Coord coord_construct(int c1, int cr3) { Coord c = { c1, cr3 }; return c; } static inline Coord coord_integer(int c1) { return coord_construct(c1, 0); } static inline Coord coord_add(Coord a, Coord b) { Coord sum; sum.c1 = a.c1 + b.c1; sum.cr3 = a.cr3 + b.cr3; return sum; } static inline Coord coord_sub(Coord a, Coord b) { Coord diff; diff.c1 = a.c1 - b.c1; diff.cr3 = a.cr3 - b.cr3; return diff; } static inline Coord coord_mul(Coord a, Coord b) { Coord prod; prod.c1 = a.c1 * b.c1 + 3 * a.cr3 * b.cr3; prod.cr3 = a.c1 * b.cr3 + a.cr3 * b.c1; return prod; } static inline Coord coord_abs(Coord a) { int sign = coord_sign(a); Coord abs; abs.c1 = a.c1 * sign; abs.cr3 = a.cr3 * sign; return abs; } static inline int coord_cmp(Coord a, Coord b) { return coord_sign(coord_sub(a, b)); }