ref: a11ee53ef844522b48b06ddffed268fa86d7b2ec
dir: /pattern.c/
/* * pattern.c: the pattern-reconstruction game known as `nonograms'. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <limits.h> #ifdef NO_TGMATH_H # include <math.h> #else # include <tgmath.h> #endif #include "puzzles.h" enum { COL_BACKGROUND, COL_EMPTY, COL_FULL, COL_TEXT, COL_UNKNOWN, COL_GRID, COL_CURSOR, COL_ERROR, COL_CURSOR_GUIDE, NCOLOURS }; #define PREFERRED_TILE_SIZE 24 #define TILE_SIZE (ds->tilesize) #define BORDER (3 * TILE_SIZE / 4) #define TLBORDER(d) ( (d) / 5 + 2 ) #define GUTTER (TILE_SIZE / 2) #define FROMCOORD(d, x) \ ( ((x) - (BORDER + GUTTER + TILE_SIZE * TLBORDER(d))) / TILE_SIZE ) #define SIZE(d) (2*BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (d))) #define GETTILESIZE(d, w) ((double)w / (2.0 + (double)TLBORDER(d) + (double)(d))) #define TOCOORD(d, x) (BORDER + GUTTER + TILE_SIZE * (TLBORDER(d) + (x))) struct game_params { int w, h; }; #define GRID_UNKNOWN 2 #define GRID_FULL 1 #define GRID_EMPTY 0 typedef struct game_state_common { /* Parts of the game state that don't change during play. */ int w, h; int rowsize; int *rowdata, *rowlen; bool *immutable; int refcount; enum { FS_SMALL, FS_LARGE } fontsize; } game_state_common; struct game_state { game_state_common *common; unsigned char *grid; bool completed, cheated; }; #define FLASH_TIME 0.13F static game_params *default_params(void) { game_params *ret = snew(game_params); ret->w = ret->h = 15; return ret; } static const struct game_params pattern_presets[] = { {10, 10}, {15, 15}, {20, 20}, #ifndef SLOW_SYSTEM {25, 25}, {30, 30}, #endif }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(pattern_presets)) return false; ret = snew(game_params); *ret = pattern_presets[i]; sprintf(str, "%dx%d", ret->w, ret->h); *name = dupstr(str); *params = ret; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { char const *p = string; ret->w = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; ret->h = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; } else { ret->h = ret->w; } } static char *encode_params(const game_params *params, bool full) { char ret[400]; int len; len = sprintf(ret, "%dx%d", params->w, params->h); assert(len < lenof(ret)); ret[len] = '\0'; return dupstr(ret); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(3, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->w); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->h); ret[1].u.string.sval = dupstr(buf); ret[2].name = NULL; ret[2].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->w = atoi(cfg[0].u.string.sval); ret->h = atoi(cfg[1].u.string.sval); return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->w <= 0 || params->h <= 0) return "Width and height must both be greater than zero"; if (params->w > INT_MAX - 1 || params->h > INT_MAX - 1 || params->w > INT_MAX / params->h) return "Puzzle must not be unreasonably large"; return NULL; } /* ---------------------------------------------------------------------- * Puzzle generation code. * * For this particular puzzle, it seemed important to me to ensure * a unique solution. I do this the brute-force way, by having a * solver algorithm alongside the generator, and repeatedly * generating a random grid until I find one whose solution is * unique. It turns out that this isn't too onerous on a modern PC * provided you keep grid size below around 30. Any offers of * better algorithms, however, will be very gratefully received. * * Another annoyance of this approach is that it limits the * available puzzles to those solvable by the algorithm I've used. * My algorithm only ever considers a single row or column at any * one time, which means it's incapable of solving the following * difficult example (found by Bella Image around 1995/6, when she * and I were both doing maths degrees): * * 2 1 2 1 * * +--+--+--+--+ * 1 1 | | | | | * +--+--+--+--+ * 2 | | | | | * +--+--+--+--+ * 1 | | | | | * +--+--+--+--+ * 1 | | | | | * +--+--+--+--+ * * Obviously this cannot be solved by a one-row-or-column-at-a-time * algorithm (it would require at least one row or column reading * `2 1', `1 2', `3' or `4' to get started). However, it can be * proved to have a unique solution: if the top left square were * empty, then the only option for the top row would be to fill the * two squares in the 1 columns, which would imply the squares * below those were empty, leaving no place for the 2 in the second * row. Contradiction. Hence the top left square is full, and the * unique solution follows easily from that starting point. * * (The game ID for this puzzle is 4x4:2/1/2/1/1.1/2/1/1 , in case * it's useful to anyone.) */ #ifndef STANDALONE_PICTURE_GENERATOR static int float_compare(const void *av, const void *bv) { const float *a = (const float *)av; const float *b = (const float *)bv; if (*a < *b) return -1; else if (*a > *b) return +1; else return 0; } static void generate(random_state *rs, int w, int h, unsigned char *retgrid) { float *fgrid; float *fgrid2; int step, i, j; float threshold; fgrid = snewn(w*h, float); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { fgrid[i*w+j] = random_upto(rs, 100000000UL) / 100000000.F; } } /* * The above gives a completely random splattering of black and * white cells. We want to gently bias this in favour of _some_ * reasonably thick areas of white and black, while retaining * some randomness and fine detail. * * So we evolve the starting grid using a cellular automaton. * Currently, I'm doing something very simple indeed, which is * to set each square to the average of the surrounding nine * cells (or the average of fewer, if we're on a corner). */ for (step = 0; step < 1; step++) { fgrid2 = snewn(w*h, float); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { float sx, xbar; int n, p, q; /* * Compute the average of the surrounding cells. */ n = 0; sx = 0.F; for (p = -1; p <= +1; p++) { for (q = -1; q <= +1; q++) { if (i+p < 0 || i+p >= h || j+q < 0 || j+q >= w) continue; /* * An additional special case not mentioned * above: if a grid dimension is 2xn then * we do not average across that dimension * at all. Otherwise a 2x2 grid would * contain four identical squares. */ if ((h==2 && p!=0) || (w==2 && q!=0)) continue; n++; sx += fgrid[(i+p)*w+(j+q)]; } } xbar = sx / n; fgrid2[i*w+j] = xbar; } } sfree(fgrid); fgrid = fgrid2; } fgrid2 = snewn(w*h, float); memcpy(fgrid2, fgrid, w*h*sizeof(float)); qsort(fgrid2, w*h, sizeof(float), float_compare); /* Choose a threshold that makes half the pixels black. In case of * an odd number of pixels, select randomly between just under and * just over half. */ { int index = w * h / 2; if (w & h & 1) index += random_upto(rs, 2); if (index < w*h) threshold = fgrid2[index]; else threshold = fgrid2[w*h-1] + 1; } sfree(fgrid2); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { retgrid[i*w+j] = (fgrid[i*w+j] >= threshold ? GRID_FULL : GRID_EMPTY); } } sfree(fgrid); } #endif static int compute_rowdata(int *ret, unsigned char *start, int len, int step) { int i, n; n = 0; for (i = 0; i < len; i++) { if (start[i*step] == GRID_FULL) { int runlen = 1; while (i+runlen < len && start[(i+runlen)*step] == GRID_FULL) runlen++; ret[n++] = runlen; i += runlen; } if (i < len && start[i*step] == GRID_UNKNOWN) return -1; } return n; } #define UNKNOWN 0 #define BLOCK 1 #define DOT 2 #define STILL_UNKNOWN 3 #ifdef STANDALONE_SOLVER static bool verbose = false; #endif static bool do_recurse(unsigned char *known, unsigned char *deduced, unsigned char *row, unsigned char *minpos_done, unsigned char *maxpos_done, unsigned char *minpos_ok, unsigned char *maxpos_ok, int *data, int len, int freespace, int ndone, int lowest) { int i, j, k; /* This algorithm basically tries all possible ways the given rows of * black blocks can be laid out in the row/column being examined. * Special care is taken to avoid checking the tail of a row/column * if the same conditions have already been checked during this recursion * The algorithm also takes care to cut its losses as soon as an * invalid (partial) solution is detected. */ if (data[ndone]) { if (lowest >= minpos_done[ndone] && lowest <= maxpos_done[ndone]) { if (lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]) { for (i=0; i<lowest; i++) deduced[i] |= row[i]; } return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]; } else { if (lowest < minpos_done[ndone]) minpos_done[ndone] = lowest; if (lowest > maxpos_done[ndone]) maxpos_done[ndone] = lowest; } for (i=0; i<=freespace; i++) { j = lowest; for (k=0; k<i; k++) { if (known[j] == BLOCK) goto next_iter; row[j++] = DOT; } for (k=0; k<data[ndone]; k++) { if (known[j] == DOT) goto next_iter; row[j++] = BLOCK; } if (j < len) { if (known[j] == BLOCK) goto next_iter; row[j++] = DOT; } if (do_recurse(known, deduced, row, minpos_done, maxpos_done, minpos_ok, maxpos_ok, data, len, freespace-i, ndone+1, j)) { if (lowest < minpos_ok[ndone]) minpos_ok[ndone] = lowest; if (lowest + i > maxpos_ok[ndone]) maxpos_ok[ndone] = lowest + i; if (lowest + i > maxpos_done[ndone]) maxpos_done[ndone] = lowest + i; } next_iter: j++; } return lowest >= minpos_ok[ndone] && lowest <= maxpos_ok[ndone]; } else { for (i=lowest; i<len; i++) { if (known[i] == BLOCK) return false; row[i] = DOT; } for (i=0; i<len; i++) deduced[i] |= row[i]; return true; } } static bool do_row(unsigned char *known, unsigned char *deduced, unsigned char *row, unsigned char *minpos_done, unsigned char *maxpos_done, unsigned char *minpos_ok, unsigned char *maxpos_ok, unsigned char *start, int len, int step, int *data, unsigned int *changed #ifdef STANDALONE_SOLVER , const char *rowcol, int index, int cluewid #endif ) { int rowlen, i, freespace; bool done_any; assert(len >= 0); /* avoid compile warnings about the memsets below */ freespace = len+1; for (rowlen = 0; data[rowlen]; rowlen++) { minpos_done[rowlen] = minpos_ok[rowlen] = len - 1; maxpos_done[rowlen] = maxpos_ok[rowlen] = 0; freespace -= data[rowlen]+1; } for (i = 0; i < len; i++) { known[i] = start[i*step]; deduced[i] = 0; } for (i = len - 1; i >= 0 && known[i] == DOT; i--) freespace--; if (rowlen == 0) { memset(deduced, DOT, len); } else if (rowlen == 1 && data[0] == len) { memset(deduced, BLOCK, len); } else { do_recurse(known, deduced, row, minpos_done, maxpos_done, minpos_ok, maxpos_ok, data, len, freespace, 0, 0); } done_any = false; for (i=0; i<len; i++) if (deduced[i] && deduced[i] != STILL_UNKNOWN && !known[i]) { start[i*step] = deduced[i]; if (changed) changed[i]++; done_any = true; } #ifdef STANDALONE_SOLVER if (verbose && done_any) { char buf[80]; int thiscluewid; printf("%s %2d: [", rowcol, index); for (thiscluewid = -1, i = 0; data[i]; i++) thiscluewid += sprintf(buf, " %d", data[i]); printf("%*s", cluewid - thiscluewid, ""); for (i = 0; data[i]; i++) printf(" %d", data[i]); printf(" ] "); for (i = 0; i < len; i++) putchar(known[i] == BLOCK ? '#' : known[i] == DOT ? '.' : '?'); printf(" -> "); for (i = 0; i < len; i++) putchar(start[i*step] == BLOCK ? '#' : start[i*step] == DOT ? '.' : '?'); putchar('\n'); } #endif return done_any; } static bool solve_puzzle(const game_state *state, unsigned char *grid, int w, int h, unsigned char *matrix, unsigned char *workspace, unsigned int *changed_h, unsigned int *changed_w, int *rowdata #ifdef STANDALONE_SOLVER , int cluewid #else , int dummy #endif ) { int i, j, max; bool ok; int max_h, max_w; assert((state!=NULL && state->common->rowdata!=NULL) ^ (grid!=NULL)); max = max(w, h); memset(matrix, 0, w*h); if (state) { for (i=0; i<w*h; i++) { if (state->common->immutable[i]) matrix[i] = state->grid[i]; } } /* For each column, compute how many squares can be deduced * from just the row-data and initial clues. * Later, changed_* will hold how many squares were changed * in every row/column in the previous iteration * Changed_* is used to choose the next rows / cols to re-examine */ for (i=0; i<h; i++) { int freespace, rowlen; if (state && state->common->rowdata) { memcpy(rowdata, state->common->rowdata + state->common->rowsize*(w+i), max*sizeof(int)); rowlen = state->common->rowlen[w+i]; } else { rowlen = compute_rowdata(rowdata, grid+i*w, w, 1); } rowdata[rowlen] = 0; if (rowlen == 0) { changed_h[i] = w; } else { for (j=0, freespace=w+1; rowdata[j]; j++) freespace -= rowdata[j] + 1; for (j=0, changed_h[i]=0; rowdata[j]; j++) if (rowdata[j] > freespace) changed_h[i] += rowdata[j] - freespace; } for (j = 0; j < w; j++) if (matrix[i*w+j]) changed_h[i]++; } for (i=0,max_h=0; i<h; i++) if (changed_h[i] > max_h) max_h = changed_h[i]; for (i=0; i<w; i++) { int freespace, rowlen; if (state && state->common->rowdata) { memcpy(rowdata, state->common->rowdata + state->common->rowsize*i, max*sizeof(int)); rowlen = state->common->rowlen[i]; } else { rowlen = compute_rowdata(rowdata, grid+i, h, w); } rowdata[rowlen] = 0; if (rowlen == 0) { changed_w[i] = h; } else { for (j=0, freespace=h+1; rowdata[j]; j++) freespace -= rowdata[j] + 1; for (j=0, changed_w[i]=0; rowdata[j]; j++) if (rowdata[j] > freespace) changed_w[i] += rowdata[j] - freespace; } for (j = 0; j < h; j++) if (matrix[j*w+i]) changed_w[i]++; } for (i=0,max_w=0; i<w; i++) if (changed_w[i] > max_w) max_w = changed_w[i]; /* Solve the puzzle. * Process rows/columns individually. Deductions involving more than one * row and/or column at a time are not supported. * Take care to only process rows/columns which have been changed since they * were previously processed. * Also, prioritize rows/columns which have had the most changes since their * previous processing, as they promise the greatest benefit. * Extremely rectangular grids (e.g. 10x20, 15x40, etc.) are not treated specially. */ do { for (; max_h && max_h >= max_w; max_h--) { for (i=0; i<h; i++) { if (changed_h[i] >= max_h) { if (state && state->common->rowdata) { memcpy(rowdata, state->common->rowdata + state->common->rowsize*(w+i), max*sizeof(int)); rowdata[state->common->rowlen[w+i]] = 0; } else { rowdata[compute_rowdata(rowdata, grid+i*w, w, 1)] = 0; } do_row(workspace, workspace+max, workspace+2*max, workspace+3*max, workspace+4*max, workspace+5*max, workspace+6*max, matrix+i*w, w, 1, rowdata, changed_w #ifdef STANDALONE_SOLVER , "row", i+1, cluewid #endif ); changed_h[i] = 0; } } for (i=0,max_w=0; i<w; i++) if (changed_w[i] > max_w) max_w = changed_w[i]; } for (; max_w && max_w >= max_h; max_w--) { for (i=0; i<w; i++) { if (changed_w[i] >= max_w) { if (state && state->common->rowdata) { memcpy(rowdata, state->common->rowdata + state->common->rowsize*i, max*sizeof(int)); rowdata[state->common->rowlen[i]] = 0; } else { rowdata[compute_rowdata(rowdata, grid+i, h, w)] = 0; } do_row(workspace, workspace+max, workspace+2*max, workspace+3*max, workspace+4*max, workspace+5*max, workspace+6*max, matrix+i, h, w, rowdata, changed_h #ifdef STANDALONE_SOLVER , "col", i+1, cluewid #endif ); changed_w[i] = 0; } } for (i=0,max_h=0; i<h; i++) if (changed_h[i] > max_h) max_h = changed_h[i]; } } while (max_h>0 || max_w>0); ok = true; for (i=0; i<h; i++) { for (j=0; j<w; j++) { if (matrix[i*w+j] == UNKNOWN) ok = false; } } return ok; } #ifndef STANDALONE_PICTURE_GENERATOR static unsigned char *generate_soluble(random_state *rs, int w, int h) { int i, j, max; bool ok; unsigned char *grid, *matrix, *workspace; unsigned int *changed_h, *changed_w; int *rowdata; max = max(w, h); grid = snewn(w*h, unsigned char); /* Allocate this here, to avoid having to reallocate it again for every geneerated grid */ matrix = snewn(w*h, unsigned char); workspace = snewn(max*7, unsigned char); changed_h = snewn(max+1, unsigned int); changed_w = snewn(max+1, unsigned int); rowdata = snewn(max+1, int); do { generate(rs, w, h, grid); /* * The game is a bit too easy if any row or column is * completely black or completely white. An exception is * made for rows/columns that are under 3 squares, * otherwise nothing will ever be successfully generated. */ ok = true; if (w > 2) { for (i = 0; i < h; i++) { int colours = 0; for (j = 0; j < w; j++) colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1); if (colours != 3) ok = false; } } if (h > 2) { for (j = 0; j < w; j++) { int colours = 0; for (i = 0; i < h; i++) colours |= (grid[i*w+j] == GRID_FULL ? 2 : 1); if (colours != 3) ok = false; } } if (!ok) continue; ok = solve_puzzle(NULL, grid, w, h, matrix, workspace, changed_h, changed_w, rowdata, 0); } while (!ok); sfree(matrix); sfree(workspace); sfree(changed_h); sfree(changed_w); sfree(rowdata); return grid; } #endif #ifdef STANDALONE_PICTURE_GENERATOR static unsigned char *picture; #endif static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { unsigned char *grid; int i, j, max, rowlen, *rowdata; char intbuf[80], *desc; int desclen, descpos; #ifdef STANDALONE_PICTURE_GENERATOR game_state *state; int *index; #endif max = max(params->w, params->h); #ifdef STANDALONE_PICTURE_GENERATOR /* * Fixed input picture. */ grid = snewn(params->w * params->h, unsigned char); memcpy(grid, picture, params->w * params->h); /* * Now winnow the immutable square set as far as possible. */ state = snew(game_state); state->grid = grid; state->common = snew(game_state_common); state->common->rowdata = NULL; state->common->immutable = snewn(params->w * params->h, bool); for (i = 0; i < params->w * params->h; i++) state->common->immutable[i] = true; index = snewn(params->w * params->h, int); for (i = 0; i < params->w * params->h; i++) index[i] = i; shuffle(index, params->w * params->h, sizeof(*index), rs); { unsigned char *matrix = snewn(params->w*params->h, unsigned char); unsigned char *workspace = snewn(max*7, unsigned char); unsigned int *changed_h = snewn(max+1, unsigned int); unsigned int *changed_w = snewn(max+1, unsigned int); int *rowdata = snewn(max+1, int); for (i = 0; i < params->w * params->h; i++) { state->common->immutable[index[i]] = false; if (!solve_puzzle(state, grid, params->w, params->h, matrix, workspace, changed_h, changed_w, rowdata, 0)) state->common->immutable[index[i]] = true; } sfree(workspace); sfree(changed_h); sfree(changed_w); sfree(rowdata); sfree(matrix); } #else grid = generate_soluble(rs, params->w, params->h); #endif rowdata = snewn(max, int); /* * Save the solved game in aux. */ if (aux) { char *ai = snewn(params->w * params->h + 2, char); /* * String format is exactly the same as a solve move, so we * can just dupstr this in solve_game(). */ ai[0] = 'S'; for (i = 0; i < params->w * params->h; i++) ai[i+1] = grid[i] ? '1' : '0'; ai[params->w * params->h + 1] = '\0'; *aux = ai; } /* * Seed is a slash-separated list of row contents; each row * contents section is a dot-separated list of integers. Row * contents are listed in the order (columns left to right, * then rows top to bottom). * * Simplest way to handle memory allocation is to make two * passes, first computing the seed size and then writing it * out. */ desclen = 0; for (i = 0; i < params->w + params->h; i++) { if (i < params->w) rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w); else rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w, params->w, 1); if (rowlen > 0) { for (j = 0; j < rowlen; j++) { desclen += 1 + sprintf(intbuf, "%d", rowdata[j]); } } else { desclen++; } } desc = snewn(desclen, char); descpos = 0; for (i = 0; i < params->w + params->h; i++) { if (i < params->w) rowlen = compute_rowdata(rowdata, grid+i, params->h, params->w); else rowlen = compute_rowdata(rowdata, grid+(i-params->w)*params->w, params->w, 1); if (rowlen > 0) { for (j = 0; j < rowlen; j++) { int len = sprintf(desc+descpos, "%d", rowdata[j]); if (j+1 < rowlen) desc[descpos + len] = '.'; else desc[descpos + len] = '/'; descpos += len+1; } } else { desc[descpos++] = '/'; } } assert(descpos == desclen); assert(desc[desclen-1] == '/'); desc[desclen-1] = '\0'; #ifdef STANDALONE_PICTURE_GENERATOR for (i = 0; i < params->w * params->h; i++) if (state->common->immutable[i]) break; if (i < params->w * params->h) { /* * At least one immutable square, so we need a suffix. */ int run; desc = sresize(desc, desclen + params->w * params->h + 3, char); desc[descpos-1] = ','; run = 0; for (i = 0; i < params->w * params->h; i++) { if (!state->common->immutable[i]) { run++; if (run == 25) { desc[descpos++] = 'z'; run = 0; } } else { desc[descpos++] = run + (grid[i] == GRID_FULL ? 'A' : 'a'); run = 0; } } if (run > 0) desc[descpos++] = run + 'a'; desc[descpos] = '\0'; } sfree(state->common->immutable); sfree(state->common); sfree(state); #endif sfree(rowdata); sfree(grid); return desc; } static const char *validate_desc(const game_params *params, const char *desc) { int i, n, rowspace; const char *p; for (i = 0; i < params->w + params->h; i++) { if (i < params->w) rowspace = params->h + 1; else rowspace = params->w + 1; if (*desc && isdigit((unsigned char)*desc)) { do { p = desc; while (*desc && isdigit((unsigned char)*desc)) desc++; n = atoi(p); if (n <= 0) return "all clues must be positive"; if (n > INT_MAX - 1) return "at least one clue is grossly excessive"; rowspace -= n+1; if (rowspace < 0) { if (i < params->w) return "at least one column contains more numbers than will fit"; else return "at least one row contains more numbers than will fit"; } } while (*desc++ == '.'); } else { desc++; /* expect a slash immediately */ } if (desc[-1] == '/') { if (i+1 == params->w + params->h) return "too many row/column specifications"; } else if (desc[-1] == '\0' || desc[-1] == ',') { if (i+1 < params->w + params->h) return "too few row/column specifications"; } else return "unrecognised character in game specification"; } if (desc[-1] == ',') { /* * Optional extra piece of game description which fills in * some grid squares as extra clues. */ i = 0; while (i < params->w * params->h) { int c = (unsigned char)*desc++; if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')) { int len = tolower(c) - 'a'; i += len; if (len < 25 && i < params->w*params->h) i++; if (i > params->w * params->h) { return "too much data in clue-squares section"; } } else if (!c) { return "too little data in clue-squares section"; } else { return "unrecognised character in clue-squares section"; } } if (*desc) { return "too much data in clue-squares section"; } } return NULL; } static game_state *new_game(midend *me, const game_params *params, const char *desc) { int i, j; const char *p; game_state *state = snew(game_state); state->common = snew(game_state_common); state->common->refcount = 1; state->common->w = params->w; state->common->h = params->h; state->grid = snewn(state->common->w * state->common->h, unsigned char); memset(state->grid, GRID_UNKNOWN, state->common->w * state->common->h); state->common->immutable = snewn(state->common->w * state->common->h, bool); memset(state->common->immutable, 0, state->common->w * state->common->h * sizeof(bool)); state->common->rowsize = max(state->common->w, state->common->h); state->common->rowdata = snewn(state->common->rowsize * (state->common->w + state->common->h), int); state->common->rowlen = snewn(state->common->w + state->common->h, int); state->completed = state->cheated = false; for (i = 0; i < params->w + params->h; i++) { state->common->rowlen[i] = 0; if (*desc && isdigit((unsigned char)*desc)) { do { p = desc; while (*desc && isdigit((unsigned char)*desc)) desc++; state->common->rowdata[state->common->rowsize * i + state->common->rowlen[i]++] = atoi(p); } while (*desc++ == '.'); } else { desc++; /* expect a slash immediately */ } } /* * Choose a font size based on the clues. If any column clue is * more than one digit, switch to the smaller size. */ state->common->fontsize = FS_LARGE; for (i = 0; i < params->w; i++) for (j = 0; j < state->common->rowlen[i]; j++) if (state->common->rowdata[state->common->rowsize * i + j] >= 10) state->common->fontsize = FS_SMALL; /* * We might also need to use the small font if there are lots of * row clues. We assume that all clues are one digit and that a * single-digit clue takes up 1.5 tiles, of which the clue is 0.5 * tiles and the space is 1.0 tiles. */ for (i = params->w; i < params->w + params->h; i++) if ((state->common->rowlen[i] * 3 - 2) > TLBORDER(state->common->w) * 2) state->common->fontsize = FS_SMALL; if (desc[-1] == ',') { /* * Optional extra piece of game description which fills in * some grid squares as extra clues. */ i = 0; while (i < params->w * params->h) { int c = (unsigned char)*desc++; bool full = isupper(c); int len = tolower(c) - 'a'; i += len; if (len < 25 && i < params->w*params->h) { state->grid[i] = full ? GRID_FULL : GRID_EMPTY; state->common->immutable[i] = true; i++; } } } return state; } static game_state *dup_game(const game_state *state) { game_state *ret = snew(game_state); ret->common = state->common; ret->common->refcount++; ret->grid = snewn(ret->common->w * ret->common->h, unsigned char); memcpy(ret->grid, state->grid, ret->common->w * ret->common->h); ret->completed = state->completed; ret->cheated = state->cheated; return ret; } static void free_game(game_state *state) { if (--state->common->refcount == 0) { sfree(state->common->rowdata); sfree(state->common->rowlen); sfree(state->common->immutable); sfree(state->common); } sfree(state->grid); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *ai, const char **error) { unsigned char *matrix; int w = state->common->w, h = state->common->h; int i; char *ret; int max; bool ok; unsigned char *workspace; unsigned int *changed_h, *changed_w; int *rowdata; /* * If we already have the solved state in ai, copy it out. */ if (ai) return dupstr(ai); max = max(w, h); matrix = snewn(w*h, unsigned char); workspace = snewn(max*7, unsigned char); changed_h = snewn(max+1, unsigned int); changed_w = snewn(max+1, unsigned int); rowdata = snewn(max+1, int); ok = solve_puzzle(state, NULL, w, h, matrix, workspace, changed_h, changed_w, rowdata, 0); sfree(workspace); sfree(changed_h); sfree(changed_w); sfree(rowdata); if (!ok) { sfree(matrix); *error = "Solving algorithm cannot complete this puzzle"; return NULL; } ret = snewn(w*h+2, char); ret[0] = 'S'; for (i = 0; i < w*h; i++) { assert(matrix[i] == BLOCK || matrix[i] == DOT); ret[i+1] = (matrix[i] == BLOCK ? '1' : '0'); } ret[w*h+1] = '\0'; sfree(matrix); return ret; } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { int w = state->common->w, h = state->common->h, i, j; int left_gap = 0, top_gap = 0, ch = 2, cw = 1, limit = 1; int len, topleft, lw, lh, gw, gh; /* {line,grid}_{width,height} */ char *board, *buf; for (i = 0; i < w; ++i) { top_gap = max(top_gap, state->common->rowlen[i]); for (j = 0; j < state->common->rowlen[i]; ++j) while (state->common->rowdata[i*state->common->rowsize + j] >= limit) { ++cw; limit *= 10; } } for (i = 0; i < h; ++i) { int rowlen = 0; bool predecessors = false; for (j = 0; j < state->common->rowlen[i+w]; ++j) { int copy = state->common->rowdata[(i+w)*state->common->rowsize + j]; rowlen += predecessors; predecessors = true; do ++rowlen; while (copy /= 10); } left_gap = max(left_gap, rowlen); } cw = max(cw, 3); gw = w*cw + 2; gh = h*ch + 1; lw = gw + left_gap; lh = gh + top_gap; len = lw * lh; topleft = lw * top_gap + left_gap; board = snewn(len + 1, char); sprintf(board, "%*s\n", len - 2, ""); for (i = 0; i < lh; ++i) { board[lw - 1 + i*lw] = '\n'; if (i < top_gap) continue; board[lw - 2 + i*lw] = ((i - top_gap) % ch ? '|' : '+'); } for (i = 0; i < w; ++i) { for (j = 0; j < state->common->rowlen[i]; ++j) { int cell = topleft + i*cw + 1 + lw*(j - state->common->rowlen[i]); int nch = sprintf(board + cell, "%*d", cw - 1, state->common->rowdata[i*state->common->rowsize + j]); board[cell + nch] = ' '; /* de-NUL-ify */ } } buf = snewn(left_gap, char); for (i = 0; i < h; ++i) { char *p = buf, *start = board + top_gap*lw + left_gap + (i*ch+1)*lw; for (j = 0; j < state->common->rowlen[i+w]; ++j) { if (p > buf) *p++ = ' '; p += sprintf(p, "%d", state->common->rowdata[(i+w)*state->common->rowsize + j]); } memcpy(start - (p - buf), buf, p - buf); } for (i = 0; i < w; ++i) { for (j = 0; j < h; ++j) { int cell = topleft + i*cw + j*ch*lw; int center = cell + cw/2 + (ch/2)*lw; int dx, dy; board[cell] = false ? center : '+'; for (dx = 1; dx < cw; ++dx) board[cell + dx] = '-'; for (dy = 1; dy < ch; ++dy) board[cell + dy*lw] = '|'; if (state->grid[i*w+j] == GRID_UNKNOWN) continue; for (dx = 1; dx < cw; ++dx) for (dy = 1; dy < ch; ++dy) board[cell + dx + dy*lw] = state->grid[i*w+j] == GRID_FULL ? '#' : '.'; } } memcpy(board + topleft + h*ch*lw, board + topleft, gw - 1); sfree(buf); return board; } struct game_ui { bool dragging; int drag_start_x; int drag_start_y; int drag_end_x; int drag_end_y; int drag, release, state; int cur_x, cur_y; bool cur_visible; }; static game_ui *new_ui(const game_state *state) { game_ui *ret; ret = snew(game_ui); ret->dragging = false; ret->cur_x = ret->cur_y = 0; ret->cur_visible = getenv_bool("PUZZLES_SHOW_CURSOR", false); return ret; } static void free_ui(game_ui *ui) { sfree(ui); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } static const char *current_key_label(const game_ui *ui, const game_state *state, int button) { if (IS_CURSOR_SELECT(button)) { if (!ui->cur_visible) return ""; switch (state->grid[ui->cur_y * state->common->w + ui->cur_x]) { case GRID_UNKNOWN: return button == CURSOR_SELECT ? "Black" : "White"; case GRID_FULL: return button == CURSOR_SELECT ? "White" : "Grey"; case GRID_EMPTY: return button == CURSOR_SELECT ? "Grey" : "Black"; } } return ""; } struct game_drawstate { bool started; int w, h; int tilesize; unsigned char *visible, *numcolours; int cur_x, cur_y; char *strbuf; /* Used for formatting clues. */ }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { bool control = button & MOD_CTRL, shift = button & MOD_SHFT; button &= ~MOD_MASK; x = FROMCOORD(state->common->w, x); y = FROMCOORD(state->common->h, y); if (x >= 0 && x < state->common->w && y >= 0 && y < state->common->h && (button == LEFT_BUTTON || button == RIGHT_BUTTON || button == MIDDLE_BUTTON)) { #ifdef STYLUS_BASED int currstate = state->grid[y * state->common->w + x]; #endif ui->dragging = true; if (button == LEFT_BUTTON) { ui->drag = LEFT_DRAG; ui->release = LEFT_RELEASE; #ifdef STYLUS_BASED ui->state = (currstate + 2) % 3; /* FULL -> EMPTY -> UNKNOWN */ #else ui->state = GRID_FULL; #endif } else if (button == RIGHT_BUTTON) { ui->drag = RIGHT_DRAG; ui->release = RIGHT_RELEASE; #ifdef STYLUS_BASED ui->state = (currstate + 1) % 3; /* EMPTY -> FULL -> UNKNOWN */ #else ui->state = GRID_EMPTY; #endif } else /* if (button == MIDDLE_BUTTON) */ { ui->drag = MIDDLE_DRAG; ui->release = MIDDLE_RELEASE; ui->state = GRID_UNKNOWN; } ui->drag_start_x = ui->drag_end_x = x; ui->drag_start_y = ui->drag_end_y = y; ui->cur_visible = false; return MOVE_UI_UPDATE; } if (ui->dragging && button == ui->drag) { /* * There doesn't seem much point in allowing a rectangle * drag; people will generally only want to drag a single * horizontal or vertical line, so we make that easy by * snapping to it. * * Exception: if we're _middle_-button dragging to tag * things as UNKNOWN, we may well want to trash an entire * area and start over! */ if (ui->state != GRID_UNKNOWN) { if (abs(x - ui->drag_start_x) > abs(y - ui->drag_start_y)) y = ui->drag_start_y; else x = ui->drag_start_x; } if (x < 0) x = 0; if (y < 0) y = 0; if (x >= state->common->w) x = state->common->w - 1; if (y >= state->common->h) y = state->common->h - 1; ui->drag_end_x = x; ui->drag_end_y = y; return MOVE_UI_UPDATE; } if (ui->dragging && button == ui->release) { int x1, x2, y1, y2, xx, yy; bool move_needed = false; x1 = min(ui->drag_start_x, ui->drag_end_x); x2 = max(ui->drag_start_x, ui->drag_end_x); y1 = min(ui->drag_start_y, ui->drag_end_y); y2 = max(ui->drag_start_y, ui->drag_end_y); for (yy = y1; yy <= y2; yy++) for (xx = x1; xx <= x2; xx++) if (!state->common->immutable[yy * state->common->w + xx] && state->grid[yy * state->common->w + xx] != ui->state) move_needed = true; ui->dragging = false; if (move_needed) { char buf[80]; sprintf(buf, "%c%d,%d,%d,%d", (char)(ui->state == GRID_FULL ? 'F' : ui->state == GRID_EMPTY ? 'E' : 'U'), x1, y1, x2-x1+1, y2-y1+1); return dupstr(buf); } else return MOVE_UI_UPDATE; } if (IS_CURSOR_MOVE(button)) { int x = ui->cur_x, y = ui->cur_y, newstate; char buf[80]; move_cursor(button, &ui->cur_x, &ui->cur_y, state->common->w, state->common->h, false, NULL); ui->cur_visible = true; if (!control && !shift) return MOVE_UI_UPDATE; newstate = control ? shift ? GRID_UNKNOWN : GRID_FULL : GRID_EMPTY; if (state->grid[y * state->common->w + x] == newstate && state->grid[ui->cur_y * state->common->w + ui->cur_x] == newstate) return MOVE_UI_UPDATE; sprintf(buf, "%c%d,%d,%d,%d", control ? shift ? 'U' : 'F' : 'E', min(x, ui->cur_x), min(y, ui->cur_y), abs(x - ui->cur_x) + 1, abs(y - ui->cur_y) + 1); return dupstr(buf); } if (IS_CURSOR_SELECT(button)) { int currstate = state->grid[ui->cur_y * state->common->w + ui->cur_x]; int newstate; char buf[80]; if (!ui->cur_visible) { ui->cur_visible = true; return MOVE_UI_UPDATE; } if (button == CURSOR_SELECT2) newstate = currstate == GRID_UNKNOWN ? GRID_EMPTY : currstate == GRID_EMPTY ? GRID_FULL : GRID_UNKNOWN; else newstate = currstate == GRID_UNKNOWN ? GRID_FULL : currstate == GRID_FULL ? GRID_EMPTY : GRID_UNKNOWN; sprintf(buf, "%c%d,%d,%d,%d", (char)(newstate == GRID_FULL ? 'F' : newstate == GRID_EMPTY ? 'E' : 'U'), ui->cur_x, ui->cur_y, 1, 1); return dupstr(buf); } return NULL; } static game_state *execute_move(const game_state *from, const char *move) { game_state *ret; int x1, x2, y1, y2, xx, yy; int val; if (move[0] == 'S' && strlen(move) == from->common->w * from->common->h + 1) { int i; ret = dup_game(from); for (i = 0; i < ret->common->w * ret->common->h; i++) ret->grid[i] = (move[i+1] == '1' ? GRID_FULL : GRID_EMPTY); ret->completed = ret->cheated = true; return ret; } else if ((move[0] == 'F' || move[0] == 'E' || move[0] == 'U') && sscanf(move+1, "%d,%d,%d,%d", &x1, &y1, &x2, &y2) == 4 && x1 >= 0 && x2 >= 0 && x1+x2 <= from->common->w && y1 >= 0 && y2 >= 0 && y1+y2 <= from->common->h) { x2 += x1; y2 += y1; val = (move[0] == 'F' ? GRID_FULL : move[0] == 'E' ? GRID_EMPTY : GRID_UNKNOWN); ret = dup_game(from); for (yy = y1; yy < y2; yy++) for (xx = x1; xx < x2; xx++) if (!ret->common->immutable[yy * ret->common->w + xx]) ret->grid[yy * ret->common->w + xx] = val; /* * An actual change, so check to see if we've completed the * game. */ if (!ret->completed) { int *rowdata = snewn(ret->common->rowsize, int); int i, len; ret->completed = true; for (i=0; i<ret->common->w; i++) { len = compute_rowdata(rowdata, ret->grid+i, ret->common->h, ret->common->w); if (len != ret->common->rowlen[i] || memcmp(ret->common->rowdata+i*ret->common->rowsize, rowdata, len * sizeof(int))) { ret->completed = false; break; } } for (i=0; i<ret->common->h; i++) { len = compute_rowdata(rowdata, ret->grid+i*ret->common->w, ret->common->w, 1); if (len != ret->common->rowlen[i+ret->common->w] || memcmp(ret->common->rowdata + (i+ret->common->w)*ret->common->rowsize, rowdata, len * sizeof(int))) { ret->completed = false; break; } } sfree(rowdata); } return ret; } else return NULL; } /* ---------------------------------------------------------------------- * Error-checking during gameplay. */ /* * The difficulty in error-checking Pattern is to make the error check * _weak_ enough. The most obvious way would be to check each row and * column by calling (a modified form of) do_row() to recursively * analyse the row contents against the clue set and see if the * GRID_UNKNOWNs could be filled in in any way that would end up * correct. However, this turns out to be such a strong error check as * to constitute a spoiler in many situations: you make a typo while * trying to fill in one row, and not only does the row light up to * indicate an error, but several columns crossed by the move also * light up and draw your attention to deductions you hadn't even * noticed you could make. * * So instead I restrict error-checking to 'complete runs' within a * row, by which I mean contiguous sequences of GRID_FULL bounded at * both ends by either GRID_EMPTY or the ends of the row. We identify * all the complete runs in a row, and verify that _those_ are * consistent with the row's clue list. Sequences of complete runs * separated by solid GRID_EMPTY are required to match contiguous * sequences in the clue list, whereas if there's at least one * GRID_UNKNOWN between any two complete runs then those two need not * be contiguous in the clue list. * * To simplify the edge cases, I pretend that the clue list for the * row is extended with a 0 at each end, and I also pretend that the * grid data for the row is extended with a GRID_EMPTY and a * zero-length run at each end. This permits the contiguity checker to * handle the fiddly end effects (e.g. if the first contiguous * sequence of complete runs in the grid matches _something_ in the * clue list but not at the beginning, this is allowable iff there's a * GRID_UNKNOWN before the first one) with minimal faff, since the end * effects just drop out as special cases of the normal inter-run * handling (in this code the above case is not 'at the end of the * clue list' at all, but between the implicit initial zero run and * the first nonzero one). * * We must also be a little careful about how we search for a * contiguous sequence of runs. In the clue list (1 1 2 1 2 3), * suppose we see a GRID_UNKNOWN and then a length-1 run. We search * for 1 in the clue list and find it at the very beginning. But now * suppose we find a length-2 run with no GRID_UNKNOWN before it. We * can't naively look at the next clue from the 1 we found, because * that'll be the second 1 and won't match. Instead, we must backtrack * by observing that the 2 we've just found must be contiguous with * the 1 we've already seen, so we search for the sequence (1 2) and * find it starting at the second 1. Now if we see a 3, we must * rethink again and search for (1 2 3). */ struct errcheck_state { /* * rowdata and rowlen point at the clue data for this row in the * game state. */ int *rowdata; int rowlen; /* * rowpos indicates the lowest position where it would be valid to * see our next run length. It might be equal to rowlen, * indicating that the next run would have to be the terminating 0. */ int rowpos; /* * ncontig indicates how many runs we've seen in a contiguous * block. This is taken into account when searching for the next * run we find, unless ncontig is zeroed out first by encountering * a GRID_UNKNOWN. */ int ncontig; }; static bool errcheck_found_run(struct errcheck_state *es, int r) { /* Macro to handle the pretence that rowdata has a 0 at each end */ #define ROWDATA(k) ((k)<0 || (k)>=es->rowlen ? 0 : es->rowdata[(k)]) /* * See if we can find this new run length at a position where it * also matches the last 'ncontig' runs we've seen. */ int i, newpos; for (newpos = es->rowpos; newpos <= es->rowlen; newpos++) { if (ROWDATA(newpos) != r) goto notfound; for (i = 1; i <= es->ncontig; i++) if (ROWDATA(newpos - i) != ROWDATA(es->rowpos - i)) goto notfound; es->rowpos = newpos+1; es->ncontig++; return true; notfound:; } return false; #undef ROWDATA } static bool check_errors(const game_state *state, int i) { int start, step, end, j; int val, runlen; struct errcheck_state aes, *es = &aes; es->rowlen = state->common->rowlen[i]; es->rowdata = state->common->rowdata + state->common->rowsize * i; /* Pretend that we've already encountered the initial zero run */ es->ncontig = 1; es->rowpos = 0; if (i < state->common->w) { start = i; step = state->common->w; end = start + step * state->common->h; } else { start = (i - state->common->w) * state->common->w; step = 1; end = start + step * state->common->w; } runlen = -1; for (j = start - step; j <= end; j += step) { if (j < start || j == end) val = GRID_EMPTY; else val = state->grid[j]; if (val == GRID_UNKNOWN) { runlen = -1; es->ncontig = 0; } else if (val == GRID_FULL) { if (runlen >= 0) runlen++; } else if (val == GRID_EMPTY) { if (runlen > 0) { if (!errcheck_found_run(es, runlen)) return true; /* error! */ } runlen = 0; } } /* Signal end-of-row by sending errcheck_found_run the terminating * zero run, which will be marked as contiguous with the previous * run if and only if there hasn't been a GRID_UNKNOWN before. */ if (!errcheck_found_run(es, 0)) return true; /* error at the last minute! */ return false; /* no error */ } /* ---------------------------------------------------------------------- * Drawing routines. */ static void game_compute_size(const game_params *params, int tilesize, const game_ui *ui, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = SIZE(params->w); *y = SIZE(params->h); } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret = snewn(3 * NCOLOURS, float); int i; frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); for (i = 0; i < 3; i++) { ret[COL_GRID * 3 + i] = 0.3F; ret[COL_UNKNOWN * 3 + i] = 0.5F; ret[COL_TEXT * 3 + i] = 0.0F; ret[COL_FULL * 3 + i] = 0.0F; ret[COL_EMPTY * 3 + i] = 1.0F; ret[COL_CURSOR_GUIDE * 3 + i] = 0.5F; } ret[COL_CURSOR * 3 + 0] = 1.0F; ret[COL_CURSOR * 3 + 1] = 0.25F; ret[COL_CURSOR * 3 + 2] = 0.25F; ret[COL_ERROR * 3 + 0] = 1.0F; ret[COL_ERROR * 3 + 1] = 0.0F; ret[COL_ERROR * 3 + 2] = 0.0F; *ncolours = NCOLOURS; return ret; } static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { struct game_drawstate *ds = snew(struct game_drawstate); ds->started = false; ds->w = state->common->w; ds->h = state->common->h; ds->visible = snewn(ds->w * ds->h, unsigned char); ds->tilesize = 0; /* not decided yet */ memset(ds->visible, 255, ds->w * ds->h); ds->numcolours = snewn(ds->w + ds->h, unsigned char); memset(ds->numcolours, 255, ds->w + ds->h); ds->cur_x = ds->cur_y = 0; ds->strbuf = snewn(state->common->rowsize * MAX_DIGITS(*state->common->rowdata) + 1, char); return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->visible); sfree(ds->numcolours); sfree(ds->strbuf); sfree(ds); } static void grid_square(drawing *dr, game_drawstate *ds, int y, int x, int state, bool cur) { int xl, xr, yt, yb, dx, dy, dw, dh; draw_rect(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y), TILE_SIZE, TILE_SIZE, COL_GRID); xl = (x % 5 == 0 ? 1 : 0); yt = (y % 5 == 0 ? 1 : 0); xr = (x % 5 == 4 || x == ds->w-1 ? 1 : 0); yb = (y % 5 == 4 || y == ds->h-1 ? 1 : 0); dx = TOCOORD(ds->w, x) + 1 + xl; dy = TOCOORD(ds->h, y) + 1 + yt; dw = TILE_SIZE - xl - xr - 1; dh = TILE_SIZE - yt - yb - 1; draw_rect(dr, dx, dy, dw, dh, (state == GRID_FULL ? COL_FULL : state == GRID_EMPTY ? COL_EMPTY : COL_UNKNOWN)); if (cur) { draw_rect_outline(dr, dx, dy, dw, dh, COL_CURSOR); draw_rect_outline(dr, dx+1, dy+1, dw-2, dh-2, COL_CURSOR); } draw_update(dr, TOCOORD(ds->w, x), TOCOORD(ds->h, y), TILE_SIZE, TILE_SIZE); } /* * Draw the numbers for a single row or column. */ static void draw_numbers( drawing *dr, game_drawstate *ds, const game_state *state, int i, bool erase, int colour) { int rowlen = state->common->rowlen[i]; int *rowdata = state->common->rowdata + state->common->rowsize * i; int nfit; int j; int rx, ry, rw, rh; int fontsize; if (i < state->common->w) { rx = TOCOORD(state->common->w, i); ry = 0; rw = TILE_SIZE; rh = BORDER + TLBORDER(state->common->h) * TILE_SIZE; } else { rx = 0; ry = TOCOORD(state->common->h, i - state->common->w); rw = BORDER + TLBORDER(state->common->w) * TILE_SIZE; rh = TILE_SIZE; } clip(dr, rx, ry, rw, rh); if (erase) draw_rect(dr, rx, ry, rw, rh, COL_BACKGROUND); /* * Choose a font size that's suitable for the lengths of clue. * Only column clues are interesting because row clues can be * spaced out independent of the tile size. For column clues, we * want to go as large as practical while leaving decent space * between horizintally adjacent clues. We currently distinguish * two cases: FS_LARGE is when all column clues are single digits, * and FS_SMALL in all other cases. * * If we assume that a digit is about 0.6em wide, and we want * about that space between clues, then FS_LARGE should be * TILESIZE/1.2. If we also assume that clues are at most two * digits long then the case where adjacent clues are two digits * long requries FS_SMALL to be TILESIZE/1.8. */ fontsize = (TILE_SIZE + 0.5F) / (state->common->fontsize == FS_LARGE ? 1.2F : 1.8F); /* * Normally I space the numbers out by the same distance as the * tile size. However, if there are more numbers than available * spaces, I have to squash them up a bit. */ if (i < state->common->w) nfit = TLBORDER(state->common->h); else nfit = TLBORDER(state->common->w); nfit = max(rowlen, nfit) - 1; assert(nfit > 0); if (i < state->common->w) { for (j = 0; j < rowlen; j++) { int x, y; char str[MAX_DIGITS(*rowdata) + 1]; x = rx; y = BORDER + TILE_SIZE * (TLBORDER(state->common->h)-1); y -= ((rowlen-j-1)*TILE_SIZE) * (TLBORDER(state->common->h)-1) / nfit; sprintf(str, "%d", rowdata[j]); draw_text(dr, x+TILE_SIZE/2, y+TILE_SIZE/2, FONT_VARIABLE, fontsize, ALIGN_HCENTRE | ALIGN_VCENTRE, colour, str); } } else { int x, y; size_t off = 0; const char *spaces = " "; assert(rowlen <= state->common->rowsize); *ds->strbuf = '\0'; /* Squish up a bit if there are lots of clues. */ if (rowlen > TLBORDER(state->common->w)) spaces++; for (j = 0; j < rowlen; j++) off += sprintf(ds->strbuf + off, "%s%d", j ? spaces : "", rowdata[j]); y = ry; x = BORDER + TILE_SIZE * (TLBORDER(state->common->w)-1); draw_text(dr, x+TILE_SIZE, y+TILE_SIZE/2, FONT_VARIABLE, fontsize, ALIGN_HRIGHT | ALIGN_VCENTRE, colour, ds->strbuf); } unclip(dr); draw_update(dr, rx, ry, rw, rh); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float animtime, float flashtime) { int i, j; int x1, x2, y1, y2; int cx, cy; bool cmoved; if (!ds->started) { /* * Draw the grid outline. */ draw_rect(dr, TOCOORD(ds->w, 0) - 1, TOCOORD(ds->h, 0) - 1, ds->w * TILE_SIZE + 3, ds->h * TILE_SIZE + 3, COL_GRID); ds->started = true; draw_update(dr, 0, 0, SIZE(ds->w), SIZE(ds->h)); } if (ui->dragging) { x1 = min(ui->drag_start_x, ui->drag_end_x); x2 = max(ui->drag_start_x, ui->drag_end_x); y1 = min(ui->drag_start_y, ui->drag_end_y); y2 = max(ui->drag_start_y, ui->drag_end_y); } else { x1 = x2 = y1 = y2 = -1; /* placate gcc warnings */ } if (ui->cur_visible) { cx = ui->cur_x; cy = ui->cur_y; } else { cx = cy = -1; } cmoved = (cx != ds->cur_x || cy != ds->cur_y); /* * Now draw any grid squares which have changed since last * redraw. */ for (i = 0; i < ds->h; i++) { for (j = 0; j < ds->w; j++) { int val; bool cc = false; /* * Work out what state this square should be drawn in, * taking any current drag operation into account. */ if (ui->dragging && x1 <= j && j <= x2 && y1 <= i && i <= y2 && !state->common->immutable[i * state->common->w + j]) val = ui->state; else val = state->grid[i * state->common->w + j]; if (cmoved) { /* the cursor has moved; if we were the old or * the new cursor position we need to redraw. */ if (j == cx && i == cy) cc = true; if (j == ds->cur_x && i == ds->cur_y) cc = true; } /* * Briefly invert everything twice during a completion * flash. */ if (flashtime > 0 && (flashtime <= FLASH_TIME/3 || flashtime >= FLASH_TIME*2/3) && val != GRID_UNKNOWN) val = (GRID_FULL ^ GRID_EMPTY) ^ val; if (ds->visible[i * ds->w + j] != val || cc) { grid_square(dr, ds, i, j, val, (j == cx && i == cy)); ds->visible[i * ds->w + j] = val; } } } ds->cur_x = cx; ds->cur_y = cy; /* * Redraw any numbers which have changed their colour due to error * indication. */ for (i = 0; i < state->common->w + state->common->h; i++) { int colour = check_errors(state, i) ? COL_ERROR : COL_TEXT; if (colour == COL_TEXT && ((cx >= 0 && i == cx) || (cy >= 0 && i == cy + ds->w))) { colour = COL_CURSOR_GUIDE; } if (ds->numcolours[i] != colour) { draw_numbers(dr, ds, state, i, true, colour); ds->numcolours[i] = colour; } } } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return 0.0F; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { if (!oldstate->completed && newstate->completed && !oldstate->cheated && !newstate->cheated) return FLASH_TIME; return 0.0F; } static void game_get_cursor_location(const game_ui *ui, const game_drawstate *ds, const game_state *state, const game_params *params, int *x, int *y, int *w, int *h) { if(ui->cur_visible) { *x = TOCOORD(ds->w, ui->cur_x); *y = TOCOORD(ds->h, ui->cur_y); *w = *h = TILE_SIZE; } } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static void game_print_size(const game_params *params, const game_ui *ui, float *x, float *y) { int pw, ph; /* * I'll use 5mm squares by default. */ game_compute_size(params, 500, ui, &pw, &ph); *x = pw / 100.0F; *y = ph / 100.0F; } static void game_print(drawing *dr, const game_state *state, const game_ui *ui, int tilesize) { int w = state->common->w, h = state->common->h; int ink = print_mono_colour(dr, 0); int x, y, i; /* Ick: fake up `ds->tilesize' for macro expansion purposes */ game_drawstate ads, *ds = &ads; game_set_size(dr, ds, NULL, tilesize); /* * Border. */ print_line_width(dr, TILE_SIZE / 16); draw_rect_outline(dr, TOCOORD(w, 0), TOCOORD(h, 0), w*TILE_SIZE, h*TILE_SIZE, ink); /* * Grid. */ for (x = 1; x < w; x++) { print_line_width(dr, TILE_SIZE / (x % 5 ? 128 : 24)); draw_line(dr, TOCOORD(w, x), TOCOORD(h, 0), TOCOORD(w, x), TOCOORD(h, h), ink); } for (y = 1; y < h; y++) { print_line_width(dr, TILE_SIZE / (y % 5 ? 128 : 24)); draw_line(dr, TOCOORD(w, 0), TOCOORD(h, y), TOCOORD(w, w), TOCOORD(h, y), ink); } /* * Clues. */ for (i = 0; i < state->common->w + state->common->h; i++) draw_numbers(dr, ds, state, i, false, ink); /* * Solution. */ print_line_width(dr, TILE_SIZE / 128); for (y = 0; y < h; y++) for (x = 0; x < w; x++) { if (state->grid[y*w+x] == GRID_FULL) draw_rect(dr, TOCOORD(w, x), TOCOORD(h, y), TILE_SIZE, TILE_SIZE, ink); else if (state->grid[y*w+x] == GRID_EMPTY) draw_circle(dr, TOCOORD(w, x) + TILE_SIZE/2, TOCOORD(h, y) + TILE_SIZE/2, TILE_SIZE/12, ink, ink); } } #ifdef COMBINED #define thegame pattern #endif const struct game thegame = { "Pattern", "games.pattern", "pattern", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, true, game_can_format_as_text_now, game_text_format, NULL, NULL, /* get_prefs, set_prefs */ new_ui, free_ui, NULL, /* encode_ui */ NULL, /* decode_ui */ NULL, /* game_request_keys */ game_changed_state, current_key_label, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_get_cursor_location, game_status, true, false, game_print_size, game_print, false, /* wants_statusbar */ false, NULL, /* timing_state */ REQUIRE_RBUTTON, /* flags */ }; #ifdef STANDALONE_SOLVER int main(int argc, char **argv) { game_params *p; game_state *s; char *id = NULL, *desc; const char *err; while (--argc > 0) { char *p = *++argv; if (*p == '-') { if (!strcmp(p, "-v")) { verbose = true; } else { fprintf(stderr, "%s: unrecognised option `%s'\n", argv[0], p); return 1; } } else { id = p; } } if (!id) { fprintf(stderr, "usage: %s <game_id>\n", argv[0]); return 1; } desc = strchr(id, ':'); if (!desc) { fprintf(stderr, "%s: game id expects a colon in it\n", argv[0]); return 1; } *desc++ = '\0'; p = default_params(); decode_params(p, id); err = validate_desc(p, desc); if (err) { fprintf(stderr, "%s: %s\n", argv[0], err); return 1; } s = new_game(NULL, p, desc); { int w = p->w, h = p->h, i, j, max, cluewid = 0; unsigned char *matrix, *workspace; unsigned int *changed_h, *changed_w; int *rowdata; matrix = snewn(w*h, unsigned char); max = max(w, h); workspace = snewn(max*7, unsigned char); changed_h = snewn(max+1, unsigned int); changed_w = snewn(max+1, unsigned int); rowdata = snewn(max+1, int); if (verbose) { int thiswid; /* * Work out the maximum text width of the clue numbers * in a row or column, so we can print the solver's * working in a nicely lined up way. */ for (i = 0; i < (w+h); i++) { char buf[80]; for (thiswid = -1, j = 0; j < s->common->rowlen[i]; j++) thiswid += sprintf (buf, " %d", s->common->rowdata[s->common->rowsize*i+j]); if (cluewid < thiswid) cluewid = thiswid; } } solve_puzzle(s, NULL, w, h, matrix, workspace, changed_h, changed_w, rowdata, cluewid); for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { int c = (matrix[i*w+j] == UNKNOWN ? '?' : matrix[i*w+j] == BLOCK ? '#' : matrix[i*w+j] == DOT ? '.' : '!'); putchar(c); } printf("\n"); } } return 0; } #endif #ifdef STANDALONE_PICTURE_GENERATOR /* * Main program for the standalone picture generator. To use it, * simply provide it with an XBM-format bitmap file (note XBM, not * XPM) on standard input, and it will output a game ID in return. * For example: * * $ ./patternpicture < calligraphic-A.xbm * 15x15:2/4/2/2/2/3/3/3.1/3.1/3.1/11/14/12/6/1/2/2/3/4/5/1.3/2.3/1.3/2.3/1.4/9/1.1.3/2.2.3/5.4/3.2 * * That looks easy, of course - all the program has done is to count * up the clue numbers! But in fact, it's done more than that: it's * also checked that the result is uniquely soluble from just the * numbers. If it hadn't been, then it would have also left some * filled squares in the playing area as extra clues. * * $ ./patternpicture < cube.xbm * 15x15:10/2.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.10/1.1.1/1.1.1/1.1.1/2.1/10/10/1.2/1.1.1/1.1.1/1.1.1/10.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.1.1/1.2/10,TNINzzzzGNzw * * This enables a reasonably convenient design workflow for coming up * with pictorial Pattern puzzles which _are_ uniquely soluble without * those inelegant pre-filled squares. Fire up a bitmap editor (X11 * bitmap(1) is good enough), save a trial .xbm, and then test it by * running a command along the lines of * * $ ./pattern $(./patternpicture < test.xbm) * * If the resulting window pops up with some pre-filled squares, then * that tells you which parts of the image are giving rise to * ambiguities, so try making tweaks in those areas, try the test * command again, and see if it helps. Once you have a design for * which the Pattern starting grid comes out empty, there's your game * ID. */ #include <time.h> int main(int argc, char **argv) { game_params *par; char *params, *desc; random_state *rs; time_t seed = time(NULL); char buf[4096]; int i; int x, y; par = default_params(); if (argc > 1) decode_params(par, argv[1]); /* get difficulty */ par->w = par->h = -1; /* * Now read an XBM file from standard input. This is simple and * hacky and will do very little error detection, so don't feed * it bogus data. */ picture = NULL; x = y = 0; while (fgets(buf, sizeof(buf), stdin)) { buf[strcspn(buf, "\r\n")] = '\0'; if (!strncmp(buf, "#define", 7)) { /* * Lines starting `#define' give the width and height. */ char *num = buf + strlen(buf); char *symend; while (num > buf && isdigit((unsigned char)num[-1])) num--; symend = num; while (symend > buf && isspace((unsigned char)symend[-1])) symend--; if (symend-5 >= buf && !strncmp(symend-5, "width", 5)) par->w = atoi(num); else if (symend-6 >= buf && !strncmp(symend-6, "height", 6)) par->h = atoi(num); } else { /* * Otherwise, break the string up into words and take * any word of the form `0x' plus hex digits to be a * byte. */ char *p, *wordstart; if (!picture) { if (par->w < 0 || par->h < 0) { printf("failed to read width and height\n"); return 1; } picture = snewn(par->w * par->h, unsigned char); for (i = 0; i < par->w * par->h; i++) picture[i] = GRID_UNKNOWN; } p = buf; while (*p) { while (*p && (*p == ',' || isspace((unsigned char)*p))) p++; wordstart = p; while (*p && !(*p == ',' || *p == '}' || isspace((unsigned char)*p))) p++; if (*p) *p++ = '\0'; if (wordstart[0] == '0' && (wordstart[1] == 'x' || wordstart[1] == 'X') && !wordstart[2 + strspn(wordstart+2, "0123456789abcdefABCDEF")]) { unsigned long byte = strtoul(wordstart+2, NULL, 16); for (i = 0; i < 8; i++) { int bit = (byte >> i) & 1; if (y < par->h && x < par->w) picture[y * par->w + x] = bit ? GRID_FULL : GRID_EMPTY; x++; } if (x >= par->w) { x = 0; y++; } } } } } for (i = 0; i < par->w * par->h; i++) if (picture[i] == GRID_UNKNOWN) { fprintf(stderr, "failed to read enough bitmap data\n"); return 1; } rs = random_new((void*)&seed, sizeof(time_t)); desc = new_game_desc(par, rs, NULL, false); params = encode_params(par, false); printf("%s:%s\n", params, desc); sfree(desc); sfree(params); free_params(par); random_free(rs); return 0; } #endif /* vim: set shiftwidth=4 tabstop=8: */