ref: ced51ada363d895eee796dd03923042f97f95321
dir: /netslide.c/
/* * netslide.c: cross between Net and Sixteen, courtesy of Richard * Boulton. */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <ctype.h> #include <math.h> #include "puzzles.h" #include "tree234.h" #define MATMUL(xr,yr,m,x,y) do { \ float rx, ry, xx = (x), yy = (y), *mat = (m); \ rx = mat[0] * xx + mat[2] * yy; \ ry = mat[1] * xx + mat[3] * yy; \ (xr) = rx; (yr) = ry; \ } while (0) /* Direction and other bitfields */ #define R 0x01 #define U 0x02 #define L 0x04 #define D 0x08 #define FLASHING 0x10 #define ACTIVE 0x20 /* Corner flags go in the barriers array */ #define RU 0x10 #define UL 0x20 #define LD 0x40 #define DR 0x80 /* Get tile at given coordinate */ #define T(state, x, y) ( (y) * (state)->width + (x) ) /* Rotations: Anticlockwise, Clockwise, Flip, general rotate */ #define A(x) ( (((x) & 0x07) << 1) | (((x) & 0x08) >> 3) ) #define C(x) ( (((x) & 0x0E) >> 1) | (((x) & 0x01) << 3) ) #define F(x) ( (((x) & 0x0C) >> 2) | (((x) & 0x03) << 2) ) #define ROT(x, n) ( ((n)&3) == 0 ? (x) : \ ((n)&3) == 1 ? A(x) : \ ((n)&3) == 2 ? F(x) : C(x) ) /* X and Y displacements */ #define X(x) ( (x) == R ? +1 : (x) == L ? -1 : 0 ) #define Y(x) ( (x) == D ? +1 : (x) == U ? -1 : 0 ) /* Bit count */ #define COUNT(x) ( (((x) & 0x08) >> 3) + (((x) & 0x04) >> 2) + \ (((x) & 0x02) >> 1) + ((x) & 0x01) ) #define PREFERRED_TILE_SIZE 48 #define TILE_SIZE (ds->tilesize) #define BORDER TILE_SIZE #define TILE_BORDER 1 #define WINDOW_OFFSET 0 #define ANIM_TIME 0.13F #define FLASH_FRAME 0.07F enum { COL_BACKGROUND, COL_FLASHING, COL_BORDER, COL_WIRE, COL_ENDPOINT, COL_POWERED, COL_BARRIER, COL_LOWLIGHT, COL_TEXT, NCOLOURS }; struct game_params { int width; int height; bool wrapping; float barrier_probability; int movetarget; }; struct game_state { int width, height, cx, cy, completed; bool wrapping, used_solve; int move_count, movetarget; /* position (row or col number, starting at 0) of last move. */ int last_move_row, last_move_col; /* direction of last move: +1 or -1 */ int last_move_dir; unsigned char *tiles; unsigned char *barriers; }; #define OFFSET(x2,y2,x1,y1,dir,state) \ ( (x2) = ((x1) + (state)->width + X((dir))) % (state)->width, \ (y2) = ((y1) + (state)->height + Y((dir))) % (state)->height) #define index(state, a, x, y) ( a[(y) * (state)->width + (x)] ) #define tile(state, x, y) index(state, (state)->tiles, x, y) #define barrier(state, x, y) index(state, (state)->barriers, x, y) struct xyd { int x, y, direction; }; static int xyd_cmp(void *av, void *bv) { struct xyd *a = (struct xyd *)av; struct xyd *b = (struct xyd *)bv; if (a->x < b->x) return -1; if (a->x > b->x) return +1; if (a->y < b->y) return -1; if (a->y > b->y) return +1; if (a->direction < b->direction) return -1; if (a->direction > b->direction) return +1; return 0; } static struct xyd *new_xyd(int x, int y, int direction) { struct xyd *xyd = snew(struct xyd); xyd->x = x; xyd->y = y; xyd->direction = direction; return xyd; } static void slide_col(game_state *state, int dir, int col); static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col); static void slide_row(game_state *state, int dir, int row); static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row); /* ---------------------------------------------------------------------- * Manage game parameters. */ static game_params *default_params(void) { game_params *ret = snew(game_params); ret->width = 3; ret->height = 3; ret->wrapping = false; ret->barrier_probability = 1.0; ret->movetarget = 0; return ret; } static const struct { int x, y, wrap, bprob; const char* desc; } netslide_presets[] = { {3, 3, false, 1, " easy"}, {3, 3, false, 0, " medium"}, {3, 3, true, 0, " hard"}, {4, 4, false, 1, " easy"}, {4, 4, false, 0, " medium"}, {4, 4, true, 0, " hard"}, {5, 5, false, 1, " easy"}, {5, 5, false, 0, " medium"}, {5, 5, true, 0, " hard"}, }; static bool game_fetch_preset(int i, char **name, game_params **params) { game_params *ret; char str[80]; if (i < 0 || i >= lenof(netslide_presets)) return false; ret = snew(game_params); ret->width = netslide_presets[i].x; ret->height = netslide_presets[i].y; ret->wrapping = netslide_presets[i].wrap; ret->barrier_probability = (float)netslide_presets[i].bprob; ret->movetarget = 0; sprintf(str, "%dx%d%s", ret->width, ret->height, netslide_presets[i].desc); *name = dupstr(str); *params = ret; return true; } static void free_params(game_params *params) { sfree(params); } static game_params *dup_params(const game_params *params) { game_params *ret = snew(game_params); *ret = *params; /* structure copy */ return ret; } static void decode_params(game_params *ret, char const *string) { char const *p = string; ret->wrapping = false; ret->barrier_probability = 0.0; ret->movetarget = 0; ret->width = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; if (*p == 'x') { p++; ret->height = atoi(p); while (*p && isdigit((unsigned char)*p)) p++; ret->wrapping = (*p == 'w'); if (ret->wrapping) p++; if (*p == 'b') { ret->barrier_probability = (float)atof(++p); while (*p && (isdigit((unsigned char)*p) || *p == '.')) p++; } if (*p == 'm') { ret->movetarget = atoi(++p); } } else { ret->height = ret->width; } } static char *encode_params(const game_params *params, bool full) { char ret[400]; int len; len = sprintf(ret, "%dx%d", params->width, params->height); if (params->wrapping) ret[len++] = 'w'; if (full && params->barrier_probability) len += sprintf(ret+len, "b%g", params->barrier_probability); /* Shuffle limit is part of the limited parameters, because we have to * provide the target move count. */ if (params->movetarget) len += sprintf(ret+len, "m%d", params->movetarget); assert(len < lenof(ret)); ret[len] = '\0'; return dupstr(ret); } static config_item *game_configure(const game_params *params) { config_item *ret; char buf[80]; ret = snewn(6, config_item); ret[0].name = "Width"; ret[0].type = C_STRING; sprintf(buf, "%d", params->width); ret[0].u.string.sval = dupstr(buf); ret[1].name = "Height"; ret[1].type = C_STRING; sprintf(buf, "%d", params->height); ret[1].u.string.sval = dupstr(buf); ret[2].name = "Walls wrap around"; ret[2].type = C_BOOLEAN; ret[2].u.boolean.bval = params->wrapping; ret[3].name = "Barrier probability"; ret[3].type = C_STRING; sprintf(buf, "%g", params->barrier_probability); ret[3].u.string.sval = dupstr(buf); ret[4].name = "Number of shuffling moves"; ret[4].type = C_STRING; sprintf(buf, "%d", params->movetarget); ret[4].u.string.sval = dupstr(buf); ret[5].name = NULL; ret[5].type = C_END; return ret; } static game_params *custom_params(const config_item *cfg) { game_params *ret = snew(game_params); ret->width = atoi(cfg[0].u.string.sval); ret->height = atoi(cfg[1].u.string.sval); ret->wrapping = cfg[2].u.boolean.bval; ret->barrier_probability = (float)atof(cfg[3].u.string.sval); ret->movetarget = atoi(cfg[4].u.string.sval); return ret; } static const char *validate_params(const game_params *params, bool full) { if (params->width <= 1 || params->height <= 1) return "Width and height must both be greater than one"; if (params->barrier_probability < 0) return "Barrier probability may not be negative"; if (params->barrier_probability > 1) return "Barrier probability may not be greater than 1"; return NULL; } /* ---------------------------------------------------------------------- * Randomly select a new game description. */ static char *new_game_desc(const game_params *params, random_state *rs, char **aux, bool interactive) { tree234 *possibilities, *barriertree; int w, h, x, y, cx, cy, nbarriers; unsigned char *tiles, *barriers; char *desc, *p; w = params->width; h = params->height; tiles = snewn(w * h, unsigned char); memset(tiles, 0, w * h); barriers = snewn(w * h, unsigned char); memset(barriers, 0, w * h); cx = w / 2; cy = h / 2; /* * Construct the unshuffled grid. * * To do this, we simply start at the centre point, repeatedly * choose a random possibility out of the available ways to * extend a used square into an unused one, and do it. After * extending the third line out of a square, we remove the * fourth from the possibilities list to avoid any full-cross * squares (which would make the game too easy because they * only have one orientation). * * The slightly worrying thing is the avoidance of full-cross * squares. Can this cause our unsophisticated construction * algorithm to paint itself into a corner, by getting into a * situation where there are some unreached squares and the * only way to reach any of them is to extend a T-piece into a * full cross? * * Answer: no it can't, and here's a proof. * * Any contiguous group of such unreachable squares must be * surrounded on _all_ sides by T-pieces pointing away from the * group. (If not, then there is a square which can be extended * into one of the `unreachable' ones, and so it wasn't * unreachable after all.) In particular, this implies that * each contiguous group of unreachable squares must be * rectangular in shape (any deviation from that yields a * non-T-piece next to an `unreachable' square). * * So we have a rectangle of unreachable squares, with T-pieces * forming a solid border around the rectangle. The corners of * that border must be connected (since every tile connects all * the lines arriving in it), and therefore the border must * form a closed loop around the rectangle. * * But this can't have happened in the first place, since we * _know_ we've avoided creating closed loops! Hence, no such * situation can ever arise, and the naive grid construction * algorithm will guaranteeably result in a complete grid * containing no unreached squares, no full crosses _and_ no * closed loops. [] */ possibilities = newtree234(xyd_cmp); if (cx+1 < w) add234(possibilities, new_xyd(cx, cy, R)); if (cy-1 >= 0) add234(possibilities, new_xyd(cx, cy, U)); if (cx-1 >= 0) add234(possibilities, new_xyd(cx, cy, L)); if (cy+1 < h) add234(possibilities, new_xyd(cx, cy, D)); while (count234(possibilities) > 0) { int i; struct xyd *xyd; int x1, y1, d1, x2, y2, d2, d; /* * Extract a randomly chosen possibility from the list. */ i = random_upto(rs, count234(possibilities)); xyd = delpos234(possibilities, i); x1 = xyd->x; y1 = xyd->y; d1 = xyd->direction; sfree(xyd); OFFSET(x2, y2, x1, y1, d1, params); d2 = F(d1); #ifdef GENERATION_DIAGNOSTICS printf("picked (%d,%d,%c) <-> (%d,%d,%c)\n", x1, y1, "0RU3L567D9abcdef"[d1], x2, y2, "0RU3L567D9abcdef"[d2]); #endif /* * Make the connection. (We should be moving to an as yet * unused tile.) */ index(params, tiles, x1, y1) |= d1; assert(index(params, tiles, x2, y2) == 0); index(params, tiles, x2, y2) |= d2; /* * If we have created a T-piece, remove its last * possibility. */ if (COUNT(index(params, tiles, x1, y1)) == 3) { struct xyd xyd1, *xydp; xyd1.x = x1; xyd1.y = y1; xyd1.direction = 0x0F ^ index(params, tiles, x1, y1); xydp = find234(possibilities, &xyd1, NULL); if (xydp) { #ifdef GENERATION_DIAGNOSTICS printf("T-piece; removing (%d,%d,%c)\n", xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); #endif del234(possibilities, xydp); sfree(xydp); } } /* * Remove all other possibilities that were pointing at the * tile we've just moved into. */ for (d = 1; d < 0x10; d <<= 1) { int x3, y3, d3; struct xyd xyd1, *xydp; OFFSET(x3, y3, x2, y2, d, params); d3 = F(d); xyd1.x = x3; xyd1.y = y3; xyd1.direction = d3; xydp = find234(possibilities, &xyd1, NULL); if (xydp) { #ifdef GENERATION_DIAGNOSTICS printf("Loop avoidance; removing (%d,%d,%c)\n", xydp->x, xydp->y, "0RU3L567D9abcdef"[xydp->direction]); #endif del234(possibilities, xydp); sfree(xydp); } } /* * Add new possibilities to the list for moving _out_ of * the tile we have just moved into. */ for (d = 1; d < 0x10; d <<= 1) { int x3, y3; if (d == d2) continue; /* we've got this one already */ if (!params->wrapping) { if (d == U && y2 == 0) continue; if (d == D && y2 == h-1) continue; if (d == L && x2 == 0) continue; if (d == R && x2 == w-1) continue; } OFFSET(x3, y3, x2, y2, d, params); if (index(params, tiles, x3, y3)) continue; /* this would create a loop */ #ifdef GENERATION_DIAGNOSTICS printf("New frontier; adding (%d,%d,%c)\n", x2, y2, "0RU3L567D9abcdef"[d]); #endif add234(possibilities, new_xyd(x2, y2, d)); } } /* Having done that, we should have no possibilities remaining. */ assert(count234(possibilities) == 0); freetree234(possibilities); /* * Now compute a list of the possible barrier locations. */ barriertree = newtree234(xyd_cmp); for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { if (!(index(params, tiles, x, y) & R) && (params->wrapping || x < w-1)) add234(barriertree, new_xyd(x, y, R)); if (!(index(params, tiles, x, y) & D) && (params->wrapping || y < h-1)) add234(barriertree, new_xyd(x, y, D)); } } /* * Save the unshuffled grid in aux. */ { char *solution; int i; /* * String format is exactly the same as a solve move, so we * can just dupstr this in solve_game(). */ solution = snewn(w * h + 2, char); solution[0] = 'S'; for (i = 0; i < w * h; i++) solution[i+1] = "0123456789abcdef"[tiles[i] & 0xF]; solution[w*h+1] = '\0'; *aux = solution; } /* * Now shuffle the grid. * FIXME - this simply does a set of random moves to shuffle the pieces, * although we make a token effort to avoid boring cases by avoiding moves * that directly undo the previous one, or that repeat so often as to * turn into fewer moves. * * A better way would be to number all the pieces, generate a placement * for all the numbers as for "sixteen", observing parity constraints if * neccessary, and then place the pieces according to their numbering. * BUT - I'm not sure if this will work, since we disallow movement of * the middle row and column. */ { int i; int cols = w - 1; int rows = h - 1; int moves = params->movetarget; int prevdir = -1, prevrowcol = -1, nrepeats = 0; if (!moves) moves = cols * rows * 2; for (i = 0; i < moves; /* incremented conditionally */) { /* Choose a direction: 0,1,2,3 = up, right, down, left. */ int dir = random_upto(rs, 4); int rowcol; if (dir % 2 == 0) { int col = random_upto(rs, cols); if (col >= cx) col += 1; /* avoid centre */ if (col == prevrowcol) { if (dir == 2-prevdir) continue; /* undoes last move */ else if (dir == prevdir && (nrepeats+1)*2 > h) continue; /* makes fewer moves */ } slide_col_int(w, h, tiles, 1 - dir, col); rowcol = col; } else { int row = random_upto(rs, rows); if (row >= cy) row += 1; /* avoid centre */ if (row == prevrowcol) { if (dir == 4-prevdir) continue; /* undoes last move */ else if (dir == prevdir && (nrepeats+1)*2 > w) continue; /* makes fewer moves */ } slide_row_int(w, h, tiles, 2 - dir, row); rowcol = row; } if (dir == prevdir && rowcol == prevrowcol) nrepeats++; else nrepeats = 1; prevdir = dir; prevrowcol = rowcol; i++; /* if we got here, the move was accepted */ } } /* * And now choose barrier locations. (We carefully do this * _after_ shuffling, so that changing the barrier rate in the * params while keeping the random seed the same will give the * same shuffled grid and _only_ change the barrier locations. * Also the way we choose barrier locations, by repeatedly * choosing one possibility from the list until we have enough, * is designed to ensure that raising the barrier rate while * keeping the seed the same will provide a superset of the * previous barrier set - i.e. if you ask for 10 barriers, and * then decide that's still too hard and ask for 20, you'll get * the original 10 plus 10 more, rather than getting 20 new * ones and the chance of remembering your first 10.) */ nbarriers = (int)(params->barrier_probability * count234(barriertree)); assert(nbarriers >= 0 && nbarriers <= count234(barriertree)); while (nbarriers > 0) { int i; struct xyd *xyd; int x1, y1, d1, x2, y2, d2; /* * Extract a randomly chosen barrier from the list. */ i = random_upto(rs, count234(barriertree)); xyd = delpos234(barriertree, i); assert(xyd != NULL); x1 = xyd->x; y1 = xyd->y; d1 = xyd->direction; sfree(xyd); OFFSET(x2, y2, x1, y1, d1, params); d2 = F(d1); index(params, barriers, x1, y1) |= d1; index(params, barriers, x2, y2) |= d2; nbarriers--; } /* * Clean up the rest of the barrier list. */ { struct xyd *xyd; while ( (xyd = delpos234(barriertree, 0)) != NULL) sfree(xyd); freetree234(barriertree); } /* * Finally, encode the grid into a string game description. * * My syntax is extremely simple: each square is encoded as a * hex digit in which bit 0 means a connection on the right, * bit 1 means up, bit 2 left and bit 3 down. (i.e. the same * encoding as used internally). Each digit is followed by * optional barrier indicators: `v' means a vertical barrier to * the right of it, and `h' means a horizontal barrier below * it. */ desc = snewn(w * h * 3 + 1, char); p = desc; for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { *p++ = "0123456789abcdef"[index(params, tiles, x, y)]; if ((params->wrapping || x < w-1) && (index(params, barriers, x, y) & R)) *p++ = 'v'; if ((params->wrapping || y < h-1) && (index(params, barriers, x, y) & D)) *p++ = 'h'; } } assert(p - desc <= w*h*3); *p = '\0'; sfree(tiles); sfree(barriers); return desc; } static const char *validate_desc(const game_params *params, const char *desc) { int w = params->width, h = params->height; int i; for (i = 0; i < w*h; i++) { if (*desc >= '0' && *desc <= '9') /* OK */; else if (*desc >= 'a' && *desc <= 'f') /* OK */; else if (*desc >= 'A' && *desc <= 'F') /* OK */; else if (!*desc) return "Game description shorter than expected"; else return "Game description contained unexpected character"; desc++; while (*desc == 'h' || *desc == 'v') desc++; } if (*desc) return "Game description longer than expected"; return NULL; } /* ---------------------------------------------------------------------- * Construct an initial game state, given a description and parameters. */ static game_state *new_game(midend *me, const game_params *params, const char *desc) { game_state *state; int w, h, x, y; assert(params->width > 0 && params->height > 0); assert(params->width > 1 || params->height > 1); /* * Create a blank game state. */ state = snew(game_state); w = state->width = params->width; h = state->height = params->height; state->cx = state->width / 2; state->cy = state->height / 2; state->wrapping = params->wrapping; state->movetarget = params->movetarget; state->completed = 0; state->used_solve = false; state->move_count = 0; state->last_move_row = -1; state->last_move_col = -1; state->last_move_dir = 0; state->tiles = snewn(state->width * state->height, unsigned char); memset(state->tiles, 0, state->width * state->height); state->barriers = snewn(state->width * state->height, unsigned char); memset(state->barriers, 0, state->width * state->height); /* * Parse the game description into the grid. */ for (y = 0; y < h; y++) { for (x = 0; x < w; x++) { if (*desc >= '0' && *desc <= '9') tile(state, x, y) = *desc - '0'; else if (*desc >= 'a' && *desc <= 'f') tile(state, x, y) = *desc - 'a' + 10; else if (*desc >= 'A' && *desc <= 'F') tile(state, x, y) = *desc - 'A' + 10; if (*desc) desc++; while (*desc == 'h' || *desc == 'v') { int x2, y2, d1, d2; if (*desc == 'v') d1 = R; else d1 = D; OFFSET(x2, y2, x, y, d1, state); d2 = F(d1); barrier(state, x, y) |= d1; barrier(state, x2, y2) |= d2; desc++; } } } /* * Set up border barriers if this is a non-wrapping game. */ if (!state->wrapping) { for (x = 0; x < state->width; x++) { barrier(state, x, 0) |= U; barrier(state, x, state->height-1) |= D; } for (y = 0; y < state->height; y++) { barrier(state, 0, y) |= L; barrier(state, state->width-1, y) |= R; } } /* * Set up the barrier corner flags, for drawing barriers * prettily when they meet. */ for (y = 0; y < state->height; y++) { for (x = 0; x < state->width; x++) { int dir; for (dir = 1; dir < 0x10; dir <<= 1) { int dir2 = A(dir); int x1, y1, x2, y2, x3, y3; bool corner = false; if (!(barrier(state, x, y) & dir)) continue; if (barrier(state, x, y) & dir2) corner = true; x1 = x + X(dir), y1 = y + Y(dir); if (x1 >= 0 && x1 < state->width && y1 >= 0 && y1 < state->height && (barrier(state, x1, y1) & dir2)) corner = true; x2 = x + X(dir2), y2 = y + Y(dir2); if (x2 >= 0 && x2 < state->width && y2 >= 0 && y2 < state->height && (barrier(state, x2, y2) & dir)) corner = true; if (corner) { barrier(state, x, y) |= (dir << 4); if (x1 >= 0 && x1 < state->width && y1 >= 0 && y1 < state->height) barrier(state, x1, y1) |= (A(dir) << 4); if (x2 >= 0 && x2 < state->width && y2 >= 0 && y2 < state->height) barrier(state, x2, y2) |= (C(dir) << 4); x3 = x + X(dir) + X(dir2), y3 = y + Y(dir) + Y(dir2); if (x3 >= 0 && x3 < state->width && y3 >= 0 && y3 < state->height) barrier(state, x3, y3) |= (F(dir) << 4); } } } } return state; } static game_state *dup_game(const game_state *state) { game_state *ret; ret = snew(game_state); ret->width = state->width; ret->height = state->height; ret->cx = state->cx; ret->cy = state->cy; ret->wrapping = state->wrapping; ret->movetarget = state->movetarget; ret->completed = state->completed; ret->used_solve = state->used_solve; ret->move_count = state->move_count; ret->last_move_row = state->last_move_row; ret->last_move_col = state->last_move_col; ret->last_move_dir = state->last_move_dir; ret->tiles = snewn(state->width * state->height, unsigned char); memcpy(ret->tiles, state->tiles, state->width * state->height); ret->barriers = snewn(state->width * state->height, unsigned char); memcpy(ret->barriers, state->barriers, state->width * state->height); return ret; } static void free_game(game_state *state) { sfree(state->tiles); sfree(state->barriers); sfree(state); } static char *solve_game(const game_state *state, const game_state *currstate, const char *aux, const char **error) { if (!aux) { *error = "Solution not known for this puzzle"; return NULL; } return dupstr(aux); } static bool game_can_format_as_text_now(const game_params *params) { return true; } static char *game_text_format(const game_state *state) { return NULL; } /* ---------------------------------------------------------------------- * Utility routine. */ /* * Compute which squares are reachable from the centre square, as a * quick visual aid to determining how close the game is to * completion. This is also a simple way to tell if the game _is_ * completed - just call this function and see whether every square * is marked active. * * squares in the moving_row and moving_col are always inactive - this * is so that "current" doesn't appear to jump across moving lines. */ static unsigned char *compute_active(const game_state *state, int moving_row, int moving_col) { unsigned char *active; tree234 *todo; struct xyd *xyd; active = snewn(state->width * state->height, unsigned char); memset(active, 0, state->width * state->height); /* * We only store (x,y) pairs in todo, but it's easier to reuse * xyd_cmp and just store direction 0 every time. */ todo = newtree234(xyd_cmp); index(state, active, state->cx, state->cy) = ACTIVE; add234(todo, new_xyd(state->cx, state->cy, 0)); while ( (xyd = delpos234(todo, 0)) != NULL) { int x1, y1, d1, x2, y2, d2; x1 = xyd->x; y1 = xyd->y; sfree(xyd); for (d1 = 1; d1 < 0x10; d1 <<= 1) { OFFSET(x2, y2, x1, y1, d1, state); d2 = F(d1); /* * If the next tile in this direction is connected to * us, and there isn't a barrier in the way, and it * isn't already marked active, then mark it active and * add it to the to-examine list. */ if ((x2 != moving_col && y2 != moving_row) && (tile(state, x1, y1) & d1) && (tile(state, x2, y2) & d2) && !(barrier(state, x1, y1) & d1) && !index(state, active, x2, y2)) { index(state, active, x2, y2) = ACTIVE; add234(todo, new_xyd(x2, y2, 0)); } } } /* Now we expect the todo list to have shrunk to zero size. */ assert(count234(todo) == 0); freetree234(todo); return active; } struct game_ui { int cur_x, cur_y; bool cur_visible; }; static game_ui *new_ui(const game_state *state) { game_ui *ui = snew(game_ui); ui->cur_x = 0; ui->cur_y = -1; ui->cur_visible = false; return ui; } static void free_ui(game_ui *ui) { sfree(ui); } static char *encode_ui(const game_ui *ui) { return NULL; } static void decode_ui(game_ui *ui, const char *encoding) { } /* ---------------------------------------------------------------------- * Process a move. */ static void slide_row_int(int w, int h, unsigned char *tiles, int dir, int row) { int x = dir > 0 ? -1 : w; int tx = x + dir; int n = w - 1; unsigned char endtile = tiles[row * w + tx]; do { x = tx; tx = (x + dir + w) % w; tiles[row * w + x] = tiles[row * w + tx]; } while (--n > 0); tiles[row * w + tx] = endtile; } static void slide_col_int(int w, int h, unsigned char *tiles, int dir, int col) { int y = dir > 0 ? -1 : h; int ty = y + dir; int n = h - 1; unsigned char endtile = tiles[ty * w + col]; do { y = ty; ty = (y + dir + h) % h; tiles[y * w + col] = tiles[ty * w + col]; } while (--n > 0); tiles[ty * w + col] = endtile; } static void slide_row(game_state *state, int dir, int row) { slide_row_int(state->width, state->height, state->tiles, dir, row); } static void slide_col(game_state *state, int dir, int col) { slide_col_int(state->width, state->height, state->tiles, dir, col); } static void game_changed_state(game_ui *ui, const game_state *oldstate, const game_state *newstate) { } struct game_drawstate { bool started; int width, height; int tilesize; unsigned char *visible; int cur_x, cur_y; }; static char *interpret_move(const game_state *state, game_ui *ui, const game_drawstate *ds, int x, int y, int button) { int cx, cy; int dx, dy; char buf[80]; button &= ~MOD_MASK; if (IS_CURSOR_MOVE(button)) { int cpos, diff = 0; cpos = c2pos(state->width, state->height, ui->cur_x, ui->cur_y); diff = c2diff(state->width, state->height, ui->cur_x, ui->cur_y, button); if (diff != 0) { do { /* we might have to do this more than once to skip missing arrows */ cpos += diff; pos2c(state->width, state->height, cpos, &ui->cur_x, &ui->cur_y); } while (ui->cur_x == state->cx || ui->cur_y == state->cy); } ui->cur_visible = true; return UI_UPDATE; } if (button == LEFT_BUTTON || button == RIGHT_BUTTON) { cx = (x - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2; cy = (y - (BORDER + WINDOW_OFFSET + TILE_BORDER) + 2*TILE_SIZE) / TILE_SIZE - 2; ui->cur_visible = false; } else if (IS_CURSOR_SELECT(button)) { if (ui->cur_visible) { cx = ui->cur_x; cy = ui->cur_y; } else { /* 'click' when cursor is invisible just makes cursor visible. */ ui->cur_visible = true; return UI_UPDATE; } } else return NULL; if (cy >= 0 && cy < state->height && cy != state->cy) { if (cx == -1) dx = +1; else if (cx == state->width) dx = -1; else return NULL; dy = 0; } else if (cx >= 0 && cx < state->width && cx != state->cx) { if (cy == -1) dy = +1; else if (cy == state->height) dy = -1; else return NULL; dx = 0; } else return NULL; /* reverse direction if right hand button is pressed */ if (button == RIGHT_BUTTON) { dx = -dx; dy = -dy; } if (dx == 0) sprintf(buf, "C%d,%d", cx, dy); else sprintf(buf, "R%d,%d", cy, dx); return dupstr(buf); } static game_state *execute_move(const game_state *from, const char *move) { game_state *ret; int c, d; bool col; if ((move[0] == 'C' || move[0] == 'R') && sscanf(move+1, "%d,%d", &c, &d) == 2 && c >= 0 && c < (move[0] == 'C' ? from->width : from->height)) { col = (move[0] == 'C'); } else if (move[0] == 'S' && strlen(move) == from->width * from->height + 1) { int i; ret = dup_game(from); ret->used_solve = true; ret->completed = ret->move_count = 1; for (i = 0; i < from->width * from->height; i++) { c = move[i+1]; if (c >= '0' && c <= '9') c -= '0'; else if (c >= 'A' && c <= 'F') c -= 'A' - 10; else if (c >= 'a' && c <= 'f') c -= 'a' - 10; else { free_game(ret); return NULL; } ret->tiles[i] = c; } return ret; } else return NULL; /* can't parse move string */ ret = dup_game(from); if (col) slide_col(ret, d, c); else slide_row(ret, d, c); ret->move_count++; ret->last_move_row = col ? -1 : c; ret->last_move_col = col ? c : -1; ret->last_move_dir = d; /* * See if the game has been completed. */ if (!ret->completed) { unsigned char *active = compute_active(ret, -1, -1); int x1, y1; bool complete = true; for (x1 = 0; x1 < ret->width; x1++) for (y1 = 0; y1 < ret->height; y1++) if (!index(ret, active, x1, y1)) { complete = false; goto break_label; /* break out of two loops at once */ } break_label: sfree(active); if (complete) ret->completed = ret->move_count; } return ret; } /* ---------------------------------------------------------------------- * Routines for drawing the game position on the screen. */ static game_drawstate *game_new_drawstate(drawing *dr, const game_state *state) { game_drawstate *ds = snew(game_drawstate); ds->started = false; ds->width = state->width; ds->height = state->height; ds->visible = snewn(state->width * state->height, unsigned char); ds->tilesize = 0; /* not decided yet */ memset(ds->visible, 0xFF, state->width * state->height); ds->cur_x = ds->cur_y = -1; return ds; } static void game_free_drawstate(drawing *dr, game_drawstate *ds) { sfree(ds->visible); sfree(ds); } static void game_compute_size(const game_params *params, int tilesize, int *x, int *y) { /* Ick: fake up `ds->tilesize' for macro expansion purposes */ struct { int tilesize; } ads, *ds = &ads; ads.tilesize = tilesize; *x = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->width + TILE_BORDER; *y = BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * params->height + TILE_BORDER; } static void game_set_size(drawing *dr, game_drawstate *ds, const game_params *params, int tilesize) { ds->tilesize = tilesize; } static float *game_colours(frontend *fe, int *ncolours) { float *ret; ret = snewn(NCOLOURS * 3, float); *ncolours = NCOLOURS; /* * Basic background colour is whatever the front end thinks is * a sensible default. */ frontend_default_colour(fe, &ret[COL_BACKGROUND * 3]); /* * Wires are black. */ ret[COL_WIRE * 3 + 0] = 0.0F; ret[COL_WIRE * 3 + 1] = 0.0F; ret[COL_WIRE * 3 + 2] = 0.0F; /* * Powered wires and powered endpoints are cyan. */ ret[COL_POWERED * 3 + 0] = 0.0F; ret[COL_POWERED * 3 + 1] = 1.0F; ret[COL_POWERED * 3 + 2] = 1.0F; /* * Barriers are red. */ ret[COL_BARRIER * 3 + 0] = 1.0F; ret[COL_BARRIER * 3 + 1] = 0.0F; ret[COL_BARRIER * 3 + 2] = 0.0F; /* * Unpowered endpoints are blue. */ ret[COL_ENDPOINT * 3 + 0] = 0.0F; ret[COL_ENDPOINT * 3 + 1] = 0.0F; ret[COL_ENDPOINT * 3 + 2] = 1.0F; /* * Tile borders are a darker grey than the background. */ ret[COL_BORDER * 3 + 0] = 0.5F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_BORDER * 3 + 1] = 0.5F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_BORDER * 3 + 2] = 0.5F * ret[COL_BACKGROUND * 3 + 2]; /* * Flashing tiles are a grey in between those two. */ ret[COL_FLASHING * 3 + 0] = 0.75F * ret[COL_BACKGROUND * 3 + 0]; ret[COL_FLASHING * 3 + 1] = 0.75F * ret[COL_BACKGROUND * 3 + 1]; ret[COL_FLASHING * 3 + 2] = 0.75F * ret[COL_BACKGROUND * 3 + 2]; ret[COL_LOWLIGHT * 3 + 0] = ret[COL_BACKGROUND * 3 + 0] * 0.8F; ret[COL_LOWLIGHT * 3 + 1] = ret[COL_BACKGROUND * 3 + 1] * 0.8F; ret[COL_LOWLIGHT * 3 + 2] = ret[COL_BACKGROUND * 3 + 2] * 0.8F; ret[COL_TEXT * 3 + 0] = 0.0; ret[COL_TEXT * 3 + 1] = 0.0; ret[COL_TEXT * 3 + 2] = 0.0; return ret; } static void draw_filled_line(drawing *dr, int x1, int y1, int x2, int y2, int colour) { draw_line(dr, x1-1, y1, x2-1, y2, COL_WIRE); draw_line(dr, x1+1, y1, x2+1, y2, COL_WIRE); draw_line(dr, x1, y1-1, x2, y2-1, COL_WIRE); draw_line(dr, x1, y1+1, x2, y2+1, COL_WIRE); draw_line(dr, x1, y1, x2, y2, colour); } static void draw_rect_coords(drawing *dr, int x1, int y1, int x2, int y2, int colour) { int mx = (x1 < x2 ? x1 : x2); int my = (y1 < y2 ? y1 : y2); int dx = (x2 + x1 - 2*mx + 1); int dy = (y2 + y1 - 2*my + 1); draw_rect(dr, mx, my, dx, dy, colour); } static void draw_barrier_corner(drawing *dr, game_drawstate *ds, int x, int y, int dir, int phase) { int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x; int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y; int x1, y1, dx, dy, dir2; dir >>= 4; dir2 = A(dir); dx = X(dir) + X(dir2); dy = Y(dir) + Y(dir2); x1 = (dx > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); y1 = (dy > 0 ? TILE_SIZE+TILE_BORDER-1 : 0); if (phase == 0) { draw_rect_coords(dr, bx+x1, by+y1, bx+x1-TILE_BORDER*dx, by+y1-(TILE_BORDER-1)*dy, COL_WIRE); draw_rect_coords(dr, bx+x1, by+y1, bx+x1-(TILE_BORDER-1)*dx, by+y1-TILE_BORDER*dy, COL_WIRE); } else { draw_rect_coords(dr, bx+x1, by+y1, bx+x1-(TILE_BORDER-1)*dx, by+y1-(TILE_BORDER-1)*dy, COL_BARRIER); } } static void draw_barrier(drawing *dr, game_drawstate *ds, int x, int y, int dir, int phase) { int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x; int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y; int x1, y1, w, h; x1 = (X(dir) > 0 ? TILE_SIZE : X(dir) == 0 ? TILE_BORDER : 0); y1 = (Y(dir) > 0 ? TILE_SIZE : Y(dir) == 0 ? TILE_BORDER : 0); w = (X(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); h = (Y(dir) ? TILE_BORDER : TILE_SIZE - TILE_BORDER); if (phase == 0) { draw_rect(dr, bx+x1-X(dir), by+y1-Y(dir), w, h, COL_WIRE); } else { draw_rect(dr, bx+x1, by+y1, w, h, COL_BARRIER); } } static void draw_tile(drawing *dr, game_drawstate *ds, const game_state *state, int x, int y, int tile, float xshift, float yshift) { int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x + (int)(xshift * TILE_SIZE); int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y + (int)(yshift * TILE_SIZE); float cx, cy, ex, ey; int dir, col; /* * When we draw a single tile, we must draw everything up to * and including the borders around the tile. This means that * if the neighbouring tiles have connections to those borders, * we must draw those connections on the borders themselves. * * This would be terribly fiddly if we ever had to draw a tile * while its neighbour was in mid-rotate, because we'd have to * arrange to _know_ that the neighbour was being rotated and * hence had an anomalous effect on the redraw of this tile. * Fortunately, the drawing algorithm avoids ever calling us in * this circumstance: we're either drawing lots of straight * tiles at game start or after a move is complete, or we're * repeatedly drawing only the rotating tile. So no problem. */ /* * So. First blank the tile out completely: draw a big * rectangle in border colour, and a smaller rectangle in * background colour to fill it in. */ draw_rect(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER, COL_BORDER); draw_rect(dr, bx+TILE_BORDER, by+TILE_BORDER, TILE_SIZE-TILE_BORDER, TILE_SIZE-TILE_BORDER, tile & FLASHING ? COL_FLASHING : COL_BACKGROUND); /* * Draw the wires. */ cx = cy = TILE_BORDER + (TILE_SIZE-TILE_BORDER) / 2.0F - 0.5F; col = (tile & ACTIVE ? COL_POWERED : COL_WIRE); for (dir = 1; dir < 0x10; dir <<= 1) { if (tile & dir) { ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); draw_filled_line(dr, bx+(int)cx, by+(int)cy, bx+(int)(cx+ex), by+(int)(cy+ey), COL_WIRE); } } for (dir = 1; dir < 0x10; dir <<= 1) { if (tile & dir) { ex = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * X(dir); ey = (TILE_SIZE - TILE_BORDER - 1.0F) / 2.0F * Y(dir); draw_line(dr, bx+(int)cx, by+(int)cy, bx+(int)(cx+ex), by+(int)(cy+ey), col); } } /* * Draw the box in the middle. We do this in blue if the tile * is an unpowered endpoint, in cyan if the tile is a powered * endpoint, in black if the tile is the centrepiece, and * otherwise not at all. */ col = -1; if (x == state->cx && y == state->cy) col = COL_WIRE; else if (COUNT(tile) == 1) { col = (tile & ACTIVE ? COL_POWERED : COL_ENDPOINT); } if (col >= 0) { int i, points[8]; points[0] = +1; points[1] = +1; points[2] = +1; points[3] = -1; points[4] = -1; points[5] = -1; points[6] = -1; points[7] = +1; for (i = 0; i < 8; i += 2) { ex = (TILE_SIZE * 0.24F) * points[i]; ey = (TILE_SIZE * 0.24F) * points[i+1]; points[i] = bx+(int)(cx+ex); points[i+1] = by+(int)(cy+ey); } draw_polygon(dr, points, 4, col, COL_WIRE); } /* * Draw the points on the border if other tiles are connected * to us. */ for (dir = 1; dir < 0x10; dir <<= 1) { int dx, dy, px, py, lx, ly, vx, vy, ox, oy; dx = X(dir); dy = Y(dir); ox = x + dx; oy = y + dy; if (ox < 0 || ox >= state->width || oy < 0 || oy >= state->height) continue; if (!(tile(state, ox, oy) & F(dir))) continue; px = bx + (int)(dx>0 ? TILE_SIZE + TILE_BORDER - 1 : dx<0 ? 0 : cx); py = by + (int)(dy>0 ? TILE_SIZE + TILE_BORDER - 1 : dy<0 ? 0 : cy); lx = dx * (TILE_BORDER-1); ly = dy * (TILE_BORDER-1); vx = (dy ? 1 : 0); vy = (dx ? 1 : 0); if (xshift == 0.0 && yshift == 0.0 && (tile & dir)) { /* * If we are fully connected to the other tile, we must * draw right across the tile border. (We can use our * own ACTIVE state to determine what colour to do this * in: if we are fully connected to the other tile then * the two ACTIVE states will be the same.) */ draw_rect_coords(dr, px-vx, py-vy, px+lx+vx, py+ly+vy, COL_WIRE); draw_rect_coords(dr, px, py, px+lx, py+ly, (tile & ACTIVE) ? COL_POWERED : COL_WIRE); } else { /* * The other tile extends into our border, but isn't * actually connected to us. Just draw a single black * dot. */ draw_rect_coords(dr, px, py, px, py, COL_WIRE); } } draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); } static void draw_tile_barriers(drawing *dr, game_drawstate *ds, const game_state *state, int x, int y) { int phase; int dir; int bx = BORDER + WINDOW_OFFSET + TILE_SIZE * x; int by = BORDER + WINDOW_OFFSET + TILE_SIZE * y; /* * Draw barrier corners, and then barriers. */ for (phase = 0; phase < 2; phase++) { for (dir = 1; dir < 0x10; dir <<= 1) if (barrier(state, x, y) & (dir << 4)) draw_barrier_corner(dr, ds, x, y, dir << 4, phase); for (dir = 1; dir < 0x10; dir <<= 1) if (barrier(state, x, y) & dir) draw_barrier(dr, ds, x, y, dir, phase); } draw_update(dr, bx, by, TILE_SIZE+TILE_BORDER, TILE_SIZE+TILE_BORDER); } static void draw_arrow(drawing *dr, game_drawstate *ds, int x, int y, int xdx, int xdy, bool cur) { int coords[14]; int ydy = -xdx, ydx = xdy; x = x * TILE_SIZE + BORDER + WINDOW_OFFSET; y = y * TILE_SIZE + BORDER + WINDOW_OFFSET; #define POINT(n, xx, yy) ( \ coords[2*(n)+0] = x + (xx)*xdx + (yy)*ydx, \ coords[2*(n)+1] = y + (xx)*xdy + (yy)*ydy) POINT(0, TILE_SIZE / 2, 3 * TILE_SIZE / 4); /* top of arrow */ POINT(1, 3 * TILE_SIZE / 4, TILE_SIZE / 2); /* right corner */ POINT(2, 5 * TILE_SIZE / 8, TILE_SIZE / 2); /* right concave */ POINT(3, 5 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom right */ POINT(4, 3 * TILE_SIZE / 8, TILE_SIZE / 4); /* bottom left */ POINT(5, 3 * TILE_SIZE / 8, TILE_SIZE / 2); /* left concave */ POINT(6, TILE_SIZE / 4, TILE_SIZE / 2); /* left corner */ draw_polygon(dr, coords, 7, cur ? COL_POWERED : COL_LOWLIGHT, COL_TEXT); } static void draw_arrow_for_cursor(drawing *dr, game_drawstate *ds, int cur_x, int cur_y, bool cur) { if (cur_x == -1 && cur_y == -1) return; /* 'no cursur here */ else if (cur_x == -1) /* LH column. */ draw_arrow(dr, ds, 0, cur_y+1, 0, -1, cur); else if (cur_x == ds->width) /* RH column */ draw_arrow(dr, ds, ds->width, cur_y, 0, +1, cur); else if (cur_y == -1) /* Top row */ draw_arrow(dr, ds, cur_x, 0, +1, 0, cur); else if (cur_y == ds->height) /* Bottom row */ draw_arrow(dr, ds, cur_x+1, ds->height, -1, 0, cur); else assert(!"Invalid cursor position"); draw_update(dr, cur_x * TILE_SIZE + BORDER + WINDOW_OFFSET, cur_y * TILE_SIZE + BORDER + WINDOW_OFFSET, TILE_SIZE, TILE_SIZE); } static void game_redraw(drawing *dr, game_drawstate *ds, const game_state *oldstate, const game_state *state, int dir, const game_ui *ui, float t, float ft) { int x, y, frame; unsigned char *active; float xshift = 0.0; float yshift = 0.0; int cur_x = -1, cur_y = -1; /* * Clear the screen and draw the exterior barrier lines if this * is our first call. */ if (!ds->started) { int phase; ds->started = true; draw_rect(dr, 0, 0, BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->width + TILE_BORDER, BORDER * 2 + WINDOW_OFFSET * 2 + TILE_SIZE * state->height + TILE_BORDER, COL_BACKGROUND); draw_update(dr, 0, 0, BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->width + TILE_BORDER, BORDER * 2 + WINDOW_OFFSET*2 + TILE_SIZE*state->height + TILE_BORDER); for (phase = 0; phase < 2; phase++) { for (x = 0; x < ds->width; x++) { if (barrier(state, x, 0) & UL) draw_barrier_corner(dr, ds, x, -1, LD, phase); if (barrier(state, x, 0) & RU) draw_barrier_corner(dr, ds, x, -1, DR, phase); if (barrier(state, x, 0) & U) draw_barrier(dr, ds, x, -1, D, phase); if (barrier(state, x, ds->height-1) & DR) draw_barrier_corner(dr, ds, x, ds->height, RU, phase); if (barrier(state, x, ds->height-1) & LD) draw_barrier_corner(dr, ds, x, ds->height, UL, phase); if (barrier(state, x, ds->height-1) & D) draw_barrier(dr, ds, x, ds->height, U, phase); } for (y = 0; y < ds->height; y++) { if (barrier(state, 0, y) & UL) draw_barrier_corner(dr, ds, -1, y, RU, phase); if (barrier(state, 0, y) & LD) draw_barrier_corner(dr, ds, -1, y, DR, phase); if (barrier(state, 0, y) & L) draw_barrier(dr, ds, -1, y, R, phase); if (barrier(state, ds->width-1, y) & RU) draw_barrier_corner(dr, ds, ds->width, y, UL, phase); if (barrier(state, ds->width-1, y) & DR) draw_barrier_corner(dr, ds, ds->width, y, LD, phase); if (barrier(state, ds->width-1, y) & R) draw_barrier(dr, ds, ds->width, y, L, phase); } } /* * Arrows for making moves. */ for (x = 0; x < ds->width; x++) { if (x == state->cx) continue; draw_arrow(dr, ds, x, 0, +1, 0, false); draw_arrow(dr, ds, x+1, ds->height, -1, 0, false); } for (y = 0; y < ds->height; y++) { if (y == state->cy) continue; draw_arrow(dr, ds, ds->width, y, 0, +1, false); draw_arrow(dr, ds, 0, y+1, 0, -1, false); } } if (ui->cur_visible) { cur_x = ui->cur_x; cur_y = ui->cur_y; } if (cur_x != ds->cur_x || cur_y != ds->cur_y) { /* Cursor has changed; redraw two (prev and curr) arrows. */ assert(cur_x != state->cx && cur_y != state->cy); draw_arrow_for_cursor(dr, ds, cur_x, cur_y, true); draw_arrow_for_cursor(dr, ds, ds->cur_x, ds->cur_y, false); ds->cur_x = cur_x; ds->cur_y = cur_y; } /* Check if this is an undo. If so, we will need to run any animation * backwards. */ if (oldstate && oldstate->move_count > state->move_count) { const game_state * tmpstate = state; state = oldstate; oldstate = tmpstate; t = ANIM_TIME - t; } if (oldstate && (t < ANIM_TIME)) { /* * We're animating a slide, of row/column number * state->last_move_pos, in direction * state->last_move_dir */ xshift = state->last_move_row == -1 ? 0.0F : (1 - t / ANIM_TIME) * state->last_move_dir; yshift = state->last_move_col == -1 ? 0.0F : (1 - t / ANIM_TIME) * state->last_move_dir; } frame = -1; if (ft > 0) { /* * We're animating a completion flash. Find which frame * we're at. */ frame = (int)(ft / FLASH_FRAME); } /* * Draw any tile which differs from the way it was last drawn. */ if (xshift != 0.0 || yshift != 0.0) { active = compute_active(state, state->last_move_row, state->last_move_col); } else { active = compute_active(state, -1, -1); } clip(dr, BORDER + WINDOW_OFFSET, BORDER + WINDOW_OFFSET, TILE_SIZE * state->width + TILE_BORDER, TILE_SIZE * state->height + TILE_BORDER); for (x = 0; x < ds->width; x++) for (y = 0; y < ds->height; y++) { unsigned char c = tile(state, x, y) | index(state, active, x, y); /* * In a completion flash, we adjust the FLASHING bit * depending on our distance from the centre point and * the frame number. */ if (frame >= 0) { int xdist, ydist, dist; xdist = (x < state->cx ? state->cx - x : x - state->cx); ydist = (y < state->cy ? state->cy - y : y - state->cy); dist = (xdist > ydist ? xdist : ydist); if (frame >= dist && frame < dist+4) { int flash = (frame - dist) & 1; flash = flash ? FLASHING : 0; c = (c &~ FLASHING) | flash; } } if (index(state, ds->visible, x, y) != c || index(state, ds->visible, x, y) == 0xFF || (x == state->last_move_col || y == state->last_move_row)) { float xs = (y == state->last_move_row ? xshift : (float)0.0); float ys = (x == state->last_move_col ? yshift : (float)0.0); draw_tile(dr, ds, state, x, y, c, xs, ys); if (xs < 0 && x == 0) draw_tile(dr, ds, state, state->width, y, c, xs, ys); else if (xs > 0 && x == state->width - 1) draw_tile(dr, ds, state, -1, y, c, xs, ys); else if (ys < 0 && y == 0) draw_tile(dr, ds, state, x, state->height, c, xs, ys); else if (ys > 0 && y == state->height - 1) draw_tile(dr, ds, state, x, -1, c, xs, ys); if (x == state->last_move_col || y == state->last_move_row) index(state, ds->visible, x, y) = 0xFF; else index(state, ds->visible, x, y) = c; } } for (x = 0; x < ds->width; x++) for (y = 0; y < ds->height; y++) draw_tile_barriers(dr, ds, state, x, y); unclip(dr); /* * Update the status bar. */ { char statusbuf[256]; int i, n, a; n = state->width * state->height; for (i = a = 0; i < n; i++) if (active[i]) a++; if (state->used_solve) sprintf(statusbuf, "Moves since auto-solve: %d", state->move_count - state->completed); else sprintf(statusbuf, "%sMoves: %d", (state->completed ? "COMPLETED! " : ""), (state->completed ? state->completed : state->move_count)); if (state->movetarget) sprintf(statusbuf + strlen(statusbuf), " (target %d)", state->movetarget); sprintf(statusbuf + strlen(statusbuf), " Active: %d/%d", a, n); status_bar(dr, statusbuf); } sfree(active); } static float game_anim_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { return ANIM_TIME; } static float game_flash_length(const game_state *oldstate, const game_state *newstate, int dir, game_ui *ui) { /* * If the game has just been completed, we display a completion * flash. */ if (!oldstate->completed && newstate->completed && !oldstate->used_solve && !newstate->used_solve) { int size; size = 0; if (size < newstate->cx+1) size = newstate->cx+1; if (size < newstate->cy+1) size = newstate->cy+1; if (size < newstate->width - newstate->cx) size = newstate->width - newstate->cx; if (size < newstate->height - newstate->cy) size = newstate->height - newstate->cy; return FLASH_FRAME * (size+4); } return 0.0F; } static int game_status(const game_state *state) { return state->completed ? +1 : 0; } static bool game_timing_state(const game_state *state, game_ui *ui) { return false; } static void game_print_size(const game_params *params, float *x, float *y) { } static void game_print(drawing *dr, const game_state *state, int tilesize) { } #ifdef COMBINED #define thegame netslide #endif const struct game thegame = { "Netslide", "games.netslide", "netslide", default_params, game_fetch_preset, NULL, decode_params, encode_params, free_params, dup_params, true, game_configure, custom_params, validate_params, new_game_desc, validate_desc, new_game, dup_game, free_game, true, solve_game, false, game_can_format_as_text_now, game_text_format, new_ui, free_ui, encode_ui, decode_ui, NULL, /* game_request_keys */ game_changed_state, interpret_move, execute_move, PREFERRED_TILE_SIZE, game_compute_size, game_set_size, game_colours, game_new_drawstate, game_free_drawstate, game_redraw, game_anim_length, game_flash_length, game_status, false, false, game_print_size, game_print, true, /* wants_statusbar */ false, game_timing_state, 0, /* flags */ }; /* vim: set shiftwidth=4 tabstop=8: */